Bioaccessibility of Antioxidants in Blackcurrant Juice after Treatment Using Supercritical Carbon Dioxide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Stability and Bioaccessibility of Vitamin C after SCCD Treatment
2.2. Stability and Bioaccessibility of Anthocyanins and Determination of Delphinidin Metabolites after In Vitro Gastro-Intestinal Digestion
2.3. Effect of Processing on the Antioxidant Capacity of Blackcurrant Juice in a Simulated Digestive System
3. Materials and Methods
3.1. Reagents and Solvents
3.2. Testing Material
Preparation of Blackcurrant Juice
3.3. In Vitro Digestion Model with Dialysis and Calculation of Bioaccessibility
3.4. Chemical Analysis
3.4.1. Determination of Vitamin C
3.4.2. Determination of Anthocyanins
3.4.3. Antioxidant Capacity According to the ABTS+• Radical Assay
3.4.4. Antioxidative Capacity According to DPPH• Radical Assay
3.4.5. Determination of Anthocyanin Metabolites in a Model System
Preparation of the Delphinidin-3-O-Rutinoside Solution
LC-MS/MS Analysis
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Marszałek, K.; Skąpska, S.; Woźniak, Ł.; Sokołowska, B. Application of Supercritical Carbon Dioxide for the Preservation of Strawberry Juice: Microbial and Physicochemical Quality, Enzymatic Activity and the Degradation Kinetics of Anthocyanins during Storage. Innov. Food Sci. Emerg. Technol. 2015, 32, 101–109. [Google Scholar] [CrossRef]
- Marszałek, K.; Woźniak, Ł.; Skąpska, S. Effect of Supercritical Carbon Dioxide on Selected Quality Parameters of Preserved Strawberry Juice. Zywnosc Nauka Technol. Jakosc 2015, 21, 114–123. [Google Scholar] [CrossRef]
- Marszałek, K.; Woźniak, Ł.; Barba, F.J.; Skąpska, S.; Lorenzo, J.M.; Zambon, A.; Spilimbergo, S. Enzymatic, Physicochemical, Nutritional and Phytochemical Profile Changes of Apple (Golden Delicious L.) Juice under Supercritical Carbon Dioxide and Long-Term Cold Storage. Food Chem. 2018, 268, 279–286. [Google Scholar] [CrossRef]
- Xue, Z.; Li, J.; Yu, W.; Lu, X.; Kou, X. Effects of Nonthermal Preservation Technologies on Antioxidant Activity of Fruits and Vegetables: A Review. Food Sci. Technol. Int. 2016, 22, 440–458. [Google Scholar] [CrossRef]
- Marszałek, K.; Doesburg, P.; Starzonek, S.; Szczepańska, J.; Woźniak, Ł.; Lorenzo, J.M.; Skaopska, S.; Rzoska, S.; Barba, F.J. Comparative Effect of Supercritical Carbon Dioxide and High Pressure Processing on Structural Changes and Activity Loss of Oxidoreductive Enzymes. J. CO2 Util. 2019, 29, 46–56. [Google Scholar] [CrossRef]
- Marszałek, K.; Woźniak, Ł.; Kruszewski, B.; Skapska, S. The Effect of High Pressure Techniques on the Stability of Anthocyanins in Fruit and Vegetables. Int. J. Mol. Sci. 2017, 18, 277. [Google Scholar] [CrossRef] [Green Version]
- Trych, U.; Buniowska, M.; Skapska, S.; Starzonek, S.; Marszałek, K. The Bioaccessibility of Antioxidants in Black Currant Puree after High Hydrostatic Pressure Treatment. Molecules 2020, 25, 3544. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Hu, C.; Zhou, L.; Zhang, Y.; Wang, M.; Qi, Z. BKca Channel Is a Molecular Target of Vitamin C to Protect against Ischemic Brain Stroke. Mol. Membr. Biol. 2019, 35, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Diaconeasa, Z.; Leopold, L.; Rugină, D.; Ayvaz, H.; Socaciu, C. Antiproliferative and Antioxidant Properties of Anthocyanin Rich Extracts from Blueberry and Blackcurrant Juice. Int. J. Mol. Sci. 2015, 16, 2352–2365. [Google Scholar] [CrossRef] [Green Version]
- Lila, M.A.; Burton-Freeman, B.; Grace, M.; Kalt, W. Unraveling Anthocyanin Bioavailability for Human Health. Annu. Rev. Food Sci. Technol. 2016, 7, 375–393. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Ionica, M.E. Ascorbic Acid, Anthocyanins, Organic Acids and Mineral Content of Some Black and Red Currant Cultivars. Fruits 2011, 66, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Rashid, K.; Wachira, F.N.; Nyabuga, J.N.; Wanyonyi, B.; Murilla, G.; Isaac, A.O. Kenyan Purple Tea Anthocyanins Ability to Cross the Blood Brain Barrier and Reinforce Brain Antioxidant Capacity in Mice. Nutr. Neurosci. 2014, 17, 178–185. [Google Scholar] [CrossRef]
- Stahl, W.; Van Den Berg, H.; Arthur, J.; Bast, A.; Dainty, J.; Faulks, R.M.; Gärtner, C.; Haenen, G.; Hollman, P.; Holst, B.; et al. Bioavailability and Metabolism. In Molecular Aspects of Medicine; Azzi, A., Ed.; Pergamon Press: Oxford, UK, 2002; Volume 23, pp. 39–100. [Google Scholar]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static in vitro Digestion Method Suitable for Food-an International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Oulé, K.M.; Dickman, M.; Arul, J. Properties of Orange Juice with Supercritical Carbon Dioxide Treatment. Int. J. Food Prop. 2013, 16, 1693–1710. [Google Scholar] [CrossRef]
- Fabroni, S.; Amenta, M.; Timpanaro, N.; Rapisarda, P. Supercritical Carbon Dioxide-Treated Blood Orange Juice as a New Product in the Fresh Fruit Juice Market. Innov. Food Sci. Emerg. Technol. 2010, 11, 477–484. [Google Scholar] [CrossRef]
- Rodríguez-Roque, M.J.; Rojas-Graü, M.A.; Elez-Martínez, P.; Martín-Belloso, O. Changes in Vitamin C, Phenolic, and Carotenoid Profiles throughout in Vitro Gastrointestinal Digestion of a Blended Fruit Juice. J. Agric. Food Chem. 2013, 61, 1859–1867. [Google Scholar] [CrossRef]
- Pérez-Vicente, A.; Gil-Izquierdo, A.; García-Viguera, C. In Vitro Gastrointestinal Digestion Study of Pomegranate Juice Phenolic Compounds, Anthocyanins, and Vitamin C. J. Agric. Food Chem. 2002, 50, 2308–2312. [Google Scholar] [CrossRef]
- Vallejo, F.; Gil-Izquierdo, A.; Pérez-Vicente, A.; García-Viguera, C. In Vitro Gastrointestinal Digestion Study of Broccoli Inflorescence Phenolic Compounds, Glucosinolates, and Vitamin C. J. Agric. Food Chem. 2004, 52, 135–138. [Google Scholar] [CrossRef]
- Rodríguez-Roque, M.J. In Vitro Bioaccessibility of Health-Related Compounds from Beverages Based on Fruit Juice, Milk or Soymilk: Influence of Food Matrix and Processing; Universitat de Lleida: Lleida, Spain, 2014. [Google Scholar]
- Lingua, M.S.; Wunderlin, D.A.; Baroni, M.V. Effect of Simulated Digestion on the Phenolic Components of Red Grapes and Their Corresponding Wines. J. Funct. Foods 2018, 44, 86–94. [Google Scholar] [CrossRef]
- Pozo-Insfran, D.d.; Balaban, M.O.; Talcott, S.T. Inactivation of Polyphenol Oxidase in Muscadine Grape Juice by Dense Phase-CO2 Processing. Food Res. Int. 2007, 40, 894–899. [Google Scholar] [CrossRef]
- Bouayed, J.; Hoffmann, L.; Bohn, T. Total Phenolics, Flavonoids, Anthocyanins and Antioxidant Activity Following Simulated Gastro-Intestinal Digestion and Dialysis of Apple Varieties: Bioaccessibility and Potential Uptake. Food Chem. 2011, 128, 14–21. [Google Scholar] [CrossRef]
- Correa-Betanzo, J.; Allen-Vercoe, E.; McDonald, J.; Schroeter, K.; Corredig, M.; Paliyath, G. Stability and Biological Activity of Wild Blueberry (Vaccinium Angustifolium) Polyphenols during Simulated in Vitro Gastrointestinal Digestion. Food Chem. 2014, 165, 522–531. [Google Scholar] [CrossRef]
- Fernandes, I.; Faria, A.; de Freitas, V.; Calhau, C.; Mateus, N. Multiple-Approach Studies to Assess Anthocyanin Bioavailability. Phytochem. Rev. 2015, 14, 899–919. [Google Scholar] [CrossRef]
- Sigurdson, G.T.; Giusti, M.M. The Stability and Absorption of Anthocyanins in the Mouth. In Anthocyanins from Natural Sources; Brooks, M.S., Celli, G.B., Eds.; The Royal Society of Chemistry: London, UK, 2019; pp. 186–215. [Google Scholar]
- Fernandes, I.; Faria, A.; Calhau, C.; de Freitas, V.; Mateus, N. Bioavailability of Anthocyanins and Derivatives. J. Funct. Foods 2014, 7, 54–66. [Google Scholar] [CrossRef]
- Fang, J. Bioavailability of Anthocyanins. Drug Metab. Rev. 2014, 46, 508–520. [Google Scholar] [CrossRef]
- Peixoto, F.M.; Senna Gouvêa, A.; de Araújo Santiago, M.C.; de Sá Velosos Martins, Z.E.; Galhardo Borguini, R.; de Oliveira Godoy, R.L. Characterization and Bioaccessibility of Anthocyanins from Blueberry (Vaccinium Corymbosum L.) after Simulated Gastro-Intestinal Digestion: A Positive Effect on Malvidin Derivatives. Fruits 2018, 73, 101–109. [Google Scholar] [CrossRef]
- Mallery, S.R.; Budendorf, D.E.; Larsen, M.P.; Pei, P.; Tong, M.; Holpuch, A.S.; Larsen, P.E.; Stoner, G.D.; Fields, H.W.; Chan, K.K.; et al. Effects of Human Oral Mucosal Tissue, Saliva, and Oral Microflora on Intraoral Metabolism and Bioactivation of Black Raspberry Anthocyanins. Cancer Prev. Res. 2011, 4, 1209–1221. [Google Scholar] [CrossRef] [Green Version]
- Vitaglione, P.; Donnarumma, G.; Napolitano, A.; Galvano, F.; Gallo, A.; Scalfi, L.; Fogliano, V. Protocatechuic Acid Is the Major Human Metabolite of Cyanidin-Glucosides. J. Nutr. 2007, 137, 2043–2048. [Google Scholar] [CrossRef]
- Goszcz, K.; Deakin, S.J.; Duthie, G.G.; Stewart, D.; Megson, I.L. Bioavailable Concentrations of Delphinidin and Its Metabolite, Gallic Acid, Induce Antioxidant Protection Associated with Increased Intracellular Glutathione in Cultured Endothelial Cells. Oxid. Med. Cell. Longev. 2017, 2017, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Nurmi, T.; Mursu, J.; Heinonen, M.; Nurmi, A.; Hiltunen, R.; Voutilainen, S. Metabolism of Berry Anthocyanins to Phenolic Acidsin Humans. J. Agric. Food Chem. 2009, 57, 2274–2281. [Google Scholar] [CrossRef]
- Del Bò, C.; Ciappellano, S.; Klimis-Zacas, D.; Daniela, M.; Claudio, G.; Riso, P.; Porrini, M. Anthocyanin Absorption, Metabolism, and Distribution from a Wild Blueberry-Enriched Diet (Vaccinium Angustifolium) Is Affected by Diet Duration in the Sprague-Dawley Rat. J. Agric. Food Chem. 2010, 58, 2491–2497. [Google Scholar] [CrossRef] [PubMed]
- Kankala, R.K.; Zhang, Y.S.; Wang, S.B.; Lee, C.H.; Chen, A.Z. Supercritical Fluid Technology: An Emphasis on Drug Delivery and Related Biomedical Applications. Adv. Healthc. Mater. 2017, 6, 1700433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Sun, Y.; Ma, Y.; Zhao, X. Dense Phase Carbon Dioxide Treatment of Tomato Juice: Effect on Physico-Chemical Properties, Phenolic Composition, Lycopene Isomerisation and in Vitro Bioaccessibility. Int. J. Food Sci. Technol. 2019, 54, 1658–1669. [Google Scholar] [CrossRef]
- Briongos, H.; Illera, A.E.; Sanz, M.T.; Melgosa, R.; Beltrán, S.; Solaesa, A.G. Effect of High Pressure Carbon Dioxide Processing on Pectin Methylesterase Activity and Other Orange Juice Properties. LWT—Food Sci. Technol. 2016, 74, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Niu, L.; Hu, X.; Wu, J.; Liao, X.; Chen, F.; Zhao, G.; Wang, Z. Effect of Dense Phase Carbon Dioxide Process on Physicochemical Properties and Flavor Compounds of Orange Juice. J. Food Process. Preserv. 2010, 34, 530–548. [Google Scholar] [CrossRef]
- Ubeyitogullari, A. Enhancing Bioaccessibility of Phytosterols Using Nanoporous Starch Aerogels and Supercritical Carbon Dioxide; The University of Nebraska: Lincoln, NE, USA, 2018. [Google Scholar]
- Vallecilla Yepez, L.; Yepez, V. Increasing Cis-Lycopene Content of the Oleoresin from Tomato Processing Byproducts Using Supercritical Carbon Dioxide and Assessment of Its Bioaccessibility; University of Nebraska: Lincoln, NE, USA, 2017; Volume 89. [Google Scholar]
- Cassani, L.; Gerbino, E.; Moreira, M.d.R.; Gómez-Zavaglia, A. Influence of Non-Thermal Processing and Storage Conditions on the Release of Health-Related Compounds after in Vitro Gastrointestinal Digestion of Fiber-Enriched Strawberry Juices. J. Funct. Foods 2018, 40, 128–136. [Google Scholar] [CrossRef]
- Ferrentino, G.; Plaza, M.L.; Ramirez-Rodrigues, M.; Ferrari, G.; Balaban, M.O. Effects of Dense Phase Carbon Dioxide Pasteurization on the Physical and Quality Attributes of a Red Grapefruit Juice. J. Food Sci. 2009, 74, E333–E341. [Google Scholar] [CrossRef]
- Ramírez-Rodrigues, M.M.; Plaza, M.L.; Azeredo, A.; Balaban, M.O.; Marshall, M.R. Phytochemical, Sensory Attributes and Aroma Stability of Dense Phase Carbon Dioxide Processed Hibiscus Sabdariffa Beverage during Storage. Food Chem. 2012, 134, 1425–1431. [Google Scholar] [CrossRef]
- Porto, C.D.; Decorti, D.; Tubaro, F. Effects of Continuous Dense-Phase CO2 System on Antioxidant Capacity and Volatile Compounds of Apple Juice. Int. J. Food Sci. Technol. 2010, 45, 1821–1827. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, Q.; Zhang, R.; Wei, Z.; Deng, Y.; Zhang, Y.; Tang, X.; Zhang, M. Comparative Study on Phenolic Profiles and Antioxidant Activity of Litchi Juice Treated by High Pressure Carbon Dioxide and Thermal Processing. Food Sci. Technol. Res. 2015, 21, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Burgos-Edwards, A.; Jiménez-Aspee, F.; Thomas-Valdés, S.; Schmeda-Hirschmann, G.; Theoduloz, C. Qualitative and Quantitative Changes in Polyphenol Composition and Bioactivity of Ribes Magellanicum and R. Punctatum after in Vitro Gastrointestinal Digestion. Food Chem. 2017, 237, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L. Fruits and Vegetables in the Prevention of Cellular Oxidative Damage 1-5. Am. J. Clin. Nutr. 2003, 78, 570S–578S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buniowska, M.; Carbonell-Capella, J.M.; Frigola, A.; Esteve, M.J. Bioaccessibility of Bioactive Compounds after Non-Thermal Processing of an Exotic Fruit Juice Blend Sweetened with Stevia Rebaudiana. Food Chem. 2017, 221, 1834–1842. [Google Scholar] [CrossRef] [PubMed]
- Odriozola-Serrano, I.; Hernández-Jover, T.; Martín-Belloso, O. Comparative Evaluation of UV-HPLC Methods and Reducing Agents to Determine Vitamin C in Fruits. Food Chem. 2007, 105, 1151–1158. [Google Scholar] [CrossRef]
- Oszmianski, J. Stabilizacja i Zastosowanie Barwnika Antocyjanowego Aronii Do Barwienia Napoi. Acta Sci. Polonorum. Technol. Aliment. 2002, 1, 37–45. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Yen, G.C.; Chen, H.Y. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Kapusta, I.; Cebulak, T.; Oszmiański, J. Characterization of Polish Wines Produced from the Interspecific Hybrid Grapes Grown in South-East Poland. Eur. Food Res. Technol. 2018, 244, 441–455. [Google Scholar] [CrossRef]
Sample | AA (mg/100 mL) | DHAA (mg/100 mL) | Total Vitamin C (AA+DHAA) (mg/100 mL) | |
---|---|---|---|---|
control | FJ | 147.71 c ± 11.04 | 2.29 c ± 0.71 | 150.00 c ± 11.08 |
T45 | 155.09 bc ± 3.56 | 3.17 ab ± 0.91 | 158.25 bc ± 3.14 | |
T85 | 155.81 bc ± 2.82 | 1.95 c ± 0.65 | 157.76 bc ± 2.60 | |
SCCD10 | 162.68 ab ± 8.80 | 3.23 ab ± 1.21 | 165.91 ab ± 9.36 | |
SCCD30 | 156.93 bc ± 5.60 | 3.84 a ± 0.38 | 160.77 bc ± 5.82 | |
SCCD60 | 169.39 a ± 2.66 | 3.15 ab ± 0.92 | 172.54 a ± 2.25 | |
oral | FJ | 188.72 bc ± 15.05 | 9.10 a ± 1.64 | 197.82 ab ± 16.59 |
T45 | 201.55 ab ± 11.03 | 1.83 c ± 0.49 | 203.38 ab ± 11.44 | |
T85 | 180.99 c ± 12.66 | 6.96 b ± 1.56 | 187.95 b ± 13.71 | |
SCCD10 | 210.91 a ± 4.06 | 2.35 c ± 0.83 | 213.26 a ± 3.66 | |
SCCD30 | 201.71 ab ± 4.87 | 8.69 ab ± 1.26 | 210.39 a ± 4.95 | |
SCCD60 | 196.97 abc ± 3.59 | 7.93 ab ± 0.48 | 204.90 ab ± 3.12 | |
gastric | FJ | 170.03 a ± 14.71 | 2.73 c ± 0.51 | 172.77 a ± 14.42 |
T45 | 161.06 ab ± 3.57 | 2.40 c ± 0.77 | 163.46 ab ± 3.73 | |
T85 | 151.76 b ± 9.45 | 8.19 ab ± 5.27 | 159.96 ab ± 9.56 | |
SCCD10 | 151.88 b ± 11.08 | 11.65 a ± 2.31 | 163.53 ab ± 9.43 | |
SCCD30 | 131.45 c ± 12.82 | 4.08 bc ± 1.09 | 135.52 c ± 12.79 | |
SCCD60 | 152.94 ab ± 5.37 | 1.87 c ± 0.62 | 154.81 b ± 5.49 | |
intestinal | FJ | 4.25 a ± 0.93 | 13.83 ab ± 2.18 | 18.08 a ± 2.93 |
T45 | 2.19 bc ± 0.70 | 14.81 a ± 3.15 | 16.99 ab ± 3.67 | |
T85 | 1.50 cd ± 0.17 | 12.20 ab ± 2.45 | 13.70 bc ± 2.61 | |
SCCD10 | 2.53 b ± 0.36 | 10.79 b ± 1.72 | 13.32 bc ± 1.36 | |
SCCD30 | 1.06 de ± 0.36 | 10.94 b ± 1.12 | 12.00 c ± 0.72 | |
SCCD60 | 0.46 e ± 0.06 | 6.28 c ± 0.67 | 6.74 d ± 0.67 | |
dialysate | FJ | 42.61 a ± 4.33 | 17.26 b ± 1.69 | 59.87 b ± 5.87 |
T45 | 33.61 b ± 2.50 | 38.75 a ± 5.30 | 72.37 a ± 3.09 | |
T85 | 23.04 c ± 1.21 | 20.17 c ± 3.36 | 43.21 c ± 4.14 | |
SCCD10 | 30.22 b ± 2.89 | 16.04 c ± 1.21 | 46.26 c ± 3.79 | |
SCCD30 | 21.94 c ± 3.47 | 18.69 c ± 2.21 | 40.63 c ± 1.84 | |
SCCD60 | 21.43 c ± 1.79 | 23.86 c ± 3.59 | 45.28 c ± 2.52 |
Sample | Df-3-O-glu (mg/L) | Df-3-O-rut (mg/L) | Cy-3-O-glu (mg/L) | Cy-3-O-rut (mg/L) | Total Anthocyanins (mg/L) | |
---|---|---|---|---|---|---|
control | FJ | 111.13 c ± 5.85 | 371.91 d ± 18.76 | 45.75 c ± 2.18 | 259.66 c ± 12.28 | 788.45 c ± 39.07 |
T45 | 101.36 c ± 9.04 | 342.26 d ± 30.38 | 41.45 c ± 3.54 | 236.86 c ± 20.05 | 721.93 c ± 62.99 | |
T85 | 73.62 d ± 4.14 | 236.99 e ± 2.42 | 28.53 d ± 1.94 | 159.28 d ± 2.95 | 498.43 d ± 11.27 | |
SCCD10 | 138.80 b ± 19.38 | 460.60 c ± 31.44 | 56.08 b ± 7.35 | 306.72 b ± 27.17 | 962.20 b ± 25.31 | |
SCCD30 | 159.95 a ± 8.23 | 579.44 a ± 34.45 | 71.55 a ± 6.19 | 383.67 a ± 28.74 | 1173.02 a ± 64.69 | |
SCCD60 | 159.90 a ± 4.85 | 521.73 b ± 11.37 | 62.77 b ± 1.90 | 334.94 b ± 7.45 | 1079.34 a ± 25.30 | |
oral | FJ | 96.14 a ± 11.09 | 314.95 a ± 19.52 | 34.95 a ± 6.09 | 186.23 a ± 10.10 | 632.28 a ± 45.36 |
T45 | 85.24 a ± 21.99 | 289.64 a ± 27.35 | 31.98 a ± 2.91 | 162.13 ab ± 18.40 | 568.99 a ± 59.44 | |
T85 | 44.97 b ± 13.15 | 153.49 b ± 16.45 | 17.25 b ± 5.37 | 105.52 c ± 22.08 | 321.23 b ± 27.05 | |
SCCD10 | 48.74 b ± 2.42 | 165.39 b ± 6.50 | 18.55 b ± 0.65 | 111.90 c ± 4.34 | 344.58 b ± 13.21 | |
SCCD30 | 49.97 b ± 8.19 | 150.17 b ± 2.04 | 19.05 b ± 3.26 | 108.77 c ± 10.14 | 327.95 b ± 20.68 | |
SCCD60 | 56.08 b ± 7.80 | 208.56 b ± 13.46 | 21.12 b ± 2.95 | 132.90 bc ± 9.04 | 418.66 b ± 21.29 | |
gastric | FJ | 66.37 a ± 6.28 | 237.17 a ± 15.89 | 27.14 a ± 2.56 | 165.86 a ± 6.94 | 496.55 a ± 26.55 |
T45 | 54.24 c ± 6.95 | 238.86 a ± 13.54 | 22.11 b ± 2.31 | 126.41 c ± 16.47 | 441.62 b ± 26.36 | |
T85 | 60.33 ab ± 6.08 | 212.41 b ± 10.14 | 21.86 b ± 3.69 | 165.46 a ± 11.30 | 460.05 b ± 19.41 | |
SCCD10 | 66.57 a ± 1.54 | 228.10 ab ± 4.48 | 25.84 a ± 0.56 | 154.12 ab ± 3.29 | 474.62 ab ± 9.26 | |
SCCD30 | 62.22 ab ± 1.45 | 213.37 b ± 4.27 | 24.00 ab ± 0.38 | 143.22 b ± 2.57 | 442.82 b ± 8.53 | |
SCCD60 | 62.56 ab ± 2.98 | 212.83 b ± 7.91 | 23.97 ab ± 0.82 | 142.92 b ± 5.06 | 442.27 b ± 16.64 | |
intestinal | FJ | 1.88 d ± 0.73 | 11.11 c ± 1.88 | 1.03 b ± 0.31 | 11.53 b ± 1.62 | 25.55 c ± 2.30 |
T45 | 4.13 a ± 0.49 | 18.59 a ± 1.83 | 2.27 a ± 0.69 | 17.40 a ± 2.55 | 42.39 a ± 5.28 | |
T85 | 3.17 bc ± 0.31 | 16.11 ab ± 2.67 | 1.91 a ± 0.29 | 15.86 a ± 2.33 | 37.04 ab ± 3.52 | |
SCCD10 | 3.40 abc ± 0.33 | 16.34 ab ± 1.16 | 2.05 a ± 0.10 | 16.91 a ± 0.62 | 38.69 ab ± 2.04 | |
SCCD30 | 3.77 ab ± 0.32 | 16.26 ab ± 3.04 | 2.03 a ± 0.26 | 16.78 a ± 1.80 | 38.83 ab ± 4.06 | |
SCCD60 | 2.80 c ± 0.64 | 12.88 bc ± 2.64 | 1.77 a ± 0.19 | 14.61 ab ± 1.27 | 32.05 bc ± 4.73 | |
dialysate | FJ | 3.63 a ± 0.79 | 15.72 a ± 0.95 | 1.93 a ± 0.29 | 13.29 a ± 2.11 | 34.56 a ± 3.94 |
T45 | 1.67 b ± 0.14 | 6.53 c ± 0.91 | 1.28 b ± 0.14 | 9.98 b ± 0.90 | 19.46 b ± 1.63 | |
T85 | 0.96 b ± 0.16 | 4.03 d ± 0.93 | 1.08 b ± 0.08 | 8.21 bc ± 1.15 | 14.28 c ± 1.21 | |
SCCD10 | 3.96 a ± 0.83 | 12.51 b ± 2.27 | 1.76 a ± 0.22 | 13.96 a ± 2.59 | 32.19 a ± 5.41 | |
SCCD30 | 0.94 b ± 0.06 | 4.59 cd ± 0.25 | 1.04 b ± 0.08 | 8.17 bc ± 0.40 | 14.75 bc ± 0.73 | |
SCCD60 | 0.96 b ± 0.39 | 4.26 d ± 0.18 | 1.19 b ± 0.26 | 6.40 c ± 0.27 | 12.81 c ± 1.04 |
No. | Compound | RT | [M − H] | Fragment Ions | Absorbance Maxima |
---|---|---|---|---|---|
(Min.) | (m/z) | (m/z) | (nm) | ||
1 | Delphinidin 3-O-rutinoside | 2.71 | 611+ | 303 | 277, 525 |
2 | 3,4-Dihydroxybenzoic acid (protocatechuic acid) | 2.14 | 153− | 109 | 260, 294 |
Stage of Digestion | Df-3-O-rut (µg/mL) | Protocatechuic Acid (µg/mL) |
---|---|---|
control | 49.74 ± 0.89 | 0.0 |
oral | 16.25 ± 1.34 | 0.63 ± 0.02 |
gastric | 52.66 ± 3.25 | 0.44 ± 0.02 |
intestinal | 3.65 ± 0.02 | 0.0 |
dialysate | 0.0 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trych, U.; Buniowska, M.; Skąpska, S.; Kapusta, I.; Marszałek, K. Bioaccessibility of Antioxidants in Blackcurrant Juice after Treatment Using Supercritical Carbon Dioxide. Molecules 2022, 27, 1036. https://doi.org/10.3390/molecules27031036
Trych U, Buniowska M, Skąpska S, Kapusta I, Marszałek K. Bioaccessibility of Antioxidants in Blackcurrant Juice after Treatment Using Supercritical Carbon Dioxide. Molecules. 2022; 27(3):1036. https://doi.org/10.3390/molecules27031036
Chicago/Turabian StyleTrych, Urszula, Magdalena Buniowska, Sylwia Skąpska, Ireneusz Kapusta, and Krystian Marszałek. 2022. "Bioaccessibility of Antioxidants in Blackcurrant Juice after Treatment Using Supercritical Carbon Dioxide" Molecules 27, no. 3: 1036. https://doi.org/10.3390/molecules27031036
APA StyleTrych, U., Buniowska, M., Skąpska, S., Kapusta, I., & Marszałek, K. (2022). Bioaccessibility of Antioxidants in Blackcurrant Juice after Treatment Using Supercritical Carbon Dioxide. Molecules, 27(3), 1036. https://doi.org/10.3390/molecules27031036