Effects of Green Apple (Golden Delicious) and Its Three Major Flavonols Consumption on Obesity, Lipids, and Oxidative Stress in Obese Rats
Abstract
:1. Introduction
2. Results
2.1. Mineral Element Analysis
2.2. High-Performance Liquid Chromatography Analysis
2.3. Determination of Body and Organ Weights
2.4. Determination of Lipid Ratios
2.5. Determination of Oxidative Stress Parameters
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Animals
4.3. Mineral Element Analysis
4.4. High-Performance Liquid Chromatography Analysis
4.5. Determination of Body and Organ Weights
4.6. Determination of Lipid Ratios
4.7. Determination of Oxidative Stress Parameters
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- World Health Organization. Obesity. Available online: https://www.who.int/topics/obesity/en/ (accessed on 30 December 2021).
- Aslan, M.; Orhan, N. Obezite tedavisine yardımcı olarak kullanılan doğal ürünler. MİSED 2010, 23–24, 91–105. [Google Scholar]
- Hasani-Ranjbar, S.; Nayebi, N.; Larijani, B.; Abdollahi, M. A systematic review of the efficacy and safety of herbal medicines used in the treatment of obesity. World J. Gastroenterol. 2009, 15, 3073–3085. [Google Scholar] [CrossRef]
- Westerterp-Plantenga, M.S.; Lejeune, M.P.; Kovacs, E.M.R. Body Weight Loss and Weight Maintenance in Relation to Habitual Caffeine Intake and Green Tea Supplementation. Obes. Res. 2005, 13, 1195–1204. [Google Scholar] [CrossRef] [PubMed]
- Westerterp-Plantenga, M. Green tea catechins, caffeine and body-weight regulation. Physiol. Behav. 2010, 100, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Moloney, M. Dietary treatments of obesity. Proc. Nutr. Soc. 2000, 59, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Mermel, V.L. Old paths new directions: The use of functional foods in the treatment of obesity. Trends Food Sci. Technol. 2004, 15, 532–540. [Google Scholar] [CrossRef]
- Ebrahimpour, S.; Zakeri, M.; Esmaeili, A. Crosstalk between obesity, diabetes, and alzheimer’s disease: Introducing quercetin as an effective triple herbal medicine. Ageing Res. Rev. 2020, 62, 1568–1637. [Google Scholar] [CrossRef] [PubMed]
- González-Castejón, M.; Rodriguez-Casado, A. Dietary phytochemicals and their potential effects on obesity: A review. Pharmacol. Res. 2011, 64, 438–455. [Google Scholar] [CrossRef]
- Griffin, L.E.; Essenmacher, L.; Racine, K.C.; Iglesias-Carres, L.; Tessem, J.S.; Smith, S.M.; Neilson, A.P. Diet-induced obesity in genetically diverse collaborative cross mouse founder strains reveals diverse phenotype response and amelioration by quercetin treatment in 129S1/SvImJ, PWK/EiJ, CAST/PhJ, and WSB/EiJ mice. J. Nutr. Biochem. 2021, 87, 108521. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Mukai, Y. Modulation of Chronic Inflammation by Quercetin: The Beneficial Effects on Obesity. J. Inflamm. Res. 2020, 13, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Lee, H.; Kim, S.; Park, J.; Ha, T. The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem. Biophys. Res. Commun. 2008, 373, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Han, L.-K.; Takaku, T.; Li, J.; Kimura, Y.; Okuda, H. Anti-obesity action of oolong tea. Int. J. Obes. 1999, 23, 98–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, L.-K.; Kimura, Y.; Kawashima, M.; Takaku, T.; Taniyama, T.; Hayashi, T.; Zheng, Y.-N.; Okuda, H. Anti-obesity effects in rodents of dietary teasaponin, a lipase inhibitor. Int. J. Obes. 2001, 25, 1459–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laight, D.W.; Desai, K.M.; Gopaul, N.K.; Änggård, E.E.; Carrier, M.J. F2-isoprostane evidence of oxidant stress in the insulin resistant, obese Zucker rat: Effects of vitamin E. Eur. J. Pharmacol. 1999, 377, 89–92. [Google Scholar] [CrossRef]
- Ono, Y.; Hattori, E.; Fukaya, Y.; Imai, S.; Ohizumi, Y. Anti-obesity effect of Nelumbo nucifera leaves extract in mice and rats. J. Ethnopharmacol. 2006, 106, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Sayama, K.; Okubo, T.; Juneja, L.R.; Oguni, I. Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. Vivo 2004, 18, 55–62. [Google Scholar]
- Boyer, J.; Liu, R.H. Apple phytochemicals and their health benefits. Nutr. J. 2004, 3, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Oguz, C.; Karacayir, H.F. Türkiye’de Elma Üretimi, Tüketimi, Pazar Yapısı ve Dış Ticareti. Tarim Bilimleri Arast. Derg. 2009, 2, 41–49. [Google Scholar]
- AlBuali, W.H. Evaluation of oxidant-antioxidant status in overweight and morbidly obese Saudi children. World J. Clin. Pediatr. 2014, 3, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Dürüst, N.; Sümengen, D.; Dürüst, Y. Ascorbic Acid and Element Contents of Foods of Trabzon (Turkey). J. Agric. Food Chem. 1997, 45, 2085–2087. [Google Scholar] [CrossRef]
- Ekholm, P.; Reinivuo, H.; Mattila, P.; Pakkala, H.; Koponen, J.; Happonen, A.; Hellström, J.; Ovaskainen, M.-L. Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland. J. Food Compos. Anal. 2007, 20, 487–495. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Ionica, M.E. Compositional Characteristics of Fruits of several Apple (Malus domestica Borkh.) Cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 228–233. [Google Scholar] [CrossRef]
- Chinnici, F.; Bendini, A.; Gaiani, A.; Riponi, C. Radical Scavenging Activities of Peels and Pulps from cv. Golden Delicious Apples as Related to Their Phenolic Composition. J. Agric. Food Chem. 2004, 52, 4684–4689. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Jalao, I.; Sanchez-Moreno, C.; de Ancos, B. Effect of high-pressure processing on flavonoids, hydroxycinnamic acids, dihydrochalcones and antioxidant activity of apple ‘Golden Delicious’ from different geographical origin. Innov. Food Sci. Emerg. Technol. 2019, 51, 20–31. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R.; Young, A.J.C.; Zhu, H. Polyphenolic Profiles in Eight Apple Cultivars Using High-Performance Liquid Chromatography (HPLC). J. Agric. Food Chem. 2003, 51, 6347–6353. [Google Scholar] [CrossRef] [PubMed]
- Amirkhizi, F.; Siassi, F.; Djalali, M.; Shahraki, S.H. Impaired enzymatic antioxidant defense in erythrocytes of women with general and abdominal obesity. Obes. Res. Clin. Pract. 2014, 8, e26–e34. [Google Scholar] [CrossRef] [PubMed]
- Montani, J.-P.; Carroll, J.F.; Dwyer, T.M.; Antic, V.; Yang, Z.; Dulloo, A. Ectopic fat storage in heart, blood vessels and kidneys in the pathogenesis of cardiovascular diseases. Int. J. Obes. 2004, 28, S58–S65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.; Sun, Z.; Chen, C.; Zhang, L.; Zhu, S. Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC–ELSD. Food Chem. 2014, 145, 784–788. [Google Scholar] [CrossRef] [PubMed]
- Berüter, J. Sugar Accumulation and Changes in the Activities of Related Enzymes during Development of the Apple Fruit. J. Plant Physiol. 1985, 121, 331–341. [Google Scholar] [CrossRef]
- Liu, Y.; Ying, Y.; Yu, H.; Fu, X. Comparison of the HPLC Method and FT-NIR Analysis for Quantification of Glucose, Fructose, and Sucrose in Intact Apple Fruits. J. Agric. Food Chem. 2006, 54, 2810–2815. [Google Scholar] [CrossRef]
- Page, K.A.; Melrose, A.J. Brain, hormone and appetite responses to glucose versus fructose. Curr. Opin. Behav. Sci. 2016, 9, 111–117. [Google Scholar] [CrossRef]
- Martin, A.A. Why can’t we control our food intake? The downside of dietary variety on learned satiety responses. Physiol. Behav. 2016, 162, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Busetto, L.; Tregnaghi, A.; de Marchi, F.; Segato, G.; Foletto, M.; Sergi, G.; Favretti, F.; Lise, M.; Enzi, G. Liver Volume and Visceral Obesity in Women with Hepatic Steatosis Undergoing Gastric Banding. Obes. Res. 2002, 10, 408–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milagro, F.I.; Campión, J.; Martínez, J.A. Weight Gain Induced by High-Fat Feeding Involves Increased Liver Oxidative Stress. Obesity 2006, 14, 1118–1123. [Google Scholar] [CrossRef]
- Henegar, J.R.; Bigler, S.A.; Henegar, L.K.; Tyagi, S.C.; Hall, J. Functional and Structural Changes in the Kidney in the Early Stages of Obesity. J. Am. Soc. Nephrol. 2001, 12, 1211–1217. [Google Scholar] [CrossRef]
- Marshall, N.B.; Andrus, S.B.; Mayer, J. Organ Weights in Three Forms of Experimental Obesity in the Mouse. Am. J. Physiol. Content 1957, 189, 343–346. [Google Scholar] [CrossRef]
- van Steenbergen, W.; Lanckmans, S. Liver disturbances in obesity and diabetes mellitus. Int. J. Obes. Relat. Metab. Disord. 1995, 19, 27–36. [Google Scholar]
- Arfat, Y.; Mahmood, N.; Tahir, M.U.; Rashid, M.; Anjum, S.; Zhao, F.; Li, D.-J.; Sun, Y.-L.; Hu, L.; Zhihao, C.; et al. Effect of imidacloprid on hepatotoxicity and nephrotoxicity in male albino mice. Toxicol. Rep. 2014, 1, 554–561. [Google Scholar] [CrossRef] [Green Version]
- Taylor, E.N.; Stampfer, M.J.; Curhan, G.C. Obesity, Weight Gain, and the Risk of Kidney Stones. JAMA 2005, 293, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Leontowicz, M.; Gorinstein, S.; Bartnikowska, E.; Leontowicz, H.; Kulasek, G.; Trakhtenberg, S. Sugar beet pulp and apple pomace dietary fibers improve lipid metabolism in rats fed cholesterol. Food Chem. 2001, 72, 73–78. [Google Scholar] [CrossRef]
- Samout, N.; Bouzenna, H.; Dhibi, S.; Ncib, S.; ElFeki, A.; Hfaiedh, N. Therapeutic effect of apple pectin in obese rats. Biomed. Pharmacother. 2016, 83, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- González-Sarrías, A.; Combet, E.; Pinto, P.; Mena, P.; Dall’Asta, M.; Garcia-Aloy, M.; Rodríguez-Mateos, A.; Gibney, E.R.; Dumont, J.; Massaro, M.; et al. A Systematic Review and Meta-Analysis of the Effects of Flavanol-Containing Tea, Cocoa and Apple Products on Body Composition and Blood Lipids: Exploring the Factors Responsible for Variability in Their Efficacy. Nutrients 2017, 9, 746. [Google Scholar] [CrossRef]
- Nagasako-Akazome, Y.; Kanda, T.; Ohtake, Y.; Shimasaki, H.; Kobayashi, T. Apple Polyphenols Influence Cholesterol Metabolism in Healthy Subjects with Relatively High Body Mass Index. J. Oleo Sci. 2007, 56, 417–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakazato, K.; Song, H.; Waga, T. Effects of Dietary Apple Polyphenol on Adipose Tissues Weights in Wistar Rats. Exp. Anim. 2006, 55, 383–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, K.-D.; Han, C.-K.; Lee, B.-H. Loss of Body Weight and Fat and Improved Lipid Profiles in Obese Rats Fed Apple Pomace or Apple Juice Concentrate. J. Med. Food 2013, 16, 823–830. [Google Scholar] [CrossRef] [Green Version]
- Boden, G. Obesity and Free Fatty Acids. Endocrinol. Metab. Clin. N. Am. 2008, 37, 635–646. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.D.; Haymond, M.W.; Rizza, R.A.; Cryer, P.E.; Miles, J.M. Influence of body fat distribution on free fatty acid metabolism in obesity. J. Clin. Investig. 1989, 83, 1168–1173. [Google Scholar] [CrossRef]
- Karpe, F.; Dickmann, J.R.; Frayn, K.N. Fatty Acids, Obesity, and Insulin Resistance: Time for a Reevaluation. Diabetes 2011, 60, 2441–2449. [Google Scholar] [CrossRef] [Green Version]
- Imessaoudene, A.; Merzouk, H.; Berroukeche, F.; Mokhtari, N.; Bensenane, B.; Cherrak, S.A.; Merzouk, S.A.; Elhabiri, M. Beneficial effects of quercetin–iron complexes on serum and tissue lipids and redox status in obese rats. J. Nutr. Biochem. 2016, 29, 107–115. [Google Scholar] [CrossRef]
- Amirkhizi, F.; Siassi, F.; Minaie, S.; Djalali, M.; Rahimi, A.; Chamari, M. Is Obesity Associated with Increased Plasma Lipid Peroxidation and Oxidative Stress in Women? ARYA Atheroscler. J. 2007, 2, 189–192. [Google Scholar]
- Leontowicz, M.; Gorinstein, S.; Leontowicz, H.; Krzeminski, R.; Lojek, A.; Katrich, E.; Číž, M.; Martin-Belloso, O.; Soliva-Fortuny, R.; Haruenkit, R.; et al. Apple and Pear Peel and Pulp and Their Influence on Plasma Lipids and Antioxidant Potentials in Rats Fed Cholesterol-Containing Diets. J. Agric. Food Chem. 2003, 51, 5780–5785. [Google Scholar] [CrossRef] [PubMed]
- Novelli, E.L.B.; Diniz, Y.S.; Galhardi, C.M.; Ebaid, G.M.X.; Rodrigues, H.G.; Mani, F.; Fernandes, A.A.H.; Cicogna, A.C.; Filho, J.L.V.B.N. Anthropometrical parameters and markers of obesity in rats. Lab. Anim. 2007, 41, 111–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellicer, F.; Picazo, O.; Gómez-Tagle, B.; de La O, I.R. Capsaicin or feeding with red peppers during gestation changes the thermonociceptive response of rat offspring. Physiol. Behav. 1996, 60, 435–438. [Google Scholar] [CrossRef]
- Özcan, M. Mineral contents of some plants used as condiments in Turkey. Food Chem. 2004, 84, 437–440. [Google Scholar] [CrossRef]
- Escarpa, A.; González, M. High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. J. Chromatogr. A 1998, 823, 331–337. [Google Scholar] [CrossRef]
- Lu, Y.; Foo, L. Identification and quantification of major polyphenols in apple pomace. Food Chem. 1997, 59, 187–194. [Google Scholar] [CrossRef]
- Schieber, A.; Hilt, P.; Conrad, J.; Beifuss, U.; Carle, R. Elution order of quercetin glycosides from apple pomace extracts on a new HPLC stationary phase with hydrophilic endcapping. J. Sep. Sci. 2002, 25, 361–364. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
Antioxidants | Miligram/Gram (Dry Matter) |
Quercetin-3-glucoside | 0.0194 ± 0.0011 |
Quercetin-3-D-galactoside | 0.0557 ± 0.0007 |
Quercetin-3-rhamnoside | 0.0395 ± 0.0002 |
Minerals | Microgram/Gram (Dry Matter) |
Iron | 15.32 ± 0.27 |
Copper | 1.51 ± 0.03 |
Manganase | 1.88 ± 0.01 |
Selenium | 0 |
Rat Groups | First Weight | Last Weight | Difference | Observations |
---|---|---|---|---|
1.group: green apple added to high-energy diet | 385.6 ± 53.1 | 388.6 ± 59.5 | 2.8 ± 15.3 a | Feed consumption is more than the other groups. |
2.group: quercetin compounds to high-energy diet | 390.2 ± 63.2 | 395.9 ± 65.7 | 5.7 ± 9.8 a | No significant differences were observed. |
3.group: Sham group | 390.2 ± 64.9 | 394.7 ± 73.7 | 4.5 ± 17.5 a | No significant differences were observed. |
4.group: Control group | 312.1 ± 29.4 | 294 ± 31.5 | −18.1 ± 43.1 a | No significant differences were observed. |
Rat Groups | Right Kidney | Left Kidney | Liver | Spleen | Total Lipid Amount of Liver (%) | Total Lipid Amount of Kidneys (%) |
---|---|---|---|---|---|---|
1.group | 1.29 ± 0.28 a,b | 1.36 ± 0.33 a | 10.99 ± 1.81 a | 1.10 ± 0.46 a | 4.65 ± 0.73 a | 2.39 ± 0.31 a |
2.group | 1.38 ± 0.30 a,b | 1.44 ± 0.30 a | 11.12 ± 1.68 a | 1.11 ± 0.34 a | 4.34 ± 0.27 a | 2.67 ± 0.28 a |
3.group | 1.48 ± 0.42 a | 1.49 ± 0.24 a | 11.45 ± 2.39 a | 1.20 ± 0.31 a | 3.92 ± 0.39 a | 3.22 ± 0.17 a |
4.group | 1.03 ± 0.13 b | 0.99 ± 0.16 b | 8.08 ± 0.83 b | 0.98 ± 0.35 a | 2.64 ± 0.36 a | 2.70 ± 0.25 a |
Rat Groups | Free Fatty Acid Concentration (Nanomol/Microliter) | Phospholipid Concentration (Micromolar) | Serum Triglyceride Concentration (Triolein Equivalent) | Total Cholesterol Concentration (Microgram/Mililiter) |
---|---|---|---|---|
1.group | 41.39 ± 11.9 b | 504.24 ± 57.3 c | 0.14 ± 0.03 a | 0.2965 ± 0.0017 a |
2.group | 59.28 ± 6.72 a,b | 785.6 ± 41.4 b | 0.16 ± 0.07 a | 0.2949 ± 0.0015 a |
3.group | 84.48 ± 15.35 a | 1157.28 ± 26.9 a | 0.31 ± 0.1 b | 0.2962 ± 0.0001 a |
4.group | 39.6 ± 10.87 b | 883.76 ± 21.6 b | 0.18 ± 0.07 a | 0.2954 ± 0.0008 a |
Rat Groups | SOD Activity (Unit/Mililiter) | CAT Activity (Nanomol/Minute/Mililiter) | GPx Activity (Nanomol/Minute/Mililiter) | MDA Concentration (Micromolar) |
---|---|---|---|---|
1.group | 14.67 ± 4.87 b | 315.44 ± 16.09 a | 120.21 ± 15.85 b,c | 21.16 ± 1.42 a,b |
2.group | 16.91 ± 1.92 b | 314.44 ± 33.55 a | 183.38 ± 29.92 b | 15.71 ± 2.53 b,c |
3.group | 14.28 ± 1.18 b | 270.23 ± 29.59 a | 66.22 ± 5.50 c | 23.54 ± 1.32 a |
4.group | 30.56 ± 2.62 a | 317.87 ± 16.97 a | 727.40 ± 15.66 a | 12.91 ± 1.36 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selek Aksoy, I.; Otles, S. Effects of Green Apple (Golden Delicious) and Its Three Major Flavonols Consumption on Obesity, Lipids, and Oxidative Stress in Obese Rats. Molecules 2022, 27, 1243. https://doi.org/10.3390/molecules27041243
Selek Aksoy I, Otles S. Effects of Green Apple (Golden Delicious) and Its Three Major Flavonols Consumption on Obesity, Lipids, and Oxidative Stress in Obese Rats. Molecules. 2022; 27(4):1243. https://doi.org/10.3390/molecules27041243
Chicago/Turabian StyleSelek Aksoy, Ilknur, and Semih Otles. 2022. "Effects of Green Apple (Golden Delicious) and Its Three Major Flavonols Consumption on Obesity, Lipids, and Oxidative Stress in Obese Rats" Molecules 27, no. 4: 1243. https://doi.org/10.3390/molecules27041243
APA StyleSelek Aksoy, I., & Otles, S. (2022). Effects of Green Apple (Golden Delicious) and Its Three Major Flavonols Consumption on Obesity, Lipids, and Oxidative Stress in Obese Rats. Molecules, 27(4), 1243. https://doi.org/10.3390/molecules27041243