Pharmacokinetic Study of Withanosides and Withanolides from Withania somnifera Using Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS)
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Silico Molecular Properties and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Prediction
2.2. Quantification of Withania somnifera Root Extract
2.3. Chromosomal Aberration (Genotoxicity) Assay of Withania somnifera Root Extract
2.4. Salmonella typhimurium Reverse Mutation Assay (AMES) Assay
2.5. UHPLC-MS/MS Method Optimization
2.6. Sample Pre-Treatment for Bioanalysis
2.7. UHPLC-MS/MS Method Validation
2.7.1. Specificity
2.7.2. Linearity and Lower Limit of Quantification (LLOQ)
2.7.3. Precision and Accuracy
2.7.4. Extraction Recovery and Matrix Effect
2.7.5. Dilution Integrity
2.7.6. Stability
2.8. In Vivo Pharmacokinetic Study
2.9. Ex Vivo Permeability Study
Estimation of Permeability
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. In Silico Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET), and Molecular Properties Prediction
4.3. Withania somnifera Extract Preparation and Quantification
4.4. In Vitro Toxicity Studies
4.4.1. Chromosomal Aberration Assay of Withania somnifera Root Extract
4.4.2. AMES Toxicity Study of Withania somnifera Root Extract
4.5. Development and Validation of UHPLC-MS/MS Method
4.5.1. Instrumental and Chromatographic Conditions
4.5.2. Preparation of Stock and Working Standards
4.5.3. Preparation of Calibration Standards and Quality Control Samples
4.5.4. Sample Pre-Treatment for UHPLC-MS/MS Analysis
4.5.5. UHPLC-MS/MS Method Validation
4.5.6. Selectivity, Linearity, and Lower Limit of Quantification (LLOQ)
4.5.7. Matrix Effect, Dilution Integrity, and Extraction Recovery
4.5.8. Accuracy, Precision, and Stability
4.6. In Vivo Pharmacokinetic Study
4.7. Ex Vivo Permeability Study
4.7.1. Everted Rat Intestine Apparatus
4.7.2. Permeability Determination
4.7.3. Matrix Effect and Sample Preparation for Ex Vivo Permeability Study
4.7.4. Permeability Calculation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUC | Area under the Curve |
AUMC | Area under the mean concentration |
CPCSEA | The committee for the purpose of control and supervision of experiments on animals |
CYP | Cytochrome P450 |
EMA | European medicines agency |
HQC | Highest concentration QC sample |
IS | Internal standard |
KRB | Kreb’s ringer buffer |
LLOQ | Lower limit of quantification |
LQC | Lowest concentration QC sample |
MQC | Moderate concentration QC sample |
MRT | Mean residence time |
Papp | Apparent permeability constant |
RE | Relative error |
ROP | Retro-orbital venous plexus |
RSD | Relative standard deviation |
TPSA | Topological polar surface area |
UHPLC | Ultra-performance liquid chromatography |
USFDA | United States food and drug administration |
USP | United States pharmacopeia |
WSE | Withania somnifera extract |
References
- Kumar, V.; Dey, A.; Hadimani, M.B.; Marcovic, T.; Emerald, M. Chemistry and pharmacology of Withania somnifera: An update. CELLMED 2015, 5, 1.1–1.13. [Google Scholar] [CrossRef] [Green Version]
- Hepper, F.N. Old World Withania (Solanaceae): A taxonomic review and key to the species. In InSolanaceae III: Taxonomy, Chemistry, Evolution; Hawkes, J.G., Lester, R.N., Nee, M., Estrada, N., Eds.; Royal Botanic Gardens: Kew, UK, 1999; pp. 211–227. [Google Scholar]
- Ilayperuma, I.; Ratnasooriya, W.D.; Weerasooriya, T.R. Effect of Withania somnifera root extract on the sexual behaviour of male rats. Asian J. Androl. 2002, 4, 295–298. [Google Scholar] [PubMed]
- Mabberley, D.J. Mabberley’s Plant-Book: A Portable Dictionary of Plants, Their Classification and Uses; Cambridge University Press: Cambridge, UK, 2017; ISBN 1107115027. [Google Scholar]
- Wijeratne, E.M.K.; Xu, Y.-M.; Scherz-Shouval, R.; Marron, M.T.; Rocha, D.D.; Liu, M.X.; Costa-Lotufo, L.V.; Santagata, S.; Lindquist, S.; Whitesell, L. Structure–activity relationships for withanolides as inducers of the cellular heat-shock response. J. Med. Chem. 2014, 57, 2851–2863. [Google Scholar] [CrossRef] [PubMed]
- Arshad Jamal, S.; Iqbal Choudhary, M.; Asif, E. Two withanolides from Withania somnifera. Phytochemistry 1991, 30, 3824–3826. [Google Scholar]
- Bhattacharya, S.K.; Bhattacharya, A.; Sairam, K.; Ghosal, S. Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: An experimental study. Phytomedicine 2000, 7, 463–469. [Google Scholar] [CrossRef]
- Singh, G.; Kumar, P. Antibacterial Potential of Alkaloids of Withania somnifera L. and Euphorbia hirta L. Int. J. Pharm. Pharm. Sci. 2012, 4, 78–81. [Google Scholar]
- Pawar, P.; Gilda, S.; Sharma, S.; Jagtap, S.; Paradkar, A.; Mahadik, K.; Ranjekar, P.; Harsulkar, A. Rectal gel application of Withania somnifera root extract expounds anti-inflammatory and muco-restorative activity in TNBS-induced Inflammatory Bowel Disease. BMC Complement. Altern. Med. 2011, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Widodo, N.; Kaur, K.; Shrestha, B.G.; Takagi, Y.; Ishii, T.; Wadhwa, R.; Kaul, S.C. Selective killing of cancer cells by leaf extract of Ashwagandha: Identification of a tumor-inhibitory factor and the first molecular insights to its effect. Clin. Cancer Res. 2007, 13, 2298–2306. [Google Scholar] [CrossRef] [Green Version]
- Andallu, B.; Radhika, B. Hypoglycemic, diuretic and hypocholesterolemic effect of winter cherry (Withania somnifera, Dunal) root. Indian J. Exp. Biol. 2000, 38, 607–609. [Google Scholar]
- Khan, B.; Ahmad, S.F.; Bani, S.; Kaul, A.; Suri, K.A.; Satti, N.K.; Athar, M.; Qazi, G.N. Augmentation and proliferation of T lymphocytes and Th-1 cytokines by Withania somnifera in stressed mice. Int. Immunopharmacol. 2006, 6, 1394–1403. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, R.; Nazmi, A.; Lakhanpal, D.; Kataria, H.; Kaur, G. Glioprotective effects of Ashwagandha leaf extract against lead induced toxicity. BioMed Res. Int. 2014, 2014, 182029. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, N.; Gupta, A.; Valli, R.K.; Joshi, S.D.; Mills, J.T.; Hamel, E.; Khanna, P.; Jain, S.C.; Thakur, S.S.; Ravindranath, V. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc. Natl. Acad. Sci. USA 2012, 109, 3510–3515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dar, N.J.; Hamid, A.; Ahmad, M. Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cell. Mol. Life Sci. 2015, 72, 4445–4460. [Google Scholar] [CrossRef]
- Mirjalili, M.H.; Moyano, E.; Bonfill, M.; Cusido, R.M.; Palazón, J. Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 2009, 14, 2373–2393. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, M.I.; Abbas, S.; Jamal, S.A. Withania somnifera—A source of exotic withanolides. Heterocycles 1996, 2, 555–563. [Google Scholar]
- Bandyopadhyay, M.; Jha, S.; Tepfer, D. Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep. 2007, 26, 599–609. [Google Scholar] [CrossRef]
- Nasimi Doost Azgomi, R.; Zomorrodi, A.; Nazemyieh, H.; Fazljou, S.M.B.; Sadeghi Bazargani, H.; Nejatbakhsh, F.; Moini Jazani, A.; Ahmadi AsrBadr, Y. Effects of Withania somnifera on reproductive system: A systematic review of the available evidence. BioMed Res. Int. 2018, 2018, 4076430. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.K.; Muruganandam, A.V. Adaptogenic activity of Withania somnifera: An experimental study using a rat model of chronic stress. Pharmacol. Biochem. Behav. 2003, 75, 547–555. [Google Scholar] [CrossRef]
- Davis, L.; Kuttan, G. Immunomodulatory activity of Withania somnifera. J. Ethnopharmacol. 2000, 71, 193–200. [Google Scholar] [CrossRef]
- Sahni, Y.P.; Srivastava, D.N. Anti-inflammatory activity of Withania somnifera: Possible mode of action. J. Appl. Anim. Res. 1993, 3, 129–136. [Google Scholar] [CrossRef]
- Gorelick, J.; Rosenberg, R.; Smotrich, A.; Hanuš, L.; Bernstein, N. Hypoglycemic activity of withanolides and elicitated Withania somnifera. Phytochemistry 2015, 116, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Devkar, S.T.; Kandhare, A.D.; Zanwar, A.A.; Jagtap, S.D.; Katyare, S.S.; Bodhankar, S.L.; Hegde, M.V. Hepatoprotective effect of withanolide-rich fraction in acetaminophen-intoxicated rat: Decisive role of TNF-α, IL-1β, COX-II and iNOS. Pharm. Biol. 2016, 54, 2394–2403. [Google Scholar] [CrossRef] [Green Version]
- Kaur, P.; Mathur, S.; Sharma, M.; Tiwari, M.; Srivastava, K.K.; Chandra, R. A biologically active constituent of Withania somnifera (ashwagandha) with anti-stress activity. Indian J. Clin. Biochem. 2001, 16, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Saleem, S.; Ahmad, A.S.; Ansari, M.A.; Yousuf, S.; Hoda, M.N.; Islam, F. Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum. Exp. Toxicol. 2005, 24, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Langade, D.; Kanchi, S.; Salve, J.; Debnath, K.; Ambegaokar, D. Efficacy and safety of Ashwagandha (Withania somnifera) root extract in insomnia and anxiety: A double-blind, randomized, placebo-controlled study. Cureus 2019, 11, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandrasekhar, K.; Kapoor, J.; Anishetty, S. A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults. Indian J. Psychol. Med. 2012, 34, 255–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gannon, J.M.; Forrest, P.E.; Chengappa, K.N.R. Subtle changes in thyroid indices during a placebo-controlled study of an extract of Withania somnifera in persons with bipolar disorder. J. Ayurveda Integr. Med. 2014, 5, 241. [Google Scholar]
- Raut, A.A.; Rege, N.N.; Tadvi, F.M.; Solanki, P.V.; Kene, K.R.; Shirolkar, S.G.; Pandey, S.N.; Vaidya, R.A.; Vaidya, A.B. Exploratory study to evaluate tolerability, safety, and activity of Ashwagandha (Withania somnifera) in healthy volunteers. J. Ayurveda Integr. Med. 2012, 3, 111. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.usp.org/sites/default/files/usp/document/products-services/products/2015-dsc-vol-1-table-of-contents-ref-standard-index.pdf (accessed on 2 December 2021).
- Dai, T.; Jiang, W.; Guo, Z.; Wang, Z.; Huang, M.; Zhong, G.; Liang, C.; Pei, X.; Dai, R. Studies on oral bioavailability and first-pass metabolism of withaferin A in rats using LC–MS/MS and Q-TRAP. Biomed. Chromatogr. 2019, 33, e4573. [Google Scholar] [CrossRef]
- Thaiparambil, J.T.; Bender, L.; Ganesh, T.; Kline, E.; Patel, P.; Liu, Y.; Tighiouart, M.; Vertino, P.M.; Harvey, R.D.; Garcia, A. Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int. J. Cancer 2011, 129, 2744–2755. [Google Scholar] [CrossRef]
- Gambhir, L.; Checker, R.; Sharma, D.; Thoh, M.; Patil, A.; Degani, M.; Gota, V.; Sandur, S.K. Thiol dependent NF-κB suppression and inhibition of T-cell mediated adaptive immune responses by a naturally occurring steroidal lactone Withaferin A. Toxicol. Appl. Pharmacol. 2015, 289, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Patil, D.; Gautam, M.; Mishra, S.; Karupothula, S.; Gairola, S.; Jadhav, S.; Pawar, S.; Patwardhan, B. Determination of withaferin A and withanolide A in mice plasma using high-performance liquid chromatography-tandem mass spectrometry: Application to pharmacokinetics after oral administration of Withania somnifera aqueous extract. J. Pharm. Biomed. Anal. 2013, 80, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.B.; Rao, N.J.; Hingorani, L.L. Safety assessment of Withania somnifera extract standardized for Withaferin A: Acute and sub-acute toxicity study. J. Ayurveda Integr. Med. 2016, 7, 30–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model. 2012, 52, 3099–3105. [Google Scholar] [CrossRef] [PubMed]
- Shinde, M.G.; Modi, S.J.; Kulkarni, V.M. Synthesis, pharmacological evaluation, molecular docking and in silico ADMET prediction of nitric oxide releasing biphenyls as anti-inflammatory agents. J. Appl. Pharm. Sci. 2017, 7, 37–47. [Google Scholar] [CrossRef]
- Tiwari, A.; Modi, S.J.; Mahadik, K.R.; Suryawanshi, M.R. Synthesis And Anticancer Screening Of Triazine Analogues. Int. J. Pharm. Pharm. Sci. 2019, 11, 114–120. [Google Scholar] [CrossRef]
- Girme, A.; Saste, G.; Pawar, S.; Balasubramaniam, A.K.; Musande, K.; Darji, B.; Satti, N.K.; Verma, M.K.; Anand, R.; Singh, R.; et al. Investigating 11 Withanosides and Withanolides by UHPLC–PDA and Mass Fragmentation Studies from Ashwagandha (Withania somnifera). ACS Omega 2020, 5, 27933–27943. [Google Scholar] [CrossRef]
- Organisation de coopération et de développement économiques. Test No. 473: In Vitro Mammalian Chromosomal Aberration Test; OECD Publishing: Paris, France, 2016. [Google Scholar]
- Lupi, S.; Marconi, S.; Paiaro, E.; Fochesato, A.; Gregorio, P. Mutagenicity evaluation with Ames test of hydro-alcoholic solution of terpenes. J. Prev. Med. Hyg. 2009, 50, 170–174. [Google Scholar]
- United States Food and Drug Administration (USFDA)—Department of Health and Human Services. Bioanalytical Method Validation, Guidance for Industry. 2018. Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-MethodValidation-Guidance-for-Industry.pdf/ (accessed on 17 July 2021).
- European Medicines Agency. Guideline on Bioanalytical Method Validation. 2011. Available online: www.ema.europa.eu/docs/en_GB/document_library/Scientifc_guideline/2011/08/WC500109686.pdf/ (accessed on 17 July 2021).
- Tiwari, A.; Mahadik, K.R.; Gabhe, S.Y. Effect of piperine and its analogs on pharmacokinetic properties of sorafenib tosylate: Bioanalytical method development and validation. J. Appl. Pharm. Sci. 2020, 10, 1–12. [Google Scholar]
- Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010, 99, 306–314. [Google Scholar] [CrossRef]
- Girme, A.; Pawar, S.; Ghule, C.; Shengule, S.; Saste, G.; Balasubramaniam, A.K.; Deshmukh, A.; Hingorani, L. Bioanalytical Method Development and Validation Study of Neuroprotective Extract of Kashmiri Saffron Using Ultra-Fast Liquid Chromatography-Tandem Mass Spectrometry (UFLC-MS/MS): In Vivo Pharmacokinetics of Apocarotenoids and Carotenoids. Molecules 2021, 26, 1815. [Google Scholar] [CrossRef] [PubMed]
- Dixit, P.; Jain, D.K.; Dumbwani, J. Standardization of an ex vivo method for determination of intestinal permeability of drugs using everted rat intestine apparatus. J. Pharmacol. Toxicol. Methods 2012, 65, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Nunes, R.; Silva, C.; Chaves, L. Tissue-based in vitro and ex vivo models for intestinal permeability studies. In Concepts and Models for Drug Permeability Studies; Elsevier: Amsterdam, The Netherlands, 2016; pp. 203–236. [Google Scholar]
- Volpe, D.A. Application of method suitability for drug permeability classification. AAPS J. 2010, 12, 670–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Constituents | *Log p | *TPSA | **natoms | *M.W. | **nOH | **nOHNH | **nviolations | **nrotb | Volume |
---|---|---|---|---|---|---|---|---|---|
Withanoside IV | 1.22 | 245.29 | 55 | 782.92 | 15 | 9 | 3 | 9 | 714.61 |
Withanoside V | 2.46 | 225.06 | 54 | 766.92 | 14 | 8 | 3 | 8 | 706.35 |
Withaferin A | 3.86 | 96.36 | 34 | 470.61 | 6 | 2 | 0 | 3 | 442.38 |
12-Deoxy-withastramonolide | 3.86 | 96.36 | 34 | 470.61 | 6 | 2 | 0 | 3 | 442.38 |
Withanolide A | 4.15 | 96.36 | 34 | 470.61 | 6 | 2 | 0 | 2 | 441.81 |
Withanolide B | 5.10 | 76.13 | 33 | 454.61 | 5 | 1 | 1 | 2 | 434.12 |
Withanone | 4.15 | 96.36 | 34 | 470.61 | 6 | 2 | 0 | 2 | 441.81 |
ADMET Parameters | Withanoside IV | Withanoside V | Withaferin A | 12-Deoxy-withastramonolide | Withanone | Withanolide A | Withanolide B | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Results | Probability | Results | Probability | Results | Probability | Results | Probability | Results | Probability | Results | Probability | Results | Probability | |
Blood-brain barrier (BBB) | BBB | 0.7718 | BBB | 0.7718 | BBB+ | 0.8697 | BBB+ | 0.8945 | BBB+ | 0.8327 | BBB+ | 0.8327 | BBB+ | 0.9304 |
Human intestinal absorption (HIA) | HIA+ | 0.7051 | HIA+ | 0.7051 | HIA+ | 0.8086 | HIA+ | 0.8393 | HIA+ | 0.8951 | HIA+ | 0.8951 | HIA+ | 0.8990 |
Caco-2 permeability | Caco2- | 0.9403 | Caco2- | 0.9403 | Caco2- | 0.6967 | Caco2- | 0.7345 | Caco2- | 0.7156 | Caco2- | 0.7156 | Caco2- | 0.5829 |
P-glycoprotein substrate | Substrate | 0.8737 | Substrate | 0.8737 | Substrate | 0.7995 | Substrate | 0.8344 | Substrate | 0.8467 | Substrate | 0.8467 | Substrate | 0.7962 |
P-glycoprotein inhibitor | Non inhibitor | 0.7603 | Non inhibitor | 0.7605 | Non inhibitor | 0.6149 | Non inhibitor | 0.7933 | Non inhibitor | 0.9071 | Non inhibitor | 0.9071 | Non inhibitor | 0.8898 |
Renal organic cation transporter | Non inhibitor | 0.8153 | Non inhibitor | 0.8153 | Non inhibitor | 0.7575 | Non inhibitor | 0.7983 | Non inhibitor | 0.8620 | Non inhibitor | 0.8620 | Non inhibitor | 0.8440 |
Subcellular localization | Mitochondria | 0.8076 | Mitochondria | 0.8076 | Mitochondria | 0.7714 | Mitochondria | 0.7267 | Mitochondria | 0.6830 | Mitochondria | 0.6830 | Mitochondria | 0.6784 |
*CYP450 2C9 substrate | Non substrate | 0.8700 | Non substrate | 0.8000 | Non substrate | 0.8159 | Non substrate | 0.8166 | Non substrate | 0.8342 | Non substrate | 0.8342 | Non substrate | 0.7980 |
*CYP450 2D6 substrate | Non substrate | 0.8905 | Non substrate | 0.8905 | Non substate | 0.8651 | Non substate | 0.8821 | Non substate | 0.8876 | Non substate | 0.8876 | Non substate | 0.8726 |
*CYP450 3A4 substrate | Substrate | 0.7167 | Substrate | 0.7167 | Substrate | 0.7312 | Substrate | 0.7254 | Substrate | 0.7201 | Substrate | 0.7201 | Substrate | 0.7247 |
*CYP450 1A2 inhibitor | Non inhibitor | 0.9243 | Non inhibitor | 0.9243 | Non inhibitor | 0.7829 | Non inhibitor | 0.8301 | Non inhibitor | 0.7538 | Non inhibitor | 0.7538 | Non inhibitor | 0.6899 |
*CYP450 2C9 inhibitor | Non inhibitor | 0.9335 | Non inhibitor | 0.9335 | Non inhibitor | 0.8867 | Non inhibitor | 0.8752 | Non inhibitor | 0.8586 | Non inhibitor | 0.8586 | Non inhibitor | 0.9034 |
*CYP450 2D6 inhibitor | Non inhibitor | 0.9467 | Non inhibitor | 0.9467 | Non inhibitor | 0.9517 | Non inhibitor | 0.9504 | Non inhibitor | 0.9560 | Non inhibitor | 0.9560 | Non inhibitor | 0.9541 |
*CYP450 2C19 inhibitor | Non inhibitor | 0.9392 | Non inhibitor | 0.9392 | Non inhibitor | 0.9390 | Non inhibitor | 0.9390 | Non inhibitor | 0.8921 | Non inhibitor | 0.8921 | Non inhibitor | 0.9138 |
*CYP450 3A4 inhibitor | Non inhibitor | 0.9495 | Non inhibitor | 0.9495 | Non Inhibitor | 0.8547 | Non inhibitor | 0.7286 | Non inhibitor | 0.7609 | Non inhibitor | 0.7609 | Non inhibitor | 0.7687 |
*CYP inhibitory promiscuity | Low CYP inhibitory promiscuity | 0.9590 | Low CYP inhibitory promiscuity | 0.9590 | Low CYP inhibitory promiscuity | 0.9338 | Low CYP inhibitory promiscuity | 0.9564 | Low CYP inhibitory promiscuity | 0.9760 | Low CYP inhibitory promiscuity | 0.9760 | Low CYP inhibitory promiscuity | 0.9787 |
Human ether-a-go-go-related gene inhibition | Weak inhibitor | 0.9442 | Weak inhibitor | 0.9442 | Weak inhibitor | 0.9703 | Weak inhibitor | 0.9751 | Weak inhibitor | 0.9855 | Weak inhibitor | 0.9855 | Weak inhibitor | 0.9796 |
AMES toxicity | Non-AMES toxic | 0.9541 | Non-AMES toxic | 0.9541 | Non-AMES toxic | 0.6551 | Non-AMES toxic | 0.9195 | Non-AMES Toxic | 0.7270 | Non-AMES Toxic | 0.7270 | Non-AMES Toxic | 0.8562 |
Carcinogens | Non- carcinogens | 0.9653 | Non- carcinogens | 0.9653 | Non- carcinogens | 0.9549 | Non- carcinogens | 0.9563 | Non- carcinogens | 0.9650 | Non- carcinogens | 0.9650 | Non- carcinogens | 0.9578 |
Fish toxicity | High FHMT | 0.9600 | High FHMT | 0.9600 | High FHMT | 0.9426 | High FHMT | 0.9557 | High FHMT | 0.9778 | High FHMT | 0.9778 | High FHMT | 0.9773 |
Tetrahymena pyriformis toxicity | High TPT | 0.9987 | High TPT | 0.9987 | High TPT | 0.9898 | High TPT | 0.9946 | High TPT | 0.9851 | High TPT | 0.9851 | High TPT | 0.9849 |
Honeybee toxicity | High HBT | 0.8380 | High HBT | 0.8380 | High HBT | 0.7981 | High HBT | 0.7908 | High HBT | 0.7951 | High HBT | 0.7951 | High HBT | 0.8076 |
Biodegradation | Not readily biodegradable | 0.9632 | Not readily biodegradable | 0.9632 | Not readily biodegradable | 0.9931 | Not readily biodegradable | 0.9923 | Not readily biodegradable | 0.9944 | Not readily biodegradable | 0.9944 | Not readily biodegradable | 0.9941 |
Acute oral toxicity | III | 0.4565 | III | 0.4565 | I | 0.5780 | I | 0.6043 | I | 0.4368 | I | 0.4368 | I | 0.3632 |
Carcinogenicity (Three-class) | Non required | 0.6109 | Non required | 0.6109 | Non required | 0.5377 | Non required | 0.5056 | Non required | 0.5461 | Non required | 0.5461 | Non required | 0.5543 |
Aqueous solubility (Log S) | −4.2128 | −4.2128 | −4.2028 | −4.3532 | −4.6120 | −4.6120 | −4.9110 | |||||||
Caco-2 permeability (Log papp, cm/s) | −0.4407 | −0.4407 | 0.7051 | 0.7306 | 0.8936 | 0.8936 | 1.1247 | |||||||
Rat acute toxicity (LD50, mol/kg) | 3.8118 | 3.8118 | 3.5404 | 3.4799 | 3.2351 | 3.2351 | 3.1455 | |||||||
Fish toxicity (pLC50, mg/L) | 1.1264 | 1.1264 | 0.7353 | 0.8683 | 0.8987 | 0.8987 | 0.6888 | |||||||
Tetrahymena pyriformis toxicity (pIGC50, µg/L) | 0.9363 | 0.9363 | 0.9439 | 0.9448 | 0.7361 | 0.7361 | 0.7863 |
Analytes | Content (%) |
---|---|
Withanoside IV | 0.7743 ± 0.04 |
Withanoside V | 0.9139 ± 0.03 |
Withaferin A | 0.9682 ± 0.06 |
12-Deoxy-withastramonolide | 0.3012 ± 0.02 |
Withanolide A | 0.5102 ± 0.04 |
Withanolide B | 0.1586 ± 0.04 |
Withanone | 0.0042 ± 0.00 |
Without Metabolic Activation (Phase I) | |||||
Experimental condition | **RCG (%) | **MI | **RMI (%) | % Aberration | Ratio with Negative |
Untreated control | 88 | 62 | 112 | 4 | 0.80 |
Negative control | 100 | 55 | 100 | 5 | 1.00 |
Positive control (Mitomycin C) | 99 | 57 | 103 | 21 | 4.20 |
*WSE (0.25 mg/mL) | 99 | 55 | 100 | 5 | 1.00 |
*WSE (0.50 mg/mL) | 102 | 55 | 99 | 5 | 1.00 |
*WSE (1.00 mg/mL) | 91 | 62 | 112 | 5 | 1.00 |
With Metabolic Activation (Phase II) | |||||
Experimental condition | **RCG (%) | **MI | **RMI (%) | % Aberration | Ratio with Negative |
Untreated control | 107 | 57 | 94 | 4 | 0.80 |
Negative control | 100 | 61 | 99 | 5 | 1.00 |
Positive control (Cyclophosphamide) | 112 | 52 | 85 | 52 | 10.40 |
*WSE (0.25 mg/mL) | 109 | 57 | 94 | 5 | 1.00 |
*WSE (0.50 mg/mL) | 107 | 55 | 90 | 5 | 1.00 |
*WSE (1.00 mg/mL) | 106 | 58 | 94 | 5 | 1.00 |
Sr. No. | Analyte | Retention Time (Rt) Min. | Molecular Formula | Monoisotopic Mass | Precursor (m/z) | Product (m/z) | *Q1 Pre Bias (eV) | *CE (eV) | *Q3 Pre Bias (eV) |
---|---|---|---|---|---|---|---|---|---|
1 | Withanoside IV | 1.25 | C40H62O15 | 782.40 | 800.45 | 459.30 | −18.0 | −23.0 | −22.0 |
621.35 | −18.0 | −16.0 | −18.0 | ||||||
2 | Withanoside V | 2.87 | C40H62O14 | 766.41 | 784.45 | 443.30 | −22.0 | −23.0 | −22.0 |
425.25 | −22.0 | −24.0 | −16.0 | ||||||
3 | Withaferin A | 4.18 | C28H38O6 | 470.26 | 471.25 | 299.20 | −18.0 | −15.0 | −22.0 |
67.05 | −18.0 | −42.0 | −12.0 | ||||||
4 | 12-Deoxy-withastramonolide | 5.04 | C28H38O6 | 470.26 | 471.25 | 67.05 | −18.0 | −42.0 | −12.0 |
95.05 | −18.0 | −24.0 | −18.0 | ||||||
5 | Withanolide A | 6.02 | C28H38O6 | 470.26 | 488.30 | 471.25 | −24.0 | −13.0 | −36.0 |
289.20 | −24.0 | −23.0 | −20.0 | ||||||
6 | Withanone | 6.19 | C28H38O6 | 470.26 | 417.25 | 263.15 | −28.0 | −20.0 | −28.0 |
194.15 | −20.0 | −44.0 | −20.0 | ||||||
7 | Withanolide B | 8.23 | C28H38O5 | 454.27 | 472.30 | 171.15 | −28.0 | −36.0 | −18.0 |
109.15 | −24.0 | −40.0 | −20.0 | ||||||
8 | Fluoxymesterone | 3.71 | C20H29FO3 | 336.21 | 337.20 | 91.15 | −10.0 | −61.0 | −34.0 |
77.10 | −10.0 | −76.0 | −30.0 | ||||||
9 | Difenoconazole | 8.68 | C19H17Cl2N3O3 | 405.06 | 406.10 | 336.90 | −12.0 | −18.0 | −23.0 |
111.00 | −12.0 | −55.0 | −21.0 |
PK Parameters | Unit | Withanoside IV | Withaferin A | 12-Deoxy-Withastramonolide | Withanolide A |
---|---|---|---|---|---|
Cmax | ng/mL | 13.833 ± 3.727 | 124.415 ± 64.932 | 57.536 ± 7.523 | 7.283 ± 3.341 |
Tmax | h | 0.750 ± 0.000 | 0.250 ± 0.000 | 0.291 ± 0.102 | 0.333 ± 0.129 |
t/1/2 | h | 1.101 ± 0.272 | 3.148 ± 0.612 | 1.734 ± 0.505 | 0.728 ± 0.423 |
Kel | h−1 | 0.655 ± 0.126 | 0.226 ± 0.038 | 0.436 ± 0.154 | 1.409 ± 1.133 |
AUC(0–24) | h.ng/mL | 13.960 ± 3.703 | 161.180 ± 18.863 | 82.866 ± 7.820 | 4.179 ± 1.032 |
AUC(0–∞) | h.ng/mL | 22.940 ± 5.730 | 187.645 ± 20.488 | 92.253 ± 13.485 | 7.531 ± 1.826 |
AUC(0–t)/(0–inf_obs) | - | 0.611 ± 0.077 | 0.859 ± 0.057 | 0.904 ± 0.059 | 0.585 ± 0.201 |
AUMC(0–∞) | h.ng/mL | 47.843 ± 14.715 | 724.870 ± 204.685 | 221.475 ± 92.224 | 10.122 ± 6.733 |
MRT(0–∞) | h.ng/mL | 2.076 ± 0.394 | 3.846 ± 0.857 | 2.340 ± 0.666 | 1.250 ± 0.571 |
Cl/F | (ng/mL)/h | 0.176 ± 0.037 | 0.026 ± 0.003 | 0.016 ± 0.002 | 0.356 ± 0.090 |
Vdapp | (ng/mL) | 0.278 ± 0.083 | 0.118 ± 0.023 | 0.040 ± 0.009 | 0.340 ± 0.144 |
Content | Apparent Permeability (Papp) * |
---|---|
Withanoside IV | 1.4174 × 10−7 ± 1.80 × 10−7 |
Withanoside V | 3.4254 × 10−8 ± 2.16 × 10−8 |
Withaferin A | 1.1252 × 10−7 ± 7.15 × 10−8 |
12-Deoxy-withastramonolide | 1.2221 × 10−7 ± 1.48 × 10−7 |
Withanolide A | 6.6487 × 10−8 ± 5.09 × 10−8 |
Withanolide B | 1.3065 × 10−8 ± 1.33 × 10−8 |
Withanone | 3.1746 × 10−8 ± 1.71 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modi, S.J.; Tiwari, A.; Ghule, C.; Pawar, S.; Saste, G.; Jagtap, S.; Singh, R.; Deshmukh, A.; Girme, A.; Hingorani, L. Pharmacokinetic Study of Withanosides and Withanolides from Withania somnifera Using Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS). Molecules 2022, 27, 1476. https://doi.org/10.3390/molecules27051476
Modi SJ, Tiwari A, Ghule C, Pawar S, Saste G, Jagtap S, Singh R, Deshmukh A, Girme A, Hingorani L. Pharmacokinetic Study of Withanosides and Withanolides from Withania somnifera Using Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS). Molecules. 2022; 27(5):1476. https://doi.org/10.3390/molecules27051476
Chicago/Turabian StyleModi, Siddharth J., Anshuly Tiwari, Chetana Ghule, Sandeep Pawar, Ganesh Saste, Shubham Jagtap, Ruchi Singh, Amol Deshmukh, Aboli Girme, and Lal Hingorani. 2022. "Pharmacokinetic Study of Withanosides and Withanolides from Withania somnifera Using Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS)" Molecules 27, no. 5: 1476. https://doi.org/10.3390/molecules27051476
APA StyleModi, S. J., Tiwari, A., Ghule, C., Pawar, S., Saste, G., Jagtap, S., Singh, R., Deshmukh, A., Girme, A., & Hingorani, L. (2022). Pharmacokinetic Study of Withanosides and Withanolides from Withania somnifera Using Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS). Molecules, 27(5), 1476. https://doi.org/10.3390/molecules27051476