Effects of Co Doping on the Growth and Photocatalytic Properties of ZnO Particles
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Experimental Procedure
2.3. Characterization of Materials
2.4. Measurement of Photocatalytic Activity
3. Results and Discussion
3.1. Structural and Morphological Characteristics
3.2. Morphological Characteristics
3.3. Mechanism
3.3.1. Effects of Reaction Temperature on the Morphology of Co-Doped ZnO Particles
3.3.2. Effects of Cobalt Counter-Ions on the Morphology of Co-Doped ZnO Particles
3.3.3. Photocatalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Perera, F. Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. Int. J. Environ. Res. Public Health 2017, 15, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majumder, S.; Chatterjee, S.; Basnet, P.; Mukherjee, J. ZnO based nanomaterials for photocatalytic degradation of aqueous pharmaceutical waste solutions—A contemporary review. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100386–100401. [Google Scholar] [CrossRef]
- Meldrum, F.; Cölfen, H. Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems. Chem. Rev. 2008, 108, 4332–4432. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gu, S.; Sun, Z.; Guo, F.; Xie, Y.; Tao, B.; He, X.; Zhang, W.; Chang, H. In-built bionic “MoFe-cofactor” in Fe-doped two-dimensional MoTe2 nanosheets for boosting the photocatalytic nitrogen reduction performance. J. Mater. Chem. A 2020, 8, 13038–13048. [Google Scholar] [CrossRef]
- Li, H.; Deng, H.; Gu, S.; Li, C.; Tao, B.; Chen, S.; He, X.; Wang, G.; Zhang, W.; Chang, H. Engineering of bionic Fe/Mo bimetallene for boosting the photocatalytic nitrogen reduction performance. J. Colloid Interface Sci. 2022, 607, 1625–1632. [Google Scholar] [CrossRef] [PubMed]
- Pietruszka, R.; Witkowski, B.S.; Gieraltowska, S.; Caban, P.; Wachnicki, L.; Zielony, E.; Gwozdz, K.; Bieganski, P.; Placzek-Popko, E.; Godlewski, M. New efficient solar cell structures based on zinc oxide nanorods. Sol. Energy Mater. Sol. Cells 2015, 143, 99–104. [Google Scholar] [CrossRef]
- Momeni, K.; Attariani, H. Electromechanical properties of 1D ZnO nanostructures: Nanopiezotronics building blocks, surface and size-scale effects. Phys. Chem. Chem. Phys. 2014, 16, 4522–4527. [Google Scholar] [CrossRef]
- Nandi, S.; Kumar, S.; Misra, A. Zinc oxide heterostructures: Advances in devices from self-powered photodetectors to self-charging supercapacitors. Adv. Mater. 2021, 2, 6768–6799. [Google Scholar] [CrossRef]
- Nanto, H.; Minami, T.; Takata, S. Zinc-oxide thin-film ammonia gas sensors with high sensitivity and excellent selectivity. J. Appl. Phys. 1986, 60, 482–484. [Google Scholar] [CrossRef]
- Rahman, F. Zinc oxide light-emitting diodes: A review. Opt. Eng. 2019, 58, 010901. [Google Scholar] [CrossRef]
- Sun, L.; Shao, R.; Chen, Z.; Tang, L.; Dai, Y.; Ding, J. Alkali-dependent synthesis of flowerlike ZnO structures with enhanced photocatalytic activity via a facile hydrothermal method. Appl. Surf. Sci. 2012, 258, 5455–5461. [Google Scholar] [CrossRef]
- Rahmane, S.; Aida, M.S.; Djouadi, M.A.; Barreau, N. Effects of thickness variation on properties of ZnO: Al thin films grown by RF magnetron sputtering deposition. Superlattices Microstruct. 2015, 79, 148–155. [Google Scholar] [CrossRef]
- Wu, J.-J.; Liu, S.-C. Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition. Adv. Mater. 2002, 14, 215–218. [Google Scholar] [CrossRef]
- Jin, B.J.; Bae, S.H.; Lee, S.Y.; Im, S. Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition. Mater. Sci. Eng. 2000, 71, 301–305. [Google Scholar] [CrossRef]
- Kripal, R.; Gupta, A.K.; Srivastava, R.K.; Mishra, S.K. Photoconductivity and photoluminescence of ZnO nanoparticles synthesized via co-precipitation method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Wadaa, S.; Tsurumia, T.; Chikamorib, H.; Nomab, T.; Suzukib, T. Preparation of nm-sized BaTiO3 crystallites by a LTDS method using a highly concentrated aqueous solution. J. Cryst. Growth 2001, 229, 433–439. [Google Scholar] [CrossRef]
- Yazdanbakhsh, M.; Khosravi, I.; Goharshadi, E.K.; Youssefi, A. Fabrication of nanospinel ZnCr2O4 using sol-gel method and its application on removal of azo dye from aqueous solution. J. Hazard. Mater. 2010, 184, 684–689. [Google Scholar] [CrossRef]
- Sun, X.; Li, Z.; Wang, X.; Zhang, G.; Cui, P.; Shen, H. Single-Crystal Regular Hexagonal Microplates of Two-Dimensional α-Calcium Sulfate Hemihydrate Preparation from Phosphogypsum in Na2SO4 Aqueous Solution. Ind. Eng. Chem. Res. 2020, 59, 13979–13987. [Google Scholar] [CrossRef]
- Boppella, R.; Anjaneyulu, K.; Basak, P.; Manorama, S.V. Facile Synthesis of Face Oriented ZnO Crystals: Tunable Polar Facets and Shape Induced Enhanced Photocatalytic Performance. J. Phys. Chem. C 2013, 117, 4597–4605. [Google Scholar] [CrossRef]
- Tang, L.; Zhao, Z.; Zhou, Y.; Lv, B.; Li, P.; Ye, J.; Wang, X.; Xiao, M.; Zou, Z. Series of ZnSn(OH)6 Polyhedra: Enhanced CO2 Dissociation Activation and Crystal Facet-Based Homojunction Boosting Solar Fuel Synthesis. Inorg. Chem. 2017, 56, 5704–5709. [Google Scholar] [CrossRef]
- Li, P.; Zhou, Y.; Zhao, Z.; Xu, Q.; Wang, X.; Xiao, M.; Zou, Z. Hexahedron Prism-Anchored Octahedronal CeO2: Crystal Facet-Based Homojunction Promoting Efficient Solar Fuel Synthesis. J. Am. Chem. Soc. 2015, 137, 9547–9550. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Vo, T.; Fan, X.; Vecchio, D.; Ma, T.; Lu, J.; Hou, H.; Glotzer, S.C.; Kotov, N.A. Self-Assembly Mechanism of Complex Corrugated Particles. J. Am. Chem. Soc. 2021, 143, 19655–19667. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Cao, L.; Su, G.; Liu, W.; Qu, X.; Yu, Y. Preparation, characterization and photocatalytic activity of Co-doped ZnO powders. J. Alloys Compd. 2010, 497, 373–376. [Google Scholar] [CrossRef]
- Šutka, A.; Käämbre, T.; Pärna, R.; Juhnevica, I.; Maiorov, M.; Joost, U.; Kisand, V. Co doped ZnO nanowires as visible light photocatalysts. Solid State Sci. 2016, 56, 54–62. [Google Scholar] [CrossRef]
- Xie, F.; Guo, J.; Wang, H.; Chang, N. Enhancing visible light photocatalytic activity by transformation of Co3+/Co2+ and formation of oxygen vacancies over rationally Co doped ZnO microspheres. Colloids Surf. A Physicochem. Eng. Asp. 2022, 636, 128157–128167. [Google Scholar] [CrossRef]
- Chen, Z.; Fang, Y.; Wang, L.; Chen, X.; Lin, W.; Wang, X. Remarkable oxygen evolution by Co-doped ZnO nanorods and visible light. Appl. Catal. B-Environ. 2021, 296, 120369. [Google Scholar] [CrossRef]
- Javed, A.; Shahzad, N.; Butt, F.; Khan, M.; Naeem, N.; Liaquat, R.; Khoja, A. Synthesis of bimetallic Co-Ni/ZnO nanoprisms (ZnO-NPr) for hydrogen-rich syngas production via partial oxidation of methane. J. Environ. Chem. Eng. 2021, 9, 106887–106899. [Google Scholar] [CrossRef]
- Barret, C.S.; Massalski, T.B. Structure of Metals; Pergamon Press: Oxford, UK, 1980. [Google Scholar]
- Romero, R.; Leinen, D.; Dalchiele, E.A.; Ramos-Barrado, J.R.; Martín, F. The effects of zinc acetate and zinc chloride precursors on the preferred crystalline orientation of ZnO and Al-doped ZnO thin films obtained by spray pyrolysis. Thin Solid Film. 2006, 515, 1942–1949. [Google Scholar] [CrossRef]
- Kubacka, A.; Fernandez-Garcia, M.; Colon, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555–1614. [Google Scholar] [CrossRef]
- Pourrahimi, A.M.; Liu, D.; Ström, V.; Hedenqvist, M.S.; Olsson, R.T.; Gedde, U.W. Heat treatment of ZnO nanoparticles: New methods to achieve high-purity nanoparticles for high-voltage applications. J. Mater. Chem. A 2015, 3, 17190–17200. [Google Scholar] [CrossRef] [Green Version]
- Olatunde, O.C.; Kuvarega, A.T.; Onwudiwe, D.C. Photo enhanced degradation of contaminants of emerging concern in waste water. Emerg. Contam. 2020, 6, 283–302. [Google Scholar] [CrossRef]
- Zhang, T.; Oyama, T.; Aoshima, A.; Hidaka, H.; Zhao, J.; Serpone, N. Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation. J. Photochem. Photobiol. A Chem. 2001, 140, 163–172. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Tu, W.; Ye, J.; Zou, Z. State-of-the-Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance. Adv. Funct. Mater. 2015, 25, 998–1013. [Google Scholar] [CrossRef]
- Mueller, T.; Malic, E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. NPJ 2D Mater. Appl. 2018, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
Samples | Morphology | Zn2+ (mL) | Co2+ (mL) | Co/Zn (Theoretical Zn, mol %) | Reaction Temperature (°C) |
---|---|---|---|---|---|
S0 | OLP | 50 | 0.00 | 0 | 50 |
S0.2 | OLP | 50 | 0.10 | 0.2:100 | 50 |
S0.4 | OLP | 50 | 0.20 | 0.4:100 | 50 |
S0.6 | FLP | 50 | 0.30 | 0.6:100 | 50 |
S0.8 | FLP | 50 | 0.40 | 0.8:100 | 50 |
S0* | NR | 50 | 0.00 | 0 | 70 |
S0.2* | NR | 50 | 0.10 | 0.2:100 | 70 |
S0.8* | NR | 50 | 0.40 | 0.8:100 | 70 |
Samples | MCo2+:MZn2+ | Texture Coefficient | ||
---|---|---|---|---|
Tc(100) | Tc(002) | Tc(101) | ||
S0 | 0:100 | 0.91 | 1.29 | 0.80 |
S0.2 | 0.2:100 | 0.87 | 1.24 | 0.89 |
S0.6 | 0.6:100 | 0.88 | 1.24 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, L.; Jia, Y.; Zhu, Z.; Hua, Y.; Wu, J.; Zou, Z.; Zhou, Y. Effects of Co Doping on the Growth and Photocatalytic Properties of ZnO Particles. Molecules 2022, 27, 833. https://doi.org/10.3390/molecules27030833
Tang L, Jia Y, Zhu Z, Hua Y, Wu J, Zou Z, Zhou Y. Effects of Co Doping on the Growth and Photocatalytic Properties of ZnO Particles. Molecules. 2022; 27(3):833. https://doi.org/10.3390/molecules27030833
Chicago/Turabian StyleTang, Lanqin, Yin Jia, Zhishang Zhu, Yue Hua, Jun Wu, Zhigang Zou, and Yong Zhou. 2022. "Effects of Co Doping on the Growth and Photocatalytic Properties of ZnO Particles" Molecules 27, no. 3: 833. https://doi.org/10.3390/molecules27030833