Impact of Hydrothermal Treatments on Nutritional Value and Mineral Bioaccessibility of Brussels Sprouts (Brassica oleracea var. gemmifera)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Methods
2.2.1. In Vitro Digestion
2.2.2. Determination of Macronutrients Content
2.2.3. Determination of Mineral Components Content
2.2.4. Determination of Low-Molecular-Weight Carbohydrates (Glucose, Fructose, and Sucrose) Content
2.2.5. Determination of Fatty Acids Profile
2.2.6. Determination of Biogenic Amines Content
2.3. Bioaccessibility
2.4. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Macronutirents Content in Brussels Sprouts Raw and Subjected to Hydrothemal Treatments
3.2. Analysis of Fatty Acid (FA) Profile of Brussels Sprouts Raw and Subjected to Hydrothemal Treatments
3.3. Analysis of Biogenic Amines Concentration of Brussels Sprouts Raw and Subjected to Hydrothemal Treatments
3.4. Analysis of Mineral Components Concentration of Brussels Sprouts That Were Raw or Subjected to Hydrothemal Treatments before and after the In Vitro Digestion; Determination of In Vitro Bioaccessibility of the Mineral Components
3.5. Analysis of Low-Molecular-Weight Carbohydrates Concentration of Raw Brussels Sprouts and Those Subjected to Hydrothemal Treatments before and after In Vitro Digestion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Tuso, P. A Plant-Based Diet, Atherogenesis, and coronary artery disease prevention. Perm. J. 2015, 19, 62–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanlier, N.; Guler Saban, M. The benefits of Brassica vegetables on human health. J. Public Health Res. 2018, 1, 104. [Google Scholar]
- Nugrahedi, P.Y.; Verkerk, R.; Widianarko, B.; Dekker, M. A mechanistic perspective on process-induced changes in glucosinolate content in Brassica vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2014, 55, 823–838. [Google Scholar] [CrossRef] [PubMed]
- Florkiewicz, A. Metoda sous-vide jako alternatywa dla tradycyjnych metod gotowania warzyw kapustnych w kontekście ograniczania strat zawartości składników odżywczych i błonnika pokarmowego. Żywność Nauka Technol. Jakość 2018, 25, 45–57. [Google Scholar] [CrossRef]
- Florkiewicz, A.; Bączkowicz, M.; Pietrzyk, S. Jakość sensoryczna warzyw kapustnych gotowanych metodą sous-vide oraz tradycyjnymi technikami obróbki hydrotermicznej. Żywność Nauka Technol. Jakość 2018, 25, 4. [Google Scholar] [CrossRef]
- Florkiewicz, A.; Berski, W.; Filipiak-Florkiewicz, A. The effect of addition of osmotic substances on the retention of selected micro- and macroelements in hydrothermally processed Brassica vegetables. J. Food Process. Preserv. 2019, 44, e14295. [Google Scholar] [CrossRef]
- Baardseth, P.; Bjerke, F.; Martinsen, B.K.; Skrede, G. Vitamin C, total phenolics and antioxidative activity in tip-cut green beans (Phaseolus vulgaris) and swede rods (Brassica napus var. napobrassica) processed by methods used in catering. J. Sci. Food Agric. 2010, 90, 1245–1255. [Google Scholar] [CrossRef]
- Mansour, A.A.; Elshimy, N.M.; Shekib, L.A.; Sharara, M.S. Effect of domestic processing methods on the chemical composition and organoleptic properties of broccoli and cauliflower. Am. J. Food Nutr. 2015, 3, 125–130. [Google Scholar]
- Ahmed, F.A.; Ali, R.F.M. Bioactive Compounds and Antioxidant Activity of Fresh and Processed White Cauliflower. BioMed Res. Int. 2013, 2013, 367819. [Google Scholar] [CrossRef]
- Khwairakpam, B.; Balwinder, S.; Kiran, B. Effect of domestic cooking methods on the nutritive and antioxidative components of mustard leaves (Brassica juncea). Int. J. Food Agric. Vet. Sci. 2014, 4, 24–31. [Google Scholar]
- Baldwin, D.E. Sous vide cooking: A review. Int. J. Gastron. Food Sci. 2012, 1, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Ribas-Agustí, A.; Martín-Belloso, O.; Soliva-Fortuny, R.; Elez-Martínez, P. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2531–2548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva Pinto, M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2013, 75, 588–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hur, S.J.; Lim, B.O.; Decker, E.A.; McClements, D.J. In vitro human digestion models for food applications. Food Chem. 2011, 125, 1–12. [Google Scholar] [CrossRef]
- Żyła, K.; Ledoux, D.R.; Garcia, A.; Veum, T.L. An in vitro procedure for studying enzymic dephosphorylation of phytate in maize-soya bean feeds for turkey poults. Br. J. Nutr. 1995, 74, 3–17. [Google Scholar] [CrossRef]
- Starzynska-Janiszewska, A.; Dulinski, R.; Stodolak, B.; Mickowska, B.; Wikiera, A. Prolonged tempe-type fermentation in order to improve bioactive potential and nutritional parameters of quinoa seeds. J. Cereal Sci. 2016, 71, 116–121. [Google Scholar] [CrossRef]
- PN-EN ISO 712:2012; Ziarno Zbóż i Przetwory Zbożowe. Oznaczanie Wilgotności. Metoda Odwoławcza. Polish Committee for Standardization: Warsaw, Poland, 2012.
- PN-EN ISO 16634-1:2008; Produkty Żywnościowe. Oznaczanie Całkowitej Zawartości Azotu Przez Spalanie Zgodnie z Zasadą Dumas i Obliczanie Zawartości Białka Ogólnego. Część 1: Nasiona Roślin Oleistych i Pasze. Polish Committee for Standardization: Warsaw, Poland, 2008.
- PN-EN ISO 2171:2010; Ziarno Zbóż, Nasiona Roślin Strączkowych i ich Przetwory. Oznaczanie Zawartości Popiołu Metodą Spalania. Polish Committee for Standardization: Warsaw, Poland, 2010.
- PN-EN-15505:2009; Foodstuffs-Determination of Trace Elements-Determination of Sodium and Magnesium by Flame Atomic Absorption Spectrometry (AAS) after Microwave Digestion. Polish Committee for Standardization: Warsaw, Poland, 2009.
- PN-EN 14084:2004; Foodstuffs-Determination of Trace Elements-Determination of Lead, Cadmium, Zinc, Copper and Iron by Atomic Absorption Spectrometry (AAS) after Microwave Digestion. Polish Committee for Standardization: Warsaw, Poland, 2004.
- Nilsson, J.; Olsson, K.; Engqvist, G.; Ekvall, J.; Olsson, M.; Nyman, M.; Åkesson, B. Variation in the content of glucosinolates, hydroxycinnamic acids, carotenoids, total antioxidant capacity and low-molecular-weight carbohydrates in Brassica vegetables. J. Sci. Food Agric. 2006, 86, 528–538. [Google Scholar] [CrossRef]
- Ledoux, M.; Chardigny, J.M.; Darbois, M.; Soustre, Y.; Sébédio, J.L.; Laloux, L. Fatty acid composition of French butters, with special emphasis on conjugated linoleic acid (CLA) isomers. J. Food Compos. Anal. 2005, 18, 409–425. [Google Scholar] [CrossRef]
- Cai, X.; Chen, X.; Yin, N.; Du, H.; Sun, G.; Wang, L.; Xu, Y.; Chen, Y.; Cui, Y. Estimation of the bioaccessibility and bioavailability of Fe, Mn, Cu, and Zn in Chinese vegetables using the in vitro digestion/Caco-2 cell model: The influence of gut microbiota. Food Funct. 2017, 8, 4592–4600. [Google Scholar] [CrossRef]
- Batista, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Nutritional and nutraceutical potential of rape (Brassica napus L. var. napus) and “tronchuda” cabbage (Brassica oleraceae L. var. costata) inflorescences. Food Chem. Toxicol. 2011, 49, 1208–1214. [Google Scholar] [CrossRef]
- Bhandari, S.; Kwak, J.-H. Chemical composition and antioxidant activity in different tissues of Brassica vegetables. Molecules 2015, 20, 1228–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peñas, E.; Frias, J.; Sidro, B.; Vidal-Valverde, C. Impact of fermentation conditions and refrigerated storage on microbial quality and biogenic amine content of sauerkraut. Food Chem. 2010, 123, 143–150. [Google Scholar] [CrossRef]
- Stadnik, J. Aminy biogenne w wyrobach mięsnych surowo dojrzewających. Żywność Nauka Technol. Jakość 2013, 3, 5–15. [Google Scholar]
- Świder, O.; Roszko, M.Ł.; Wójcicki, M.; Szymczyk, K. Biogenic amines and free amino acids in traditional fermented vegetables-dietary risk evaluation. J. Agric. Food Chem. 2019, 68, 856–868. [Google Scholar] [CrossRef] [PubMed]
- Ladero, V.; Calles-Enriquez, M.; Fernandez, M.A.; Alvarez, M. Toxicological effects of dietary biogenic amines. Curr. Nutr. Food Sci. 2010, 6, 145–156. [Google Scholar] [CrossRef]
- Kiewlicz, J.; Rybicka, I. Minerals and their bioavailability in relation to dietary fiber, phytates and tannins from gluten and gluten-free flakes. Food Chem. 2020, 305, 125452. [Google Scholar] [CrossRef]
- Wennberg, M.; Ekvall, J.; Olsson, K.; Nyman, M. Changes in carbohydrate and glucosinolate composition in white cabbage (Brassica oleracea var. capitata) during blanching and treatment with acetic acid. Food Chem. 2006, 95, 226–236. [Google Scholar] [CrossRef]
- Zaccari, F.; Cabrera, M.C.; Saadoun, A. In vitro bioaccessibility for some nutrients content in cooked pulp of sweet potato cultivars during traditional storage. Acta Hortic. 2018, 1194, 1045–1052. [Google Scholar] [CrossRef]
- Zaccari, F.; Cabrera, M.; Saadoun, A. Glucose Content and In Vitro Bioaccessibility in Sweet Potato and Winter Squash Varieties during Storage. Foods 2017, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Palmonari, A.; Cavallini, D.; Sniffen, C.J.; Fernandes, L.; Holder, P.; Fusaro, I.; Giammarco, M.; Formigoni, A.; Mammi, L.M.E. In vitro evaluation of sugar digestibility in molasses. Ital. J. Anim. Sci. 2021, 20, 571–577. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, Z.; Li, J.; Chen, L.; Bai, Y.; Jia, Y.; Shao, T. Effects of sugar sources and doses on fermentation dynamics, carbohydrates changes, in vitro digestibility and gas production of rice straw silage. Ital. J. Anim. Sci. 2019, 18, 1345–1355. [Google Scholar] [CrossRef] [Green Version]
Treatment | Dry Matter | Ash | Protein | Crude Fat | Dietary Fiber | Digestible Carbohydrates | |
---|---|---|---|---|---|---|---|
Raw | 15.93 ± 0.42 b | 1.13 ± 0.02 b | 3.45 ± 0.01 d | 0.30 ± 0.02 b | 5.26 ± 0.04 c | 5.76 ± 0.04 c | |
Thermal treatments | Steaming | 15.05 ± 0.73 b | 1.10 ± 0.01 b | 3.29 ± 0.00 b | 0.20 ± 0.02 a | 5.27 ± 0.06 c | 5.20 ± 0.00 b |
Sous vide | 15.16 ± 0.29 b | 1.13 ± 0.02 b | 3.43 ± 0.01 c | 0.26 ± 0.01 b | 5.11 ± 0.06 b | 5.18 ± 0.00 b | |
Boiling | 14.05 ± 0.20 a | 0.98 ± 0.00 a | 3.09 ± 0.01 a | 0.17 ± 0.01 a | 4.76 ± 0.07 a | 5.05 ± 0.01 a |
Fatty Acid | Raw | Thermal Treatment | ||
---|---|---|---|---|
Steaming | Sous Vide | Boiling | ||
Myristic acid (C14:0) | 0.21 ± 0.02 a | 0.17 ± 0.04 a | 0.20 ± 0.01 a | 0.21 ± 0.02 a |
Pentadecanoic acid (C15:0) | 0.24 ± 0.06 a | 0.28 ± 0.03 a | 0.25 ± 0.00 a | 0.24 ± 0.00 a |
Palmitic acid (C16:0) | 16.71 ± 0.20 c | 15.88 ± 0.07 b | 14.65 ± 0.03 a | 14.94 ± 0.08 a |
Heptadecanoic acid (C17:0) | <LOQ | <LOQ | <LOQ | 0.22 ± 0.00 |
Stearic acid (C18:0) | 3.95 ± 0.27 b | 3.84 ± 0.13 b | 2.58 ± 0.03 a | 2.23 ± 0.05 a |
Palmitoleic acid (C16:1) | 0.98 ± 0.01 a | 1.16 ± 0.01 b | 1.41 ± 0.10 c | 1.31 ± 0.06 bc |
Margaroleic acid (C17:1) | 1.03 ± 0.04 b | 1.59 ± 0.05 c | 1.47 ± 0.08 c | 0.32 ± 0.02 a |
Oleic acid (C18:1n9c) | 1.33 ± 0.02 c | 0.97 ± 0.12 b | 1.05 ± 0.04 b | 0.74 ± 0.00 a |
Vaccenic acid (C18:1n7) | 3.15 ± 0.03 ab | 3.07 ± 0.15 a | 3.51 ± 0.05 c | 3.33 ± 0.00 bc |
Linoleic acid (C18:2n6c) | 19.11 ± 1.07 ab | 19.60 ± 0.10 b | 19.13 ± 0.06 ab | 17.98 ± 0.07 a |
α-Linolenic acid (C18:3n3) | 50.90 ± 0.52 a | 50.90 ± 0.16 a | 51.90 ± 0.26 b | 56.84 ± 0.14 c |
cis-11.14-Eicosadienoic acid (C20:2) | 0.29 ± 0.02 ab | 0.24 ± 0.03 a | 0.32 ± 0.00 b | 0.26 ± 0.01 a |
Arachidonic acid (C20:4n6) | 0.53 ± 0.01 a | 0.54 ± 0.10 a | 0.52 ± 0.15 a | 0.59 ± 0.05 a |
Docosahexaenoic acid C22:6n3 | 1.57 ± 0.01 b | 1.78 ± 0.12 c | 3.00 ± 0.08 d | 0.80 ± 0.00 a |
SFA | 21.11 | 20.17 | 17.68 | 17.84 |
MUFA | 6.49 | 6.79 | 7.44 | 5.70 |
PUFA | 72.4 | 73.06 | 74.87 | 76.47 |
Biogenic Amine | Raw | Thermal Treatment | ||
---|---|---|---|---|
Steaming | Sous Vide | Boiling | ||
Tryptamine | 0.31 ± 0.01 a | 1.12 ± 0.01 d | 0.73 ± 0.01 b | 1.08 ± 0.01 c |
2-Phenylethylalanine | 0.12 ± 0.01 b | 0.10 ± 0.02 b | 0.17 ± 0.00 c | 0.07 ± 0.00 a |
Putrescine | 3.56 ± 0.07 c | 2.86 ± 0.06 b | 2.67 ± 0.08 b | 1.19 ± 0.02 a |
Cadaverine | 0.01 ± 0.00 c | 0.01 ± 0.00 b | 0.00 ± 0.00 a | 0.00 ± 0.00 b |
Histamine | 14.21 ± 0.91 c | 11.20 ± 0.50 b | 13.58 ± 1.25 c | 6.31 ± 0.19 a |
Tyramine | 5.50 ± 0.16 c | 2.42 ± 0.19 b | 1.56 ± 0.14 a | 6.15 ± 0.30 d |
Spermidine | 16.68 ± 1.04 b | 20.25 ± 0.81 c | 9.89 ± 0.29 a | 24.36 ± 0.34 d |
Spermine | 0.83 ± 0.13 c | 0.46 ± 0.04 b | 0.25 ± 0.04 a | 1.46 ± 0.07 d |
Mineral Component | Raw | Thermal Treatment | ||
---|---|---|---|---|
Steaming | Sous Vide | Boiling | ||
Potassium | 26,327.15 ± 483.29 c | 24,699.68 ± 618.87 b | 25,991.36 ± 187.01 bc | 21,899.37 ± 715.87 a |
Sodium | 647.47 ± 1.77 c | 577.41 ± 10.98 b | 653.89 ± 0.85 c | 495.08 ± 5.66 a |
Calcium | 2219.22 ± 45.60 c | 1512.06 ± 16.65 ab | 1638.90 ± 76.32 b | 1336.87 ± 99.65 a |
Magnesium | 1033.77 ± 80.54 a | 992.50 ± 57.00 a | 1034.91 ± 9.98 a | 954.78 ± 32.26 a |
Manganese | 13.01 ± 0.61 a | 13.09 ± 0.40 a | 14.74 ± 0.09 b | 14.30 ± 0.11 b |
Iron | 32.32 ± 3.04 a | 34.65 ± 1.78 a | 36.62 ± 2.15 a | 32.85 ± 3.26 a |
Zinc | 21.47 ± 1.35 b | 17.40 ± 0.33 a | 20.52 ± 0.85 b | 16.78 ± 0.09 a |
Mineral Component | Raw | Thermal Treatment | |||
---|---|---|---|---|---|
Steaming | Sous Vide | Boiling | |||
Potassium | A | 1605.38 ± 31.82 c | 1356.38 ± 45.66 b | 1343.96 ± 8.38 b | 1143.39 ± 2.28 a |
B | 6.10 ± 0.01 | 5.49 ± 0.05 | 5.22 ± 0.16 | 5.17 ± 0.07 | |
Calcium | A | 151.9 ± 56.48 b | 138.29 ± 1.18 a | 149.52 ± 1.97 b | 135.70 ± 1.49 a |
B | 6.85 ± 0.43 | 9.15 ± 0.18 | 9.13 ± 0.30 | 10.17 ± 0.65 | |
Magnesium | A | 46.92 ± 4.50 a | 48.55 ± 1.62 a | 52.13 ± 2.19 a | 47.94 ± 0.27 a |
B | 4.54 ± 0.08 | 4.90 ± 0.44 | 5.04 ± 0.16 | 5.02 ± 0.20 | |
Zinc | A | 3.64 ± 0.06 c | 1.19 ± 0.01 a | 1.45 ± 0.07 b | 1.10 ± 0.00 a |
B | 17.02 ± 1.37 | 6.83± 0.20 | 7.06 ± 0.61 | 6.57 ± 0.06 | |
Manganese | <LOQ | <LOQ | <LOQ | <LOQ | |
Iron | <LOQ | <LOQ | <LOQ | <LOQ |
Low-Molecular-Weight Carbohydrates | Sample Type (Variable a) | Raw | Thermal Treatment (Variable b) | Results of Two-Factorial ANOVA | ||||
---|---|---|---|---|---|---|---|---|
Steaming | Sous Vide | Boiling | a | b | a*b | |||
Glucose | A | 170.58 ± 13.83 b | 135.20 ± 10.39 b | 152.81 ± 3.47 b | 160.29 ± 0.18 b | 0.00 | 0.01 | 0.88 |
B | 80.97 ± 0.13 a | 52.08 ± 2.34 a | 59.93 ± 0.37 a | 69.73 ± 3.50 a | ||||
Sucrose | A | 303.74 ± 5.41 d | 311.47 ± 3.68 bd | 331.24 ± 5.45 c | 306.86 ± 0.89 d | 0.00 | 0.00 | 0.00 |
B | 300.87 ± 0.28 d | 325.52 ± 3.20 bc | 329.94 ± 1.12 c | 352.99 ± 0.97 a | ||||
Fructose | A | 86.24 ± 1.75 b | 85.56 ± 2.82 b | 118.32 ± 5.30 a | 100.46 ± 3.05 b | 0.00 | 0.00 | 0.02 |
B | 26.24 ± 0.87 d | 28.25 ± 0.21 d | 37.52 ± 4.26 d | 34.52 ± 1.32 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doniec, J.; Florkiewicz, A.; Duliński, R.; Filipiak-Florkiewicz, A. Impact of Hydrothermal Treatments on Nutritional Value and Mineral Bioaccessibility of Brussels Sprouts (Brassica oleracea var. gemmifera). Molecules 2022, 27, 1861. https://doi.org/10.3390/molecules27061861
Doniec J, Florkiewicz A, Duliński R, Filipiak-Florkiewicz A. Impact of Hydrothermal Treatments on Nutritional Value and Mineral Bioaccessibility of Brussels Sprouts (Brassica oleracea var. gemmifera). Molecules. 2022; 27(6):1861. https://doi.org/10.3390/molecules27061861
Chicago/Turabian StyleDoniec, Joanna, Adam Florkiewicz, Robert Duliński, and Agnieszka Filipiak-Florkiewicz. 2022. "Impact of Hydrothermal Treatments on Nutritional Value and Mineral Bioaccessibility of Brussels Sprouts (Brassica oleracea var. gemmifera)" Molecules 27, no. 6: 1861. https://doi.org/10.3390/molecules27061861