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Abstract: A Schiff base supramolecular 4-[(4-(hexyloxy)phenylimino)methyl]benzoic
acid and a new series of Schiff base/ester linkages named 4-substitutedphenyl
4-[(4-(hexyloxy)phenylimino)methyl]benzoate liquid crystals were synthesized. The thermal stability,
mesomorphic, and optical behavior of the prepared compounds were characterized by differential
scanning calorimetry (DSC), Thermogravemetric analysis (TGA), polarized optical microscopy
(POM), and UV spectroscopy. FT-IR, 1H-NMR, 13C-NMR, and elemental analyses were carried out to
elucidate and confirm the molecular structures of the synthesized compounds. The investigated
series comprising different sized terminal polar groups changed between CH(CH3)2, H, I, and F.
It was found that the supramolecular imino acid dimer is enantiotropic dimorphic, with a wide SmA
phase and a good N phase range. The other series of terminally substituted Schiff base/esters are
mesomorphic with a high thermal stable SmA phase, except the iodo derivative, which showed
dimorphic SmA and N phases. The effect of the position and the orientation of the cores, as well as the
terminal substituent of the type and the stability of the mesophase, were studied. A computational
theoretical study of the effects of the van der Waal’s volume, the Hammett substituent coefficient,
the inductive sigma constant, and other geometrical parameters were discussed. The study revealed
that the planarity of the two phenyl rings attached with an imino linking group impacted the
resonance effect of the terminal substituents rather than their inductive effect. A detailed study on
the effect of the estimated thermal parameters, as well as their geometrical planarity with the type
and stability of the formed mesophase, was discussed.

Keywords: Schiff base liquid crystals; mesomorphic; optical behavior; geometrical parameters;
density functional theory (DFT)

1. Introduction

Schiff bases (–CH=N–) have wide application interests as corrosion inhibitors [1], biological active
materials [2], and thermo-stable systems [3–5]. The optical and semiconducting phenomena of the
azomethine linkage group have been also widely investigated due to their photo-efficiency, with
wavelengths depending on the chemical architecture of the Schiff-base molecules [6,7]. Generally,
multiple bond linkages that maintain the linearity and rigidity of the molecular structure are satisfied

Molecules 2019, 24, 3032; doi:10.3390/molecules24173032 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0003-0169-7738
http://dx.doi.org/10.3390/molecules24173032
http://www.mdpi.com/journal/molecules
http://www.mdpi.com/1420-3049/24/17/3032?type=check_update&version=2


Molecules 2019, 24, 3032 2 of 19

in promoting the thermal stability of the mesophases. However, the ester linking unit contains no
multiple bonds in the chain of atoms linking the two benzene rings, and conjugative interactions
within the ester moiety and the rings yield some double bond characteristics. Hence, the mesophase
becomes more persistent when the phase stability effect of the mutual conjugation between the
substituent and the ester carbonyl or oxygen is increased. The mesomorphic stability of organic
compounds depends primarily on its structural geometry, in which a slight change in the molecular
conformation enables are markable change in its mesomeric characteristics [8]. As the polarity and/or
polarizability of the molecular core increase, the stability of the formed mesophase increases. Most
studies have been focused on Schiff bases ever since the discovery of a room temperature nematic
phase of 4-methoxybenzylidene-4′-butylaniline [9]. Several Schiff base mesogenic homologous series
of a low molar mass and twist-bend nematic phase have been investigated [10–12]. Many of these
studies have reported to show the effect of the terminal substituent with either alkoxy chains or polar
compact substituents [13]. The proper selection of a mesogenic moiety, terminal groups, and flexible
wings are the essential criteria for designing new thermotropic liquid crystal materials with new
phase transitions [14]. Interestingly, computational investigation is an excellent tool in designing new
materials and has attracted the attention of many researchers [15–23]. Moreover, to prepare compounds
with proper optical characteristics, it is necessary to stimulate important properties, such as molecular
orbital energies, the frontier molecular orbitals energy difference, and the molecular geometries of the
investigated liquid crystalline materials. Generally, density functional theory (DFT) proves an effective
tool for these kinds of predictions due to its excellent performance and consistent results.

In our previous work [16,24], a series of substituted Schiff base/esters were prepared, and we
investigated the effect of the alkoxy chain lengths and the polarity of small, compact terminal groups on
their mesophase stability. To further our interests and improve the mesomorphic and photo-physical
properties of liquid crystalline materials, supramolecular 4-[(4-(hexyloxy)phenylimino)methyl]benzoic
acid (1) and 4-substitutedphenyl 4-[(4-(hexyloxy)phenylimino)methyl]benzoate (A–D) were
synthesized and analyzed for their mesophase formation and stability. The present Schiff base/ester
series are different from previous homologues E and F [16,24] in the location and the orientation
of the ester linkage and the C=N linkage, as well as in the exchange of the position of terminal
substituents. Moreover, detailed theoretical investigations of the effects of van der Waal’s volume,
Hammett substituent coefficient, and the inductive sigma constant, as well as the geometrical effects,
were studied. A comparative study between the terminally neat derivative and its isomers (positional
and orientational of the mesogenic cores, COO, C=N) were investigated to illustrate the effect of the
position and the orientation of the cores, as well as the terminal substituent in the type and the stability
of the mesophase.
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Scheme 1. Synthesis of 4-substitutedphenyl 4-[4(hexyloxy)phenylimino)methyl]benzoate (A–D). 

2. Experimental

2.1. Materials

4-Isopropylphenol, 4-iodophenol, 4-fluorophenol and phenol were purchased from Sigma Aldrich
(Hamburg, Germany). Dichloromethane (DCM), N,N’-dicyclohexylcarbodiimide (DCC), ethanol and
4-dimethylaminopyridine (DMAP) were purchased from Aldrich (St. Louis, MO, USA).

2.2. Synthesis

Compounds A–D were prepared according to the following Scheme 1:
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Synthesis of 4-[(4-(hexyloxy)phenylimino)methyl]benzoic acid (1)

Equimolar amount of 4-formylbenzoic acid (610 mg, 4.1 mmol) and 4-hexyloxyaniline (790 mg,
4.1 mmol) in ethanol (10 mL) were refluxed for two hours. The reaction mixture was allowed to cool,
and the separated product was filtered. The obtained solid was recrystallized from ethanol [25,26].

Yield: 93.0%; m.p. 190.0 ◦C, FTIR (
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CH3(CH2)3CH2CH2).Elemental analyses: Found (Calc.): C, 78.51 (78.52); H, 7.48 (7.50); N, 3.14 (3.16). 

4-Phenyl 4-[(4-(hexyloxy)phenylimino)methyl]benzoate (B) 

Yield: 91.0%; m.p. 67.0 °C, FTIR (ύ, cm−1): 2927–2860 (CH2 stretching), 1730 (C=O), 1612 
(C=N),1579 (C=C), 1490 (COAsym), 1244 (C-O Sym). 1H NMR (400 MHz, CDCl3) δ 8.58 (s, 0.4H, CH=N), 
8.52 (s, 0.6H, CH=N), 8.24 (d, J = 8.5 Hz, 1H, ArH), 8.04–7.91 (m, 2H, ArH), 7.73 (d, J = 8.4 Hz, 1H, 
ArH), 7.52–7.43 (m, 2H, ArH), 7.39–7.23 (m, 5H, ArH), 7.04–7.91 (m, 2H, ArH), 4.00 (dt, J = 6.8, 2.4 Hz, 
2H, CH3(CH2)3CH2CH2), 1.95–1.61 (m, 2H,CH3(CH2)3CH2CH2), 1.59–1.08 (m, 6H, CH3(CH2)3CH2CH2), 
0.93 (dt, J = 6.0, 4.0 Hz, 3H, CH3(CH2)3CH2CH2). Elemental analyses: Found (Calc.): C, 77.76 (77.78); 
H, 6.78 (6.78); N, 3.47 (3.49). 

4-Iodophenyl 4-[(4-(hexyloxy)phenylimino)methyl]benzoate (C) 

Yield: 92.0%; m.p. 75.0 °C, FTIR (ύ, cm−1): FTIR (ύ, cm−1): 2930-2864 (CH2 stretching), 1728 (C=O), 
1613 (C=N),1577 (C=C), 1493 (COAsym), 1247 (C-O Sym).). 1H NMR (400 MHz, CDCl3) δ 8.58 (s, 0.6H, 
CH=N), 8.52 (s, 0.6H, CH=N), 8.27 (d, J = 8.4 Hz, 1H, ArH), 8.03–7.98 (m, 2H, ArH), 7.77–7.73 (m, 2H, 
ArH), 7.32–7.24 (m, 3H, ArH), 7.08–7.00 (m, 2H, ArH),6.97–6.88 (m, 2H, ArH),4.00 (dt, J = 6.8, 2.4 Hz, 
2H, CH3(CH2)3CH2CH2), 1.84–1.76 (m, 2H,CH3(CH2)3CH2CH2), 1.58–1.16 (m, 6H, CH3(CH2)3CH2CH2), 
0.86 (dt, J = 6.8, 4.0 Hz, 3H, CH3(CH2)3CH2CH2). Elemental analyses: Found (Calc.): C, 59.21 (59.21); 
H, 4.95 (4.97); N, 2.65 (2.66); I, 24.04 (24.06). 

4-Fluorophenyl 4-[4-(hexyloxy)phenylimino)methyl]benzoate (D). 

, cm−1): 2928-2863 (CH2 stretching), 1729 (C=O), 1611 (C=N),
1582 (C=C), 1496 (C–OAsym), 1240 (C-O Sym).). 1H NMR (400 MHz, CDCl3) δ 8.58 (s, 0.4H, CH=N), 8.52
(s, 0.6H, CH=N), 8.28 (dd, J = 14.4, 8.8 Hz, 1H, ArH), 8.04–7.91 (m, 2H, ArH), 7.73 (d, J = 8.4 Hz, 1H,
ArH), 7.32–7.28 (m, 2H, ArH), 7.24–7.18 (m, 2H, ArH), 7.15–7.09 (m, 2H, ArH), 6.97–6.93 (m, 2H, ArH),
4.05 (dt, J = 6.4, 2.4 Hz, 2H, CH3(CH2)3CH2CH2), 1.84–1.76 (m, 2H,CH3(CH2)3CH2CH2), 1.58–1.16
(m, 6H, CH3(CH2)3CH2CH2), 0.91 (dt, J = 5.6, 2.1 Hz, 3H, CH3(CH2)3CH2CH2). Elemental analyses:
Found (Calc.): C, 74.43 (74.44); H, 6.23 (6.25); N, 3.33 (3.34); F, 4.52 (4.53).

2.3. Characterization

The NMR spectra were measured on a Varian EM 350L 300 MHz spectrometer (company, Oxford,
UK)), while the elemental analysis (Thermo Scientific Flash 2000 CHS/O Elemental Analyzer, Milan,
Italy). Thermogravemetric analysis (TGA) was carried out using a Shimadzu TGA-50H Thermal
Analyzer. A Differential Scanning Calorimeter, TA instrument Co. Q20 (DSC; USA), was used
for calorimetric measurements. The types of the mesophase texture were identified by a standard
polarized optical microscope (POM, Wild, Germany). The UV-Vis spectra were recorded by a UV-1800
(SHIMADZU, Kyoto, Japan) (for detailed specifications, see supplementary data).

2.4. Computational Method

Gaussian 09 software was used for DFT calculations of the studied compounds [27]. DFT/B3LYP
methods using the LANL2DZ basis set [28] were selected for the calculations. The geometries were
optimized by minimizing the energies with respect to all geometrical parameters without imposing
any molecular symmetry constraints. The structures of the optimized geometries were drawn with the
Gauss View [29]. Further, calculation frequencies were carried out with the same level of theory. The
frequency calculations showed that all structures were stationary points in the geometry optimization
method, with no imaginary frequencies.

3. Results and Discussion

3.1. Infrared Absorption Spectra of Components A–F

The IR spectra were measured by Perkin-Elmer B25 spectrophotometer (Perkin-Elmer, Inc.,
Shelton, CT, USA). The position and the orientation of the mesogenic core have an observable effect
on the wavenumber of the absorbance bands of the characteristic peaks for the C=O and C=N of
the investigated compounds, A–F. However, the electronic nature of the terminal substituent has no
significant effect on the absorbance wavenumber of these characteristic peaks. This result could be
explained in terms of the isolation of the terminal substituent from these groups. The terminally neat
derivative (B) showed an absorbance band at 1730 cm−1 corresponding to the C=O group, which
agrees with previous reports [25,26]. The absorbance band of its isomers, E and F, was 1720 cm−1.
However, only 4 cm−1 are different in the absorption peaks of wavenumbers C=N, 1613 and 1609 cm−1

for B and E, respectively.
Obviously, from the NMR spectroscopy, the reaction effectively proceeded to afford a mixture of

two geometrical isomers (E and Z), but their ratio depends insignificantly on the electronic nature of
the terminal substituent (see supplementary data Figures S2–S6). The investigation of such effects on
the stability of the obtained isomers could be an important subject for future analyses, either theoretical
or experimental.

3.2. Mesomorphic Study

Firstly, the mesomorphic behavior of the synthesized 4-[(4-(hexyloxy)phenylimino)methyl]benzoic
acid dimer (1) was investigated by DSC and POM. DSC transitions and mesophase types were achieved
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and confirmed by observed textures under POM. Figure 1 illustrates the DSC thermogram upon
heating/cooling scan for the prepared supramolecular acid (1).
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Figure 1. Differential scanning calorimetry(DSC) thermograms of supramolecular acid 1 upon 
heating and cooling scans with heating rate 10 °C/min. 

The phase behavior investigation revealed that the hexyloxy phenyiminobenzoic acid (1) is
dimorphic, exhibiting an enantiotropic smectic A phase followed by a nematic phase. In Figure 1
illustrates the prepared acid (1) exhibits broad SmA mesophase stability (67.6 ◦C) and a narrow N phase
stability (8.5 ◦C) upon heating, where it melts at 189.8 ◦C and changes to an isotropic liquid at ≈266.0 ◦C.
On the other hand, the cooling of the isotropic melts showed a nematic phase at 261.2 ◦C and an SmA
phase at 249.8 ◦C. Then, recrystallization was observed at 178.9 ◦C. The transition temperature of 1 was
in agreement with that of the previous investigation [25,26]. The thermal stability of compound 1 was
also confirmed by TG analysis. Figure 2 shows the TGA curve of the supramolecular acid dimer. As
seen in Figure 2, thermal degradation occurs at only one step, with a maximum rate loss (Tmax) at ca.
329 ◦C. This indicates high thermal stability for the prepared compounds above isotropic temperatures.
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The transition temperatures, enthalpy, and normalized entropy change of transitions as analyzed
by DSC, and the identified mesophases confirmed by POM for all synthesized compounds, A–D, are
summarized in Table 1. Textures and mesophase transition temperatures were achieved using the
polarized optical microscope, and the results were verified by DSC measurements. Figure 3 represents
graphical transition temperatures obtained from DSC thermograms, upon heating, for compounds
A–D. Table 1 and Figure 3 show that all prepared compounds are enantiotropic mesomorphic with
wide stability. The present mesomorphic compounds, A–D, are purely smectogenic, exhibiting a
monomorphic smectic A (SmA) phase. However, compound C (X = I) is dimorphic and exhibits
SmA and N phases. The electron-donating compound, A, the CH(CH3)2 substituent, exhibits an SmA
phase with a thermal stability range of 24.1 ◦C, while the unsubstituted derivative B has a smectic
phase with a range of 20.1 ◦C and a low melting temperature of 67.3 ◦C. It was reported in [13] that
the dipole moment of the mesomeric portion of the molecule impacts the type and stability of the
mesophase produced, which is dependent on the attached terminal polar substituent and the steric
one that varies according to size. The halogen substituent at the terminal position showed strong
influence on the mesomorphic behavior of the Schiff base molecules [30]. In our present study, the
halogenated compound C (X = I) is dimorphic, with the highest thermal nematic stability (182.0 ◦C)
and SmA stability (136.3 ◦C). The transition melting temperature of C is 75.4 ◦C, and its smectic and
nematic phases’ ranges are 60.9 and 45.7 ◦C, respectively. While the fluoro substituted derivative D
is monomorphic smectogenic with a wide SmA range (73.4 ◦C), which is lower than the range of C
in thermal stability. This result may be attributed to the volume as well as the electronic nature of
the F-atom that completely differs from the iodo atom. Therefore, the former is less easily polarized
due to the electrons on this atom, which are tightly held and located closer to the nucleus [31]. Thus,
the lower polarizability and intermolecular attractive force of the D molecule is due to the smaller
size of the F-atom, which affected mesophase stability. In general, the stability of the mesophase is
influenced by an increase in the polarizability and/or polarity of the mesogenic core of the molecule.
This was found to be true, where in synthesized series A–D, the electron-donating (CH(CH3)2) and
electron-withdrawing halogens (I and F) groups enhance the mesophase stability more than their
unsubstituted derivative (B).
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Table 1. Phase transition temperatures (◦C), enthalpy of transitions (kJ/mol), and normalized transition
entropy temperature for compounds A–D.

Compound X TCr-SmA ∆HCr-SmA TSmA-I ∆HSmA-I ∆SSmA-I/R TN-I ∆HN-I ∆SN-I/R

A CH(CH3)2 92.3 28.76 116.4 2.33 2.41 - - -

B H 67.3 28.38 87.3 1.92 2.65 - - -

C I 75.4 26.87 136.3 3.11 2.74 182.0 1.87 1.24

D F 74.1 25.48 147.5 1.80 1.47 - - -

Abbreviations: TCr-SmA = crystal to smectic A transition; TSmA-I = Smectic A to isotropic liquid transition; TN-I =
Nematic to isotropic liquid transition. ∆HCr-SmA = crystal to smectic A transition; ∆HSmA-I = Smectic A to isotropic
liquid transition; ∆HN-I = Nematic to isotropic liquid transition. ∆SSmA-I/R =Smectic A to isotropic liquid transition;
∆SN-I/R = Nematic to isotropic liquid transition.
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Generally, among calamitic mesogens, there is a direct relation between mesophase behavior and
the intermolecular interaction, which depends mainly upon the geometry/shape of the molecules, the
polarizability anisotropy/size of the terminal polar group X, and the stereo electronic properties of the
whole molecule. Therefore, in our present work, the molecular association of the rod-like molecules
and, consequently, their mesophase stability (Tc) depends mainly on the intermolecular interactions of
linear molecules that differ according to the polarity and the size of the polar substituent X. The higher
molecular polarizability contributed by CH(CH3)2 (I and F substituents)stabilizes the mesophase and
consequently led to higher Tc values. The terminal substituent (X) in the molecules can be ordered
according to their ability to enhance the mesophase’s range and stability: I > F > CH(CH3)2 > H.

The competitive interaction between end-to-end intermolecular aggregation and side-side parallel
interaction plays an important role in determining the type and stability of the enhanced mesophase, as
well as their transitions to anisotropic phase and the development of the smectic phase, established by
the predominance of lateral attractions. The types of the observed mesophase textures were identified
for the prepared compounds, and two examples are represented in Figure 4.
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Figure 4. Polarized optical microscopy (POM) textures upon heating for (a) the nematic phase of
compound 1 at 262.0 ◦C and (b) the smectic A phase of compound D at 120.0 ◦C.

3.3. Comparable Study of Three Schiff base/ester Positional Isomers

The investigated phenyl 4-[(4-(hexyloxy)phenylimino)methyl]benzoate (B) is compared
with that of previously investigated Schiff base/ester derivatives,4-phenyliminomethyl)phenyl
4’−hexyloxybenzoate (E), [24]and 4-(benzylideneamino)phenyl 4’-hexyloxybenzoate (F) [16]. It was
found that from the comparison between their mesophase stabilities, the compound E is relatively
higher in thermal stability than those of its isomers B and F. Isomer E is different than the prepared
isomer B in the location and the inversion of the ester linkage, as well as in the exchange in the position
of terminal substituents. Thus, it seems that the attachment of a hexyloxy chain into the terminal
ring, which attached to the ester group rather than the (-CH=N-) mesogen, increases the polarizability
and, consequently, enhances the terminal intermolecular association between molecules, showing a
nematic phase. The results confirmed that the effect of the alkoxy chain attached to the ester linkage
is more effective on the type and stability of phases when compared with the chainsattached to the
azomethine moiety.

3.4. DFT Calculations

3.4.1. The Geometrical Structure

The geometrical structure and other properties (the energy gap between the frontier molecular
orbitals, the charge distribution, polarizability, λmax of UV-Vis absorption spectra, dipole moment, and
the mesophase stability of the liquid crystalline) of organic compounds could be highly affected by
the electronic nature and position of the attached substituents. It is well known that the Hammett
substituent coefficient (σ) and the inductive sigma constant (I) are major parameters that could be
used to evaluate the electronic effect of the substituents upon the reaction rate, as well as the reaction
mechanism [32]. Consequently, it is worthy to investigate the relationship between the σ-coefficient and
the I-constant with variable parameters that affect the characteristics of the liquid crystalline materials.

The optimum geometrical structure of all investigated compounds 1 and A–D were calculated in
the gas phase using method DFT/B3LYP for the base set LANL2DZ. The results of the DFT calculations
revealed that all compounds are in non-planar geometries, and the comparative studies between the
compounds under investigation with the previously prepared compounds with different positions and
orientations of the mesogenic cores E [24] and F [16]have been illustrated. Obviously, the deviation
from planarity depends upon the nature of the attached substituent and the position of the mesogenic
cores (COO, CH=N) of the liquid crystalline compounds. The twist angle θ between the two phenyl
rings attached by the C=N linking group is affected by the electronic nature of the terminal substituent
X (Figure 5, Table 2).
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Table 2. Hammett substituent coefficient (σ) and the van der Waal volume of terminal X for compounds
A–D.

Compound van der Waal Volume Hammett Substituent
Coefficient (σ)

Inductive Sigma
Constant (I)

A 44.34 −0.14 −0.03

B 3.50 0.00 0.00

C 19.64 0.30 0.39

D 5.80 0.06 0.52

As shown in Figure 5, the twist angle θ between the two phenyl rings attached with the C=N
group of the free acid 1 is θ = 23.12◦. However, a small decrease to 21.96◦ is caused by the esterification
of the acid with an unsubstituted phenol. The attachment of the electron donating group decreases the
planarity by 2.6◦ with respect to the free acid. The high electron drawing the F-atom increases the
planarity to θ = 21.60◦. However, the presence of the iodo-atom in the para position increases the twist
angle θ to 24.00◦.These results illustrate that the twist angle θ is impacted by the resonance effect of the
substituents, rather than their inductive effects. Moreover, changing the position and the orientation of
the mesogenic cores (C=N and COO) affects the twist angle largely to be θ = 31.93◦ for E and 36.73◦ for
its positional isomer, F.

The electronic nature of terminal X has a significant effect on the planarity of the investigated
compounds A–D. On the other hand, the size of the terminal substituent X does not impact the degree
of the deviation from planarity where this substituent is separated from these systems (C=N) by
another benzene. Moreover, the orientation of the C=N of the isomers E and F of the unsubstituted
derivative B has a pronounced effect on the planarity of these isomers.

The calculated thermal parameters, dipole moment, and polarizability of the investigated liquid
crystalline materials 1 and A–F are tabulated in Table 3. As shown in Figure 6, the dipole moment is
highly impacted by the electronic nature of the substituent X, as well as the position and the orientation
of the mesogenic core. The largest electron withdrawing group (F-atom) showed the highest dipole
moment (µ = 7.3 Debye). The results of the calculated dipole moment illustrate the type of the
mesomorphic properties of the investigated compounds. The terminally neat derivative, B, with
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the lowest polarity (µ = 3.6 Debye) and van der Waal’s volume (3.5 cm3/mol), makes the smectic
mesophase range the narrowest (20 ◦C). However, the large van der Waal volume of the isopropyl
group of derivative A (44.34 cm3/mol) is expected to increase the smectic mesophase’s stability due to
a higher degree of aggregation interaction. On the other hand, the high dipole moment of the largest
inductive sigma constant F-atom (0.52) makes a significant lateral interaction that enhances smectic
mesophase with the highest range of the smectic mesophases (73.4 ◦C). On the other hand, the iodo
derivative (C), with a large van der Waal’s volume (19.34 cm3/mol), the highest Hammett substituent
constant (0.30), and the least planarity, decreases the packing and decrements the smectic mesophase
stability to 136 ◦C instead of 147 ◦C for the fluoro derivative. This enhances end to end interactions
to give the nematic mesophase a very wide range (up to 45.4 ◦C). Obviously, the position and the
orientation of the mesogenic core have a high impact on the estimated thermal parameters as well as
the experimental mesomorphic properties. The low value of the dipole moment of the isomers E and F
and the high degree of non-planarity do not allow a close packing with a high parallel interaction to
enhances the smectic mesophase, leaving the terminal interaction to predominantly show a nematic
mesophase. Moreover, neither the dipole moment nor the polarizability have been impacted by the
orientation C=N group. The differences in the nematic mesophase stability between the two isomers
could be attributed to their geometry. The lower planarity of compound F lowers the mesophase
stability compared to its more planar isomer (E) (Tc = 149.0 and 156.8 ◦C, respectively (Figures 6
and 7)).
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Table 3. Thermal parameters (Hartree/Particle), Dipole Moment (Debye), and polarizability of compounds 1 and A–F.

Parameter 1 A B C D E F

Ecorr 0.392807 0.559305 0.474386 0.463692 0.465729 0.474707 0.474454

ZPVE −1055.849580 −1404.623757 −1286.783451 −1297.569307 −1386.035695 −1286.786475 −1286.785911

Etot −1055.825993 −1404.591179 −1286.755255 −1297.539432 −1386.006571 −1286.758403 −1286.757712

H −1055.825049 −1404.590235 −1286.754311 −1297.538488 −1386.005627 −1286.757458 −1286.756768

G −1055.907119 −1404.694419 −1286.849136 −1297.638567 −1386.102863 −1286.850666 −1286.851627

Dipole moment 9.4330 5.3484 3.6413 6.6999 7.3187 3.3748 3.2828

Polarizability α 279.08 399.61 360.04 391.80 362.78 347.25 346.93

ZPVE: sum of electronic and zero-point energies; Etot: sum of electronic and thermal energies; H:sum of electronic and thermal enthalpies; G:sum of electronic and thermal free energies.
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Polarizability [33–35] could be considered another factor affecting the type as well as the phase
stability temperature, Tc. To illustrate the impact of these factors, the polarizability of substituent X is
displayed graphically against the van der Waal volume of the substituent (Figure 8a) and the TSmA

values (Figure 8b). The results suggest that the van der Waal volume impacts the polarizability due to
the attachment of the substituent, X; as the volume increases, the polarizability increases. As seen in
Figure 8b, the mesophase stability TSmA of the compounds under investigation is obviously affected
by polarizability, except for the unsubstituted derivative (B). However, this result occurs not only
because polarizability is the main factor affecting the mesophase stability but also because of the polar
nature and van der Waal’s volume, as well as the close packing ability due to the geometrical effects
enhancing the intermolecular attraction between molecules and bulk groups that facilitate molecular
space-filling [36].
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3.4.2. Optical Properties and Frontier Molecular Orbitals

Optical applications of non-linear optical (NLO) liquid crystals are highly affected by the energy
difference between the frontier molecular orbitals (FMOs), HOMO (highest occupied molecular orbital),
and LUMO (lowest unoccupied molecular orbital) [37,38]. Moreover, the energy gap between FMOs is
a good tool for the prediction of important parameters, such as chemical hardness (η), global softness
(S), and polarizability (α). Figure 9 illustrates the calculated ground state isodensity surface plots for
the FMOs of compounds 1 and A–F. Table 4 summarizes the values of the FMO energy gap and the
global softness (S) and experimental λmax. As shown in Table 4 and Figures 9 and 10, the global softness
and the FMO energy gaps, as well as the experimental maximum absorption (λmax), have not been
significantly affected by van der Waal’s volume or the electronic nature of the terminal substituent. This
can be explained by the fact that the substituents do not participate in HOMO and LUMO orbitals. The
experimental results of the UV-Vis absorption are constituent with those of the theoretical calculations
of the energy gap between the FMO. However, the energy gap between the FMO is highly affected by
the orientation and position of the mesogenic core (COO and C=N). The λmax decreases by about 60 nm
by changing the position of the mesogenic cores of the unsubstituted derivative (B) compared with its
isomers, E and F. However, the orientation of the C=N group of E and F has little effect on either the
∆E of the FMOs or the experimental UV-Vis absorption, only 15 cm−1 of ∆λmax and 0.001a.u for ∆E.
Moreover, as can be concluded from Table 4, the terminally neat derivative (B) is softer than both its
positional and orientational isomers (E and F). The orientation of C=N of compound E is more proper
than F for resonance. This orientation cloud permits the maximum delocalization of the π-electrons
and, consequently, decreases the ∆E of the frontier’s molecular orbitals, Figure 11.

Table 4. Molecular orbital energies, hardness (η), and global softness (S) of compounds A–F.

Compound EHOMO (a.u) ELUMO (a.u) ∆E(ELUMO-EHOMO)
(a.u) S= 1/∆E λmaxexp

1 −0.22052 −0.09332 0.12720 7.861635 358.6

A −0.21376 −0.08700 0.12676 7.888924 358.9

B −0.21486 −0.08868 0.12618 7.925186 358.8

C −0.21706 −0.09285 0.12421 8.050882 360.4

D −0.21742 −0.09299 0.12443 8.036647 359.4

E −0.21773 −0.07134 0.14639 6.831068 278.0

F −0.21979 −0.07330 0.14649 6.826405 263.0



Molecules 2019, 24, 3032 15 of 19
Molecules 2019, 24, x FOR PEER REVIEW 15 of 19 

 

 

Figure 9. The calculated ground state isodensity surface plots for frontier molecular orbitals of 
compounds 1 and A–F. 

 
Figure 10. UV–vis spectra of compounds A–D in dichloromethane at 25 °C. 

Figure 9. The calculated ground state isodensity surface plots for frontier molecular orbitals of
compounds 1 and A–F.

Molecules 2019, 24, x FOR PEER REVIEW 15 of 19 

 

 

Figure 9. The calculated ground state isodensity surface plots for frontier molecular orbitals of 
compounds 1 and A–F. 

 
Figure 10. UV–vis spectra of compounds A–D in dichloromethane at 25 °C. Figure 10. UV–vis spectra of compounds A–D in dichloromethane at 25 ◦C.



Molecules 2019, 24, 3032 16 of 19
Molecules 2019, 24, x FOR PEER REVIEW 16 of 19 

 

N

OO

O
R

A

B

C

N

OO

O
R

A

B

C

E F

::

::

Lower in energy gap
Higher in wavelength

Higher in energy gap
Lower in wavelength

 
Figure 11.Resonance effect of compounds E, F. 

Table 4. Molecular orbital energies, hardness (η), and global softness (S) of compounds A–F. 

Compound EHOMO (a.u) ELUMO (a.u) ΔE(ELUMO-EHOMO) (a.u) S= 1/ΔE λmaxexp 

1 −0.22052 −0.09332 0.12720 7.861635 358.6 
A −0.21376 −0.08700 0.12676 7.888924 358.9 
B −0.21486 −0.08868 0.12618 7.925186 358.8 
C −0.21706 −0.09285 0.12421 8.050882 360.4 
D −0.21742 −0.09299 0.12443 8.036647 359.4 
E −0.21773 −0.07134 0.14639 6.831068 278.0 
F −0.21979 −0.07330 0.14649 6.826405 263.0 

3.4.3.Molecular Electrostatic Potential (MEP) 

The charge distribution map for the compounds 1 and A–F was calculated using the same basis 
sets according to molecular electrostatic potential (MEP, Figure 12). The red region (negatively 
charged atomic sites) was localized on the oxygen atoms and the nitrogen atom of the imino group, 
while alkyl chains showed the least negatively charged atomic sites (blue regions). As shown in 
Figure 12, the position and orientation of the core, as well as the electronic nature of the terminal 
substituent (X), affect the distribution of the charge map. This could impact the type and stability of 
the mesophase by altering the competitive interaction between end-to-end and side-side 
interactions. Recently, we reported the relationship between the theoretical charge distribution and 
experimental mesophase type [18,39,40]. The alteration of the charge distribution on the molecules 
due to a greater electron donation or electron acceptance could predominate terminal aggregations 
to enhance the nematic mesophase or the parallel interactions to give a semectic mesophase.  
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3.4.3. Molecular Electrostatic Potential (MEP)

The charge distribution map for the compounds 1 and A–F was calculated using the same basis
sets according to molecular electrostatic potential (MEP, Figure 12). The red region (negatively charged
atomic sites) was localized on the oxygen atoms and the nitrogen atom of the imino group, while alkyl
chains showed the least negatively charged atomic sites (blue regions). As shown in Figure 12, the
position and orientation of the core, as well as the electronic nature of the terminal substituent (X),
affect the distribution of the charge map. This could impact the type and stability of the mesophase
by altering the competitive interaction between end-to-end and side-side interactions. Recently, we
reported the relationship between the theoretical charge distribution and experimental mesophase
type [18,39,40]. The alteration of the charge distribution on the molecules due to a greater electron
donation or electron acceptance could predominate terminal aggregations to enhance the nematic
mesophase or the parallel interactions to give a semectic mesophase.
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4. Conclusions

Schiff base liquid crystals of a Schiff base/ester series with a terminal polar substituent were
successfully synthesized and thermally characterized. Molecular structures were confirmed via
elemental analyses, FT-IR, and NMR spectroscopy. The thermal, mesomorphic, and optical properties
of the newly prepared compounds were investigated by TGA, DSC, POM, and UV- spectroscopy.

The study revealed that:
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The Schiff base supramolecular acid is enantiotropic dimorphic with high thermal stability in the
SmA and N mesophases. All synthesized Schiff base/ester compounds are mesomorphic, exhibiting a
wide SmA range of high thermal stability. However, the iodo derivative is dimorphic with the SmA and
N phases. The mesomorphic properties are greatly impacted by the size and polarity of the terminal
substituents, and the unsubstituted derivative shows the smallest range of SmA mesophase stability.
The positional and orientational inversion of the mesogenic cores (COO, C=N) have a pronounced
effect on the type and the stability of the observed mesophase. DFT and theoretical calculations of
geometrical parameters revealed that the twist angle θ between the two phenyl rings attached with a
C=N linkage is impacted by the resonance effect of the terminal substituents and plays an important
role in enhancing the mesophase transition stability and its range.

Supplementary Materials: The following are available online. Figure S1: 1H
NMR of 4-[(4-(hexyloxy)phenylimino)methyl]benzoic acid (1), Figure S2: C13 NMR
of 4-[(4-(hexyloxy)phenylimino)methyl]benzoic acid (1), Figure S3: 1H NMR of
phenyl 4-[(4-(hexyloxy)phenylimino)methyl]benzoate (B), Figure S4: 1H NMR of
4-iodophenyl 4-[(4-(hexyloxy)phenylimino)methyl]benzoate (C), Figure S5: 1H NMR of
4-iodophenyl 4-[(4-(hexyloxy)phenylimino)methyl]benzoate (C), Figure S6: 1H NMR of
4-fluorophenyl 4-[(4-(hexyloxy)phenylimino)methyl]benzoate (D), Figure S7: 1H NMR
of 4-fluorophenyl 4-[(4-(hexyloxy)phenylimino)methyl]benzoate (D), Figure S8: FTIR of
4-isopropylphenyl 4-[(4-(hexyloxy)phenylimino)methyl]benzoate (A), Figure S9: FTIR of
phenyl 4-[(4-(hexyloxy)phenylimino)methyl]benzoate (B), Figure S10: FTIR of 4-iodophenyl
4-[(4-(hexyloxy)phenylimino)methyl]benzoate (C), Figure S11: FTIR of 4-fluorophenyl
4-[(4-(hexyloxy)phenylimino)methyl]benzoate (D), Figure S12: DSC thermograms of compound B upon
heating and cooling cycles at heating rate 10 ◦C/min.
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