Linagliptin, a Selective Dipeptidyl Peptidase-4 Inhibitor, Reduces Physical and Behavioral Effects of Morphine Withdrawal
Abstract
:1. Introduction
2. Results
2.1. The Effect of Linagliptin (10 and 20 mg/kg, ip) on Naloxone-Induced Morphine Withdrawal in Mice
2.2. The Influence of Linagliptin (10 and 20 mg/kg, ip) Administered Simultaneously with Morphine on Depressive Behavior Observed in Mice, in the Forced Swim Test during: (A) Short-Term (60 h) and (B) Long-Term (14 Days) Morphine Withdrawal
2.3. The Influence of Linagliptin (10 and 20 mg/kg, ip) Administered during Morphine Withdrawal on Depressive Behavior Observed in Mice, in the Forced Swim Test during: (A) Short-Term (60 h) and (B) Long-Term (14 Days) Morphine Withdrawal
2.4. The Influence of Linagliptin (10 and 20 mg/kg, ip) Administered Simultaneously with Morphine on Anxiety Behavior Observed in Mice, in the Elevated plus Maze Test during: (A) Short-Term (60 h) and (B) Long-Term (14 Days) Morphine Withdrawal
2.5. The Influence of Linagliptin (10 and 20 mg/kg, ip) Administered Simultaneously with Morphine on Locomotor Activity of Mice Observed in the Elevated plus Maze Test during: (A) Short-Term (60 h) and (B) Long-Term (14 Days) Morphine Withdrawal
2.6. The Influence of Linagliptin (10 and 20 mg/kg, ip) Administered during Morphine Withdrawal on Anxiety Behavior Observed in Mice, in the Elevated plus Maze Test during: (A) Short-Term (60 h) and (B) Long-Term (14 Days) Morphine Withdrawal
2.7. The Influence of Linagliptin (10 and 20 mg/kg, ip) Administered during Morphine Withdrawal on the Locomotor Activity of Mice Observed in the Elevated plus Maze Test during: (A) Short-Term (60 h) and (B) Long-Term (14 Days) Morphine Withdrawal
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Drugs
4.3. Procedures and Tests
4.3.1. The Development of Physical Dependence in Mice and the Effect of Linagliptin (10 and 20 mg/kg, ip) on the Acquisition of Morphine Withdrawal Signs in Mice
4.3.2. Effects of Short- and Long-Term Withdrawal of Morphine on Mice Behavior
The Forced Swim Test
The Elevated plus Maze Test
Locomotor Activity Test
4.3.3. The Effects of Linagliptin (10 and 20 mg/kg, ip) on Short- and Long-Term Effects of Morphine Withdrawal in Mice
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Damholt, A.B.; Buchan, A.M.; Holst, J.J.; Kofod, H. Proglucagon processing profile in canine L cells expressing endogenous prohormone convertase 1/3 and prohormone convertase 2. Endocrinology 1999, 140, 4800–4808. [Google Scholar] [CrossRef] [PubMed]
- Mayo, K.E.; Miller, L.J.; Bataille, D.; Dalle, C.; Göke, B.; Thorens, B.; Drucker, D.J. International union of pharmacology. XXXV. The glucagon receptor family. Pharmacol. Rev. 2003, 55, 167–194. [Google Scholar] [CrossRef] [Green Version]
- Mentlein, R. Dipeptidyl-peptidase IV (CD26)—Role in the inactivation of regulatory peptides. Regul. Pept. 1999, 85, 9–24. [Google Scholar] [CrossRef]
- Wei, Y.; Mojsov, S. Tissue-specific expression of the human receptor for glucagon-like peptide-I: Brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett. 1995, 358, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Baggio, L.L.; Yusta, B.; Mulvihill, E.E.; Cao, X.; Streutker, C.J.; Butany, J.; Cappola, T.P.; Margulies, K.B.; Drucker, D.J. GLP-1 receptor expression within the human heart. Endocrinology 2018, 159, 1570–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Körner, M.; Stöckli, M.; Waser, B.; Reubi, J.C. GLP-1 receptor expression in human tumors and human normal tissues: Potential for in vivo targeting. J. Nucl. Med. 2007, 48, 736–743. [Google Scholar] [CrossRef]
- Rinaman, L. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res. 2010, 1350, 18–34. [Google Scholar] [CrossRef] [Green Version]
- Dossat, A.M.; Lilly, N.; Kay, K.; Williams, D.L. Glucagon-like peptide 1 receptors in nucleus accumbens affect food intake. J. Neurosci. 2011, 31, 14453–14457. [Google Scholar] [CrossRef] [Green Version]
- Alhadeff, A.L.; Rupprecht, L.E.; Hayes, M.R. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 2012, 153, 647–658. [Google Scholar] [CrossRef] [Green Version]
- Onai, T.; Saji, M.; Miura, M. Functional subdivisions of the nucleus tractus solitarii of the rat as determined by circulatory and respiratory responses to electrical stimulation of the nucleus. J. Auton. Nerv. Syst. 1987, 21, 195–202. [Google Scholar] [CrossRef]
- Llewellyn-Smith, I.J.; Reimann, F.; Gribble, F.M.; Trapp, S. Preproglucagon neurons project widely to autonomic control areas in the mouse brain. Neuroscience 2011, 180, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Cork, S.C.; Richards, J.E.; Holt, M.K.; Gribble, F.M.; Reimann, F.; Trapp, S. Distribution and characterisation of glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol. Metab. 2015, 471, 8–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heppner, K.M.; Kirigiti, M.; Secher, A.; Paulsen, S.J.; Buckingham, R.; Pyke, C.; Knudsen, L.B.; Vrang, N.; Grove, K.L. Expression and distribution of glucagon-like peptide-1 receptor mRNA, protein and binding in the male nonhuman primate (Macaca mulatta) brain. Endocrinology 2015, 156, 255–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rüttimann, E.B.; Arnold, M.; Hillebrand, J.J.; Nori Geary, N.; Langhans, W. Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology 2009, 150, 1174–1181. [Google Scholar] [CrossRef]
- Hayes, M.R.; Mietlicki-Baase, E.G.; Kanoski, S.E.; De Jonghe, B.C. Incretins and amylin: Neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose. Annu. Rev. Nutr. 2014, 34, 237–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhadeff, A.L.; Baird, J.P.; Swick, J.C.; Hayes, M.R.; Grill, H.J. Glucagon-like peptide-1 receptor signaling in the lateral parabrachial nucleus contributes to the control of food intake and motivation to feed. Neuropsychopharmacology 2014, 39, 2233–2243. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, L.; Orlando, G.; Recinella, L.; Leone, S.; Ferrante, C.; Chiavaroli, A.; Lazzarin, F.; Vacca, M. Glucagon-like peptide 1 (7–36) amide (GLP-1) and exendin-4 stimulate serotonin release in rat hypothalamus. Peptides 2008, 29, 1377–1381. [Google Scholar] [CrossRef]
- Duman, R.S.; Aghajanian, G.K. Synaptic Dysfunction in depression: Potential therapeutic targets. Science 2012, 338, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.N.; Ligade, S.S.; Sharma, J.N.; Shukla, P.; Elased, K.M.; Lucot, J.B. GLP-1 receptor agonist liraglutide reverses long-term atypical antipsychotic treatment associated behavioral depression and metabolic abnormalities in rats. Metab. Brain Dis. 2015, 30, 519–527. [Google Scholar] [CrossRef]
- Anderberg, R.H.; Richard, J.E.; Hansson, C.; Nissbrandt, H.; Bergquist, F.; Skibicka, C.P. GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology 2016, 65, 54–66. [Google Scholar] [CrossRef] [Green Version]
- During, M.J.; Cao, L.; Zuzga, D.S.; Francis, J.S.; Fitzsimons, H.L.; Jiao, X.; Bland, R.J.; Klugmann, M.; Banks, W.A.; Drucker, D.J.; et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat. Med. 2003, 9, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.Y.; Holscher, C.; Yue, X.H.; Zhang, S.X.; Wang, X.H.; Qiao, F.; Yang, W.; Qi, J.S. Lixisenatide rescues spatial memory and synaptic plasticity from amyloid beta protein-induced impairments in rats. Neuroscience 2014, 277, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Egecioglu, E.; Engel, J.A.; Jerlhag, E. The glucagon-like peptide 1 analogue, exendin-4, attenuates the rewarding properties of psychostimulant drugs in mice. PLoS ONE 2013, 8, e69010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, D.L.; Erreger, K.; Galli, A.; Stanwood, G.D. GLP-1 analog attenuates cocaine reward. Mol. Psychiatry 2013, 18, 961–962. [Google Scholar] [CrossRef]
- Sørensen, G.; Reddy, I.A.; Weikop, P.; Graham, D.L.; Stanwood, G.D.; Wortwein, G.; Galli, A.; Fink-Jensen, A. The glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 reduces cocaine self-administration in mice. Physiol. Behav. 2015, 149, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, N.S.; Ige, K.Y.; Mietlicki-Baase, E.G.; Molina-Castro, G.C.; Turner, C.A.; Hayes, M.R.; Schmidt, H.D. Glucagon-like peptide-1 receptor activation in the ventral tegmental area attenuates cocaine seeking in rats. Neuropsychopharmacology 2018, 43, 2000–2008. [Google Scholar] [CrossRef] [Green Version]
- Łupina, M.; Talarek, S.; Kotlińska, J.; Gibuła-Tarłowska, E.; Listos, P.; Listos, J. The role of linagliptin, a selective dipeptidyl peptidase-4 inhibitor, in the morphine rewarding effects in rats. Neurochem. Int. 2020, 133, 104616. [Google Scholar] [CrossRef]
- Listos, J.; Łupina, M.; Talarek, S.; Mazur, A.; Orzelska-Górka, J.; Kotlińska, J. The mechanisms involved in morphine addiction: An overview. Int. J. Mol. Sci. 2019, 20, 4302. [Google Scholar] [CrossRef] [Green Version]
- Wise, R.A.; Rompre, P.P. Brain dopamine and reward. Annu. Rev. Psychol. 1989, 40, 191–225. [Google Scholar] [CrossRef]
- Johnson, S.W.; North, R.A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci. 1992, 12, 4. [Google Scholar] [CrossRef] [Green Version]
- Reiner, D.J.; Leon, R.M.; McGrath, L.E.; Koch-Laskowski, K.; Hahn, J.L.; Kanoski, S.E.; Mietlicki-Baase, E.G.; Hayes, M.R. Glucagon-like peptide-1 receptor signaling in the lateral dorsal tegmental nucleus regulates energy balance. Neuropsychopharmacology 2018, 43, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Merchenthaler, I.; Lane, M.; Shughrue, P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J. Comp. Neurol. 1999, 403, 261–280. [Google Scholar] [CrossRef]
- Al Zoubi, S.; Chen, J.; Murphy, C.; Martin, L.; Chiazza, F.; Collotta, D.; Yaqoob, M.M.; Collino, M.; Thiemermann, C. Linagliptin attenuates the cardiac dysfunction associated with experimental sepsis in mice with pre-existing type 2 diabetes by inhibiting NF-kappab. Front. Immunol. 2018, 9, 2996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakaoku, Y.; Saito, S.; Yamamoto, Y.; Maki, T.; Takahashi, R.; Ihara, M. The dipeptidyl peptidase-4 inhibitor linagliptin ameliorates high-fat induced cognitive decline in tauopathy model mice. Int. J. Mol. Sci. 2019, 20, 2539. [Google Scholar] [CrossRef] [Green Version]
- Rehni, A.K.; Singh, N. Modulation of src-kinase attenuates naloxone-precipitated opioid withdrawal syndrome in mice. Behav. Pharmacol. 2011, 22, 182–190. [Google Scholar] [CrossRef]
- Wu, P.; Shi, H.S.; Luo, Y.X.; Zhang, R.X.; Li, J.L.; Shi, J.; Lu, L.; Zhu, W.L. Neuropeptide trefoil factor 3 attenuates naloxone-precipitated withdrawal in morphine-dependent mice. Psychopharmacology 2014, 231, 4659–4668. [Google Scholar] [CrossRef]
- Listos, J.; Baranowska-Bosiacka, I.; Wąsik, A.; Talarek, S.; Tarnowski, M.; Listos, P.; Łupina, M.; Antkiewicz-Michaluk, L.; Gutowska, I.; Tkacz, M.; et al. The adenosinergic system is involved in sensitization to morphine withdrawal signs in rats-neurochemical and molecular basis in dopaminergic system. Psychopharmacology 2016, 233, 2383–2397. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Kahng, M.W.; Elkind, J.A.; Weir, V.R.; Hernandez, N.S.; Stein, L.M.; Schmidt, H.D. Activation of GLP-1 receptors attenuates oxycodone taking and seeking without compromising the antinociceptive effects of oxycodone in rats. Neuropsychopharmacology 2020, 45, 451–461. [Google Scholar] [CrossRef]
- Bornebusch, A.B.; Fink-Jensen, A.; Wörtwein, G.; Seeley, R.J.; Thomsen, M. Glucagon-like peptide-1 receptor agonist treatment does not reduce abuse-related effects of opioid drugs. eNeuro 2019, 6. [Google Scholar] [CrossRef]
- Di Chiara, G. Role of dopamine in the behavioural actions of nicotine related to addiction. Eur. J. Pharmacol. 2000, 393, 295–314. [Google Scholar] [CrossRef]
- Hirschfeld, R.M. History and evolution of the monoamine hypothesis of depression. J. Clin. Psychiatry 2000, 61, 4–6. [Google Scholar] [PubMed]
- Hammen, C. Stress and depression. Annu. Rev. Clin. Psychol. 2005, 1, 293–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemeroff, C.B. Understanding the pathophysiology of postpartum depression: Implications for the development of novel treatments. Neuron 2008, 59, 185–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharpley, C.F.; Agnew, L.L. Cytokines and depression: Findings, issues, and treatment implications. Rev. Neurosci. 2011, 22, 295–302. [Google Scholar] [CrossRef]
- Foster, J.A.; McVey Neufeld, K.A. Gut-brain axis: How the microbiome influences anxiety and depression. Trends Neurosci. 2013, 36, 305–312. [Google Scholar] [CrossRef]
- Lener, M.S.; Niciu, M.J.; Ballard, E.D.; Park, M.; Park, L.T.; Nugent, A.C.; Zarate, C.A., Jr. Glutamate and gamma-aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine. Biol. Psychiatry 2017, 81, 886–897. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, A.A.; Singh, R.; Hunter, R.G. Anxiety and epigenetics. Adv. Exp. Med. Biol. 2017, 978, 145–166. [Google Scholar]
- Fiksdal, A.; Hanlin, L.; Kuras, Y.; Gianferante, D.; Chen, X.; Thoma, M.V.; Rohleder, N. Associations between symptoms of depression and anxiety and cortisol responses to and recovery from acute stress. Psychoneuroendocrinology 2019, 102, 44–52. [Google Scholar] [CrossRef]
- Juruena, M.F.; Eror, F.; Cleare, A.J.; Young, A.H. The role of early life stress in HPA axis and anxiety. Adv. Exp. Med. Biol. 2020, 1191, 141–153. [Google Scholar]
- Malan-Muller, S.; Valles-Colomer, M.; Raes, J.; Lowry, C.A.; Seedat, S.; Hemmings, S.M.J. The gut microbiome and mental health: Implications for anxiety- and trauma-related disorders. OMICS 2018, 22, 90–107. [Google Scholar] [CrossRef]
- LaLumiere, R.T.; Kalivas, P.W. Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J. Neurosci. 2008, 28, 3170–3177. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Zhang, S.; Wang, H.L.; Barker, D.J.; Miranda-Barrientos, J.; Morales, M. VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons. Nat. Neurosci. 2016, 19, 725–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birdsong, W.T.; Jongbloets, B.C.; Engeln, K.A.; Wang, D.; Scherrer, G.; Mao, T. Synapse-specific opioid modulation of thalamo-cortico-striatal circuits. eLife 2019, 8, e45146. [Google Scholar] [CrossRef] [PubMed]
- Luster, B.R.; Cogan, E.S.; Schmidt, K.T.; Pati, D.; Pina, M.M.; Dange, K.; McElligott, Z.A. Inhibitory transmission in the bed nucleus of the stria terminalis in male and female mice following morphine withdrawal. Addict. Biol. 2020, 25, e12748. [Google Scholar] [CrossRef]
- Mansouri, M.T.; Naghizadeh, B.; Ghorbanzadeh, B.; Amirgholami, N.; Houshmand, G.; Alboghobeish, S. Venlafaxine inhibits naloxone-precipitated morphine withdrawal symptoms: Role of inflammatory cytokines and nitric oxide. Metab. Brain Dis. 2020, 35, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Parekh, S.V.; Paniccia, J.E.; Lebonville, C.L.; Lysle, D.T. Dorsal hippocampal interleukin-1 signaling mediates heroin withdrawal-enhanced fear learning. Psychopharmacology 2020, 237, 3653–3664. [Google Scholar] [CrossRef] [PubMed]
- Perry, T.; Haughey, N.J.; Mattson, M.P.; Egan, J.M.; Greig, N.H. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J. Pharmacol. Exp. Ther. 2002, 302, 881–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilman, C.P.; Perry, T.A.; Furukawa, K.; Grieg, N.H.; Egan, J.M.; Mattson, M.P. Glucagon-like peptide 1 modulates calcium responses to glutamate and membrane depolarization in hippocampal neurons. J. Neurochem. 2003, 87, 1137–1144. [Google Scholar] [CrossRef]
- Troubat, R.; Barone, P.; Leman, S.; Desmidt, T.; Cressant, A.; Atanasova, B.; Brizard, B.; El Hage, W.; Surget, A.; Belzung, C.; et al. Neuroinflammation and depression: A review. Eur. J. Neurosci. 2021, 53, 151–171. [Google Scholar] [CrossRef]
- Nuss, P. Anxiety disorders and GABA neurotransmission: A disturbance of modulation. Neuropsychiatr. Dis. Treat. 2015, 11, 165–175. [Google Scholar]
- Lange, M.D.; Jüngling, K.; Paulukat, L.; Vieler, M.; Gaburro, S.; Sosulina, L.; Blaesse, P.; Sreepathi, H.K.; Ferraguti, F.; Pape, H.C. Glutamic acid decarboxylase 65: A link between GABAergic synaptic plasticity in the lateral amygdala and conditioned fear generalization. Neuropsychopharmacology 2014, 39, 2211–2220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortin, S.M.; Lipsky, R.K.; Lhamo, R.; Chen, J.; Kim, E.; Borner, T.; Schmidt, H.D.; Hayes, M.R. GABA neurons in the nucleus tractus solitarius express GLP-1 receptors and mediate anorectic effects of liraglutide in rats. Sci. Transl. Med. 2020, 12, eaay8071. [Google Scholar] [CrossRef] [PubMed]
- Card, J.P.; Johnson, A.L.; Llewellyn-Smith, I.J.; Zheng, H.; Anand, R.; Brierley, D.I.; Trapp, S.; Rinaman, L. GLP-1 neurons form a local synaptic circuit within the rodent nucleus of the solitary tract. J. Comp. Neurol. 2018, 526, 2149–2164. [Google Scholar] [CrossRef] [PubMed]
- Rebosio, C.; Balbi, M.; Passalacqua, M.; Ricciarelli, R.; Fedele, E. Presynaptic GLP-1 receptors enhance the depolarization-evoked release of glutamate and GABA in the mouse cortex and hippocampus. Biofactors 2018, 44, 148–157. [Google Scholar] [CrossRef]
- Farkas, I.; Vastagh, C.; Farkas, E.; Bálint, F.; Skrapits, K.; Hrabovszky, E.; Fekete, C.; Liposits, Z. Glucagon-like peptide-1 excites firing and increases GABAergic miniature postsynaptic currents (mPSCs) in gonadotropin-releasing hormone (GnRH) neurons of the male mice via activation of nitric oxide (NO) and suppression of endocannabinoid signaling pathways. Front. Cell Neurosci. 2016, 10, 214. [Google Scholar]
- Korol, S.V.; Jin, Z.; Babateen, O.; Birnir, B. GLP-1 and exendin-4 transiently enhance GABAA receptor–mediated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons. Diabetes 2015, 64, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Nonogaki, K.; Kaji, T. Liraglutide, a GLP-1 receptor agonist, which decreases hypothalamic 5-HT2A receptor expression, reduces appetite and body weight independently of serotonin synthesis in mice. J. Diabetes Res. 2018, 2018, 6482958. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Zhao, X.; Wang, Y.; Yang, Y.; Zhang, H. Glucagon-like peptide-1 analogue exendin-4 modulates serotonin transporter expression in intestinal epithelial cells. Mol. Med. Rep. 2020, 21, 1934–1940. [Google Scholar] [CrossRef]
- Wilson, J.R.; Kerman, S.J.; Hubers, S.A.; Yu, C.; Nian, H.; Grouzmann, E.; Eugster, P.J.; Mayfield, D.S.; Brown, N.J. Dipeptidyl peptidase 4 inhibition increases postprandial norepinephrine via substance P (NK1 receptor) during RAAS inhibition. J. Endocr. Soc. 2019, 3, 1784–1798. [Google Scholar] [CrossRef]
- Coskun, Z.M.; Koyuturk, M.; Karabulut, S.; Bolkent, S. CB-1R and GLP-1R gene expressions and oxidative stress in the liver of diabetic rats treated with sitagliptin. Pharmacol. Rep. 2017, 69, 822–829. [Google Scholar] [CrossRef]
- Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [CrossRef] [PubMed]
- Porsolt, R.D.; Anton, G.; Blavet, N.; Jalfre, M. Behavioural despair in rats: A new model sensitive to antidepressant treatments. Eur. J. Pharmacol. 1978, 47, 379–391. [Google Scholar] [CrossRef]
- Rodgers, R.J.; Dalvi, D.A. Anxiety defence and the elevated plus maze. Neurosci. Biobehav. Rev. 1997, 21, 801–810. [Google Scholar] [CrossRef]
Saline | Vehicle | Morphine | Morphine + Linagliptin 10 | Morphine + Linagliptin 20 | Linagliptin 10 | Linagliptin 20 | |
---|---|---|---|---|---|---|---|
(A) | 10.36 ± 2.28 | 9.88 ± 1.20 | 9.85 ± 1.61 | 13.21 ± 1.25 | 9.21 ± 1.14 | 11.14 ± 1.79 | 11.80 ± 1.91 |
(B) | 8.60 ± 1.64 | 9.33 ± 2.48 | 7.63 ± 1.29 | 11.19 ± 1.75 | 11.00 ± 0.89 | 11.50 ± 1.54 | 9.40 ± 1.68 |
Saline | Vehicle | Morphine | Morphine + Linagliptin 10 | Morphine + Linagliptin 20 | Linagliptin 10 | Linagliptin 20 | |
---|---|---|---|---|---|---|---|
(A) | 10.33 ± 1.80 | 12.46 ± 36 | 10.57 ± 1.99 | 10.71 ± 1.91 | 11.63 ± 1.66 | 11.82 ± 1.04 | 12.20 ± 1.34 |
(B) | 10.36 ± 2.16 | 11.18 ± 65 | 9.43 ± 2.11 | 11.08 ± 2.20 | 11.50 ± 1.89 | 11.39 ± 2.03 | 12.70 ± 2.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Listos, J.; Listos, P.; Baranowska-Bosiacka, I.; Karpiuk, A.; Filarowska, J.; Łupina, M.; Słowik, T.; Zawiślak, S.; Kotlińska, J. Linagliptin, a Selective Dipeptidyl Peptidase-4 Inhibitor, Reduces Physical and Behavioral Effects of Morphine Withdrawal. Molecules 2022, 27, 2478. https://doi.org/10.3390/molecules27082478
Listos J, Listos P, Baranowska-Bosiacka I, Karpiuk A, Filarowska J, Łupina M, Słowik T, Zawiślak S, Kotlińska J. Linagliptin, a Selective Dipeptidyl Peptidase-4 Inhibitor, Reduces Physical and Behavioral Effects of Morphine Withdrawal. Molecules. 2022; 27(8):2478. https://doi.org/10.3390/molecules27082478
Chicago/Turabian StyleListos, Joanna, Piotr Listos, Irena Baranowska-Bosiacka, Agata Karpiuk, Joanna Filarowska, Małgorzata Łupina, Tymoteusz Słowik, Sylwia Zawiślak, and Jolanta Kotlińska. 2022. "Linagliptin, a Selective Dipeptidyl Peptidase-4 Inhibitor, Reduces Physical and Behavioral Effects of Morphine Withdrawal" Molecules 27, no. 8: 2478. https://doi.org/10.3390/molecules27082478