Raman Spectroscopy of Carotenoid Compounds for Clinical Applications—A Review
Abstract
:1. Introduction
2. Structure and Properties
2.1. Structure
2.2. Optical Properties of Carotenoids
Carotenoid | Absorbance λ Max in Ethanol (nm) [55,63,64,65] | Main Raman Peaks Positions (cm−1) [66] | Conjugation Length (n) [60,67] | Hydroxyl Groups | Number of Conjugated Double Bonds [68,69,70] |
---|---|---|---|---|---|
Beta carotene | ~427, 453, 483 | ~1000, 1160, 1520 | 9.6 | none | 11 |
Lycopene | ~447, 474, 504 | ~1000, 1160, 1520 | 11 | none | 11 |
Lutein | ~424, 445, 472 | ~1000, 1160, 1520 | 9.3 | 2 | 10 |
Zeaxanthin | ~424, 445, 472 | ~1000, 1160, 1520 | 9.6 | 2 | 11 |
3. Raman Spectroscopy of Carotenoids
4. Differentiation and Quantification of Carotenoids
5. Raman Spectroscopy of Carotenoids in Biological Systems
5.1. General Biological Systems
5.2. Skin
5.2.1. Raman Instrumentation and Quantification of Skin Carotenoids
5.2.2. Clinical Research Applications
- (a)
- Effect of diet and dietary supplementation.
- (b)
- Effect of stress factors
5.3. Eye Health
5.3.1. Advantages of Raman Spectroscopy for Macular Pigment Detection
5.3.2. Clinical Research Application
5.4. Blood
5.4.1. Whole Blood and Blood Cells
5.4.2. Clinical Research Application
6. Correlations between Raman Spectra of Macula, Skin and Serum Carotenoids
7. Limitations and Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Damodaran, S.; Parkin, K.L. Fennema’s Food Chemistry, 5th ed.; CRC Press: Abingdon, UK, 2017; ISBN 9781315372914. [Google Scholar]
- Yeum, K.-J.; Russell, R.M. Carotenoid Bioavailability And Bioconversion. Annu. Rev. Nutr. 2002, 22, 483–504. [Google Scholar] [CrossRef] [PubMed]
- Olson, J.A. Biological Actions of Carotenoids. J. Nutr. 1989, 119, 94–95. [Google Scholar] [CrossRef] [PubMed]
- Lam, T.K.; Gallicchio, L.; Lindsley, K.; Shiels, M.; Hammond, E.; Tao, X.; Chen, L.; Robinson, K.A.; Caulfield, L.E.; Herman, J.G.; et al. Cruciferous Vegetable Consumption and Lung Cancer Risk: A Systematic Review. Cancer Epidemiol. Biomark. Prev. 2009, 18, 184–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.N.; Fraser, G.E. Dietary Risk Factors for Colon Cancer in a Low-Risk Population. Am. J. Epidemiol. 1998, 148, 761–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romaguera, D.; Vergnaud, A.-C.; Peeters, P.H.; van Gils, C.H.; Chan, D.S.; Ferrari, P.; Romieu, I.; Jenab, M.; Slimani, N.; Clavel-Chapelon, F.; et al. Is Concordance with World Cancer Research Fund/American Institute for Cancer Research Guidelines for Cancer Prevention Related to Subsequent Risk of Cancer? Results from the EPIC Study. Am. J. Clin. Nutr. 2012, 96, 150–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norat, T.; Aune, D.; Chan, D.; Romaguera, D. Fruits and Vegetables: Updating the Epidemiologic Evidence for the WCRF/AICR Lifestyle Recommendations for Cancer Prevention. In Advances in Nutrition and Cancer; Springer: Berlin/Heidelberg, Germany, 2014; pp. 35–50. [Google Scholar]
- He, F.J.; Nowson, C.A.; Lucas, M.; MacGregor, G.A. Increased Consumption of Fruit and Vegetables Is Related to a Reduced Risk of Coronary Heart Disease: Meta-Analysis of Cohort Studies. J. Hum. Hypertens. 2007, 21, 717–728. [Google Scholar] [CrossRef] [Green Version]
- Bazzano, L.A.; Serdula, M.K.; Liu, S. Dietary Intake of Fruits and Vegetables and Risk of Cardiovascular Disease. Curr. Atheroscler. Rep. 2003, 5, 492–499. [Google Scholar] [CrossRef]
- He, F.J.; Nowson, C.A.; MacGregor, G.A. Fruit and Vegetable Consumption and Stroke: Meta-Analysis of Cohort Studies. Lancet 2006, 367, 320–326. [Google Scholar] [CrossRef]
- Dauchet, L.; Amouyel, P.; Dallongeville, J. Fruit and Vegetable Consumption and Risk of Stroke: A Meta-Analysis of Cohort Studies. Neurology 2005, 65, 1193–1197. [Google Scholar] [CrossRef]
- Carter, P.; Gray, L.J.; Troughton, J.; Khunti, K.; Davies, M.J. Fruit and Vegetable Intake and Incidence of Type 2 Diabetes Mellitus: Systematic Review and Meta-Analysis. BMJ 2010, 341, 543. [Google Scholar] [CrossRef]
- Cooper, A.J.; Forouhi, N.G.; Ye, Z.; Buijsse, B.; Arriola, L.; Balkau, B.; Barricarte, A.; Beulens, J.W.J.; Boeing, H.; Büchner, F.L.; et al. Fruit and Vegetable Intake and Type 2 Diabetes: EPIC-InterAct Prospective Study and Meta-Analysis. Eur. J. Clin. Nutr. 2012, 66, 1082–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamer, M.; Chida, Y. Intake of Fruit, Vegetables, and Antioxidants and Risk of Type 2 Diabetes: Systematic Review and Meta-Analysis. J. Hypertens. 2007, 25, 2361–2369. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Serdula, M.; Janket, S.-J.; Cook, N.R.; Sesso, H.D.; Willett, W.C.; Manson, J.E.; Buring, J.E. A Prospective Study of Fruit and Vegetable Intake and the Risk of Type 2 Diabetes in Women. Diabetes Care 2004, 27, 2993–2996. [Google Scholar] [CrossRef] [Green Version]
- Seyedrezazadeh, E.; Pour Moghaddam, M.; Ansarin, K.; Reza Vafa, M.; Sharma, S.; Kolahdooz, F. Fruit and Vegetable Intake and Risk of Wheezing and Asthma: A Systematic Review and Meta-Analysis. Nutr. Rev. 2014, 72, 411–428. [Google Scholar] [CrossRef] [PubMed]
- Burrows, T.L.; Williams, R.; Rollo, M.; Wood, L.; Garg, M.L.; Jensen, M.; Collins, C.E. Plasma Carotenoid Levels as Biomarkers of Dietary Carotenoid Consumption: A Systematic Review of the Validation Studies. J. Nutr. Intermed. Metab. 2015, 2, 15–64. [Google Scholar] [CrossRef] [Green Version]
- Eggersdorfer, M.; Wyss, A. Carotenoids in Human Nutrition and Health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Haught, J.M.; Patel, S.; English, J.C. Xanthoderma: A Clinical Review. J. Am. Acad. Dermatol. 2007, 57, 1051–1058. [Google Scholar] [CrossRef]
- Craft, N.E.; Haitema, T.B.; Garnett, K.M.; Fitch, K.A.; Dorey, C.K. Carotenoid, Tocopherol, and Retinol Concentrations in Elderly Human Brain. J. Nutr. Health Aging 2004, 8, 156–162. [Google Scholar]
- Beatty, S.; Boulton, M.; Henson, D.; Koh, H.-H.; Murray, I.J. Macular Pigment and Age Related Macular Degeneration. Br. J. Ophthalmol. 1999, 83, 867–877. [Google Scholar] [CrossRef]
- Hammond, B.R.; Wooten, B.R. CFF Thresholds: Relation to Macular Pigment Optical Density. Ophthalmic. Physiol. Opt. 2005, 25, 315–319. [Google Scholar] [CrossRef]
- Mewborn, C.; Lindbergh, C.; Robinson, T.; Gogniat, M.; Terry, D.; Jean, K.; Hammond, B.; Renzi-Hammond, L.; Miller, L. Lutein and Zeaxanthin Are Positively Associated with Visual–Spatial Functioning in Older Adults: An FMRI Study. Nutrients 2018, 10, 458. [Google Scholar] [CrossRef] [PubMed]
- Kijlstra, A.; Tian, Y.; Kelly, E.R.; Berendschot, T.T.J.M. Lutein: More than Just a Filter for Blue Light. Prog. Retin. Eye Res. 2012, 31, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Ajana, S.; Weber, D.; Helmer, C.; Merle, B.M.; Stuetz, W.; Dartigues, J.-F.; Rougier, M.-B.; Korobelnik, J.-F.; Grune, T.; Delcourt, C.; et al. Plasma Concentrations of Lutein and Zeaxanthin, Macular Pigment Optical Density, and Their Associations with Cognitive Performances Among Older Adults. Investig. Opthalmol. Vis. Sci. 2018, 59, 1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, M.C.; Evans, D.A.; Tangney, C.C.; Bienias, J.L.; Wilson, R.S. Associations of Vegetable and Fruit Consumption with Age-Related Cognitive Change. Neurology 2006, 67, 1370–1376. [Google Scholar] [CrossRef] [Green Version]
- Beatty, S.; Koh, H.-H.; Phil, M.; Henson, D.; Boulton, M. The Role of Oxidative Stress in the Pathogenesis of Age-Related Macular Degeneration. Surv. Ophthalmol. 2000, 45, 115–134. [Google Scholar] [CrossRef] [Green Version]
- Benoist d’Azy, C.; Pereira, B.; Chiambaretta, F.; Dutheil, F. Oxidative and Anti-Oxidative Stress Markers in Chronic Glaucoma: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0166915. [Google Scholar] [CrossRef]
- Loughman, J.; Loskutova, E.; Butler, J.S.; Siah, W.F.; O’Brien, C. Macular Pigment Response to Lutein, Zeaxanthin, and Meso-Zeaxanthin Supplementation in Open-Angle Glaucoma. Ophthalmol. Sci. 2021, 1, 100039. [Google Scholar] [CrossRef]
- Mayne, S.T.; Cartmel, B.; Scarmo, S.; Jahns, L.; Ermakov, I.V.; Gellermann, W. Resonance Raman Spectroscopic Evaluation of Skin Carotenoids as a Biomarker of Carotenoid Status for Human Studies. Arch. Biochem. Biophys. 2013, 539, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Jahns, L.; Johnson, L.K.; Conrad, Z.; Bukowski, M.; Raatz, S.K.; Jilcott Pitts, S.; Wang, Y.; Ermakov, I.V.; Gellermann, W. Concurrent Validity of Skin Carotenoid Status as a Concentration Biomarker of Vegetable and Fruit Intake Compared to Multiple 24-h Recalls and Plasma Carotenoid Concentrations across One Year: A Cohort Study. Nutr. J. 2019, 18, 78. [Google Scholar] [CrossRef] [Green Version]
- Hata, T.R.; Scholz, T.A.; Ermakov, I.V.; McClane, R.W.; Khachik, F.; Gellermann, W.; Pershing, L.K. Non-Invasive Raman Spectroscopic Detection of Carotenoids in Human Skin. J. Investig. Dermatol. 2000, 115, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Ermakov, I.V.; Ermakova, M.R.; Gellermann, W.; Lademann, J. Noninvasive Selective Detection of Lycopene and β-Carotene in Human Skin Using Raman Spectroscopy. J. Biomed. Opt. 2004, 9, 332. [Google Scholar] [CrossRef]
- Bernstein, P.S.; Li, B.; Vachali, P.P.; Gorusupudi, A.; Shyam, R.; Henriksen, B.S.; Nolan, J.M. Lutein, Zeaxanthin, and Meso-Zeaxanthin: The Basic and Clinical Science Underlying Carotenoid-Based Nutritional Interventions against Ocular Disease. Prog. Retin. Eye Res. 2016, 50, 34–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Rensburg, A.J.; Wenhold, F. Validity and Reliability of Field Resonance Raman Spectroscopy for Assessing Carotenoid Status. J. Nutr. Sci. Vitaminol. (Tokyo) 2016, 62, 317–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarmo, S.; Cartmel, B.; Lin, H.; Leffell, D.J.; Ermakov, I.V.; Gellermann, W.; Bernstein, P.S.; Mayne, S.T. Single v. Multiple Measures of Skin Carotenoids by Resonance Raman Spectroscopy as a Biomarker of Usual Carotenoid Status. Br. J. Nutr. 2013, 110, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Kopec, R.E.; Cooperstone, J.L.; Cichon, M.J.; Schwartz, S.J. Analysis Methods of Carotenoids. In Analysis of Antioxidant-Rich Phytochemicals; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 5, pp. 105–148. [Google Scholar]
- Connolly, E.E.; Beatty, S.; Loughman, J.; Howard, A.N.; Louw, M.S.; Nolan, J.M. Supplementation with All Three Macular Carotenoids: Response, Stability, and Safety. Investig. Opthalmol. Vis. Sci. 2011, 52, 9207. [Google Scholar] [CrossRef]
- Bone, R.A.; Landrum, J.T.; Cao, Y.; Howard, A.N.; Alvarez-Calderon, F. Macular Pigment Response to a Supplement Containing Meso-Zeaxanthin, Lutein and Zeaxanthin. Nutr. Metab. (Lond) 2007, 4, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stringham, N.T.; Holmes, P.V.; Stringham, J.M. Effects of Macular Xanthophyll Supplementation on Brain-Derived Neurotrophic Factor, pro-Inflammatory Cytokines, and Cognitive Performance. Physiol. Behav. 2019, 211, 112650. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, M. Development of a Rapid, Simple Assay of Plasma Total Carotenoids. BMC Res. Notes 2012, 5, 521. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo, A.M.; Londoño, L.F.; Orozco, J.C.; Patiño, G.; Belalcazar, J.; Davrieux, F.; Talsma, E.F. A Comparison Study of Five Different Methods to Measure Carotenoids in Biofortified Yellow Cassava (Manihot Esculenta). PLoS ONE 2018, 13, e0209702. [Google Scholar] [CrossRef]
- Parachalil, D.R.; Bruno, C.; Bonnier, F.; Blasco, H.; Chourpa, I.; McIntyre, J.; Byrne, H.J. Raman Spectroscopic Screening of High and Low Molecular Weight Fractions of Human Serum. Analyst 2019, 144, 4295–4311. [Google Scholar] [CrossRef]
- Jenkins, C.A.; Jenkins, R.A.; Pryse, M.M.; Welsby, K.A.; Jitsumura, M.; Thornton, C.A.; Dunstan, P.R.; Harris, D.A. A High-Throughput Serum Raman Spectroscopy Platform and Methodology for Colorectal Cancer Diagnostics. Analyst 2018, 143, 6014–6024. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.H.; Graham, M.L.; Marshall, G.A.; Hanson, K.L.; Seguin-Fowler, R.A. Serum Carotenoids Are Strongly Associated with Dermal Carotenoids but Not Self-Reported Fruit and Vegetable Intake among Overweight and Obese Women. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, J.; Darvin, M.E.; Meinke, M.C.; Schweigert, F.J.; Müller, K.E.; Lademann, J. Analyses of the Correlation between Dermal and Blood Carotenoids in Female Cattle by Optical Methods. J. Biomed. Opt. 2012, 18, 061219. [Google Scholar] [CrossRef]
- O’Neill, L.; Lynch, P.; McNamara, M.; Byrne, H.J. Structure Property Relationships in Conjugated Organic Systems. Synth. Met. 2005, 153, 289–292. [Google Scholar] [CrossRef]
- Lu, L.; Shi, L.; Secor, J.; Alfano, R. Resonance Raman Scattering of β-Carotene Solution Excited by Visible Laser Beams into Second Singlet State. J. Photochem. Photobiol. B 2018, 179, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Kiokias, S.; Proestos, C.; Varzakas, T. A Review of the Structure, Biosynthesis, Absorption of Carotenoids-Analysis and Properties of Their Common Natural Extracts. Curr. Res. Nutr. Food Sci. J. 2016, 4, 25–37. [Google Scholar] [CrossRef]
- Amengual Bioactive Properties of Carotenoids in Human Health. Nutrients 2019, 11, 2388. [CrossRef] [Green Version]
- Widomska, J.; Gruszecki, W.I.; Subczynski, W.K. Factors Differentiating the Antioxidant Activity of Macular Xanthophylls in the Human Eye Retina. Antioxidants 2021, 10, 601. [Google Scholar] [CrossRef]
- Lu, L.; Ni, X.; Luo, X. Influence of Phenylalanine on Carotenoid Aggregation. J. Appl. Spectrosc. 2015, 81, 1068–1072. [Google Scholar] [CrossRef]
- Lu, L.; Liu, G.; Ni, X.; Luo, X.; Lu, L.; Liu, G.; Ni, X.; Luo, X. Spectral Analysis of Interaction between Carotenoid and Tyrosine in Ethanol-Water Solution. RJPCA 2015, 89, 417–422. [Google Scholar] [CrossRef]
- Qu, F.; Fu, H.; Li, Y.; Sun, C.; Li, Z.; Gong, N.; Men, Z. Temperature Effect on Electronic and Vibrational Properties of β-Carotene Aggregates in Aqueous Ethanol Solution. Dye. Pigments 2019, 166, 323–329. [Google Scholar] [CrossRef]
- Meinhardt-Wollweber, M.; Suhr, C.; Kniggendorf, A.K.; Roth, B. Absorption and Resonance Raman Characteristics of β-Carotene in Water-Ethanol Mixtures, Emulsion and Hydrogel. AIP Adv. 2018, 8, 055320. [Google Scholar] [CrossRef] [Green Version]
- Clevidence, B.A.; Bieri, J.G. Association of Carotenoids with Human Plasma Lipoproteins. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1993; pp. 33–46. [Google Scholar]
- Parker, R.S. Absorption, Metabolism, and Transport of Carotenoids. FASEB J. 1996, 10, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Mendes-Pinto, M.M.; Sansiaume, E.; Hashimoto, H.; Pascal, A.A.; Gall, A.; Robert, B. Electronic Absorption and Ground State Structure of Carotenoid Molecules. J. Phys. Chem. B 2013, 117, 11015–11021. [Google Scholar] [CrossRef] [PubMed]
- Shreve, A.P.; Trautman, J.K.; Owens, T.G.; Albrecht, A.C. Determination of the S2 Lifetime of β-Carotene. Chem. Phys. Lett. 1991, 178, 89–96. [Google Scholar] [CrossRef]
- Arteni, A.-A.; Fradot, M.; Galzerano, D.; Mendes-Pinto, M.M.; Sahel, J.-A.; Picaud, S.; Robert, B.; Pascal, A.A. Structure and Conformation of the Carotenoids in Human Retinal Macular Pigment. PLoS ONE 2015, 10, e0135779. [Google Scholar] [CrossRef]
- Hempel, J.; Schädle, C.N.; Leptihn, S.; Carle, R.; Schweiggert, R.M. Structure Related Aggregation Behavior of Carotenoids and Carotenoid Esters. J. Photochem. Photobiol. A Chem. 2016, 317, 161–174. [Google Scholar] [CrossRef]
- Billsten, H.H.; Sundström, V.; Polívka, T. Self-Assembled Aggregates of the Carotenoid Zeaxanthin: Time-Resolved Study of Excited States. J. Phys. Chem. A 2005, 109, 1521–1529. [Google Scholar] [CrossRef]
- Aspinall-O’Dea, M.; Wentworth, M.; Pascal, A.; Robert, B.; Ruban, A.; Horton, P. In Vitro Reconstitution of the Activated Zeaxanthin State Associated with Energy Dissipation in Plants. Proc. Natl. Acad. Sci. USA 2002, 99, 16331–16335. [Google Scholar] [CrossRef] [Green Version]
- Moschetti, A.; Fox, C.A.; McGowen, S.; Ryan, R.O. Lutein Nanodisks Protect Human Retinal Pigment Epithelial Cells from UV Light-Induced Damage. Front. Nanotechnol. 2022, 4, 955022. [Google Scholar] [CrossRef]
- dos Santos, R.C.; Ombredane, A.S.; Souza, M.T.; Vasconcelos, A.G.; Plácido, A.; Das, A.; Amorim, G.N.; Alves Barbosa, E.; Lima, F.C.D.A.; Ropke, C.D.; et al. Lycopene-Rich Extract from Red Guava (Psidium guajava L.) Displays Cytotoxic Effect against Human Breast Adenocarcinoma Cell Line MCF-7 via an Apoptotic-like Pathway. Food Res. Int. 2018, 105, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Udensi, J.; Loskutova, E.; Loughman, J.; Byrne, H.J. Quantitative Raman Analysis of Carotenoid Protein Complexes in Aqueous Solution. Molecules 2022, 27, 4724. [Google Scholar] [CrossRef] [PubMed]
- Avendaño, C.; Menéndez, J.C. Cancer Chemoprevention. In Medicinal Chemistry of Anticancer Drugs; Elsevier: Amsterdam, The Netherlands, 2008; pp. 417–429. [Google Scholar] [CrossRef]
- Beta-Carotene|C40H56-PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5280489 (accessed on 8 December 2022).
- Lycopene|C40H56-PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/446925 (accessed on 8 December 2022).
- Widomska, J.; Sangiovanni, J.P.; Subczynski, W.K. Why Is Zeaxanthin the Most Concentrated Xanthophyll in the Central Fovea? Nutrients 2020, 12, 1333. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, S.; Sun, C.; Zhou, M.; Li, D.; Wang, W.; Qu, G.; Li, Z.; Gao, S.; Yang, J.; Ouyang, S.; et al. Effect of Solution Concentration on the Structured Order and Optical Properties of Short-Chain Polyene Biomolecules. SCPMA 2010, 53, 1646–1650. [Google Scholar] [CrossRef]
- Gong, N.; Fu, H.; Wang, S.; Cao, X.; Li, Z.; Sun, C.; Men, Z. All-Trans-β-Carotene Absorption Shift and Electron-Phonon Coupling Modulated by Solvent Polarizability. J. Mol. Liq. 2018, 251, 417–422. [Google Scholar] [CrossRef]
- Mendes-Pinto, M.M.; LaFountain, A.M.; Stoddard, M.C.; Prum, R.O.; Frank, H.A.; Robert, B. Variation in Carotenoid–Protein Interaction in Bird Feathers Produces Novel Plumage Coloration. J. R. Soc. Interface 2012, 9, 3338–3350. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.L.; Zheng, Z.R.; Zhu, R.B.; Liu, Z.G.; Xu, D.P.; Yu, H.M.; Wu, W.Z.; Li, A.H.; Yang, Y.Q.; Su, W.H. Effect of Pressure and Solvent on Raman Spectra of All-Trans-Beta-Carotene. J. Phys. Chem. A 2007, 111, 10044–10049. [Google Scholar] [CrossRef]
- Dudek, M.; Zajac, G.; Kaczor, A.; Baranska, M. Resonance Raman Optical Activity of Zeaxanthin Aggregates. J. Raman Spectrosc. 2017, 48, 673–679. [Google Scholar] [CrossRef]
- Wang, C.; Berg, C.J.; Hsu, C.C.; Merrill, B.A.; Tauber, M.J. Characterization of Carotenoid Aggregates by Steady-State Optical Spectroscopy. J. Phys. Chem. B 2012, 116, 10617–10630. [Google Scholar] [CrossRef]
- Zajac, G.; Lasota, J.; Dudek, M.; Kaczor, A.; Baranska, M. Pre-Resonance Enhancement of Exceptional Intensity in Aggregation-Induced Raman Optical Activity (AIROA) Spectra of Lutein Derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 173, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, G.; Chen, D.; Lu, Y. β-Carotene and Astaxanthin with Human and Bovine Serum Albumins. Food Chem. 2015, 179, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.F.; Krastins, B.; Sarracino, D.A.; Byram, G.; Vogelsang, M.S.; Prakash, A.; Peterman, S.; Ahmad, S.; Vadali, G.; Deng, W.; et al. Proteomic Signatures of Serum Albumin-Bound Proteins from Stroke Patients with and without Endovascular Closure of PFO Are Significantly Different and Suggest a Novel Mechanism for Cholesterol Efflux. Clin. Proteom. 2015, 12, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.T.; Cheng, H.; Han, R.M.; Zhang, J.P.; Skibsted, L.H. Binding to Bovine Serum Albumin Protects β-Carotene against Oxidative Degradation. J. Agric. Food Chem. 2016, 64, 5951–5957. [Google Scholar] [CrossRef]
- Reszczynska, E.; Welc, R.; Grudzinski, W.; Trebacz, K.; Gruszecki, W.I. Carotenoid Binding to Proteins: Modeling Pigment Transport to Lipid Membranes. Arch. Biochem. Biophys. 2015, 584, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Phuong, P.T.T.; Lee, S.; Lee, C.; Seo, B.; Park, S.; Oh, K.T.; Lee, E.S.; Choi, H.-G.; Shin, B.S.; Youn, Y.S. Beta-Carotene-Bound Albumin Nanoparticles Modified with Chlorin E6 for Breast Tumor Ablation Based on Photodynamic Therapy. Colloids Surf. B Biointerfaces 2018, 171, 123–133. [Google Scholar] [CrossRef]
- Byrne, H.; Sockalingum, G.; Stone, N. Raman Spectroscopy: Complement or Competitor. In Biomedical Applications of Synchrotron Infrared Microspectroscopy; Moss, D., Ed.; Royal Society of Chemistry, RCS Analytical Spectroscopy Monographs: Cambridge, UK, 2011; Volume 11, pp. 105–142. [Google Scholar]
- Robert, B. The Electronic Structure, Stereochemistry and Resonance Raman Spectroscopy of Carotenoids. In The Photochemistry of Carotenoids; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; Volume 8, pp. 189–201. [Google Scholar]
- John, N.; George, S. Raman Spectroscopy. In Spectroscopic Methods for Nanomaterials Characterization; Elsevier: Amsterdam, The Netherlands, 2017; pp. 95–127. [Google Scholar] [CrossRef]
- Hassing, S.; Mortensen, O.S. Kramers–Kronig Relations and Resonance Raman Scattering. J. Chem. Phys. 1980, 73, 1078–1083. [Google Scholar] [CrossRef]
- Weesie, R.J.; Merlin, J.C.; Lugtenburg, J.; Britton, G.; Jansen, F.J.H.M.; Cornard, J.P. Semiempirical and Raman Spectroscopic Studies of Carotenoids. Biospectroscopy 1999, 5, 19–33. [Google Scholar] [CrossRef]
- de Oliveira, V.E.; Castro, H.V.; Edwards, H.G.M.; de Oliveira, L.F.C. Carotenes and Carotenoids in Natural Biological Samples: A Raman Spectroscopic Analysis. J. Raman Spectrosc. 2009, 41, 642–650. [Google Scholar] [CrossRef]
- Heraud, P.; Beardall, J.; McNaughton, D.; Wood, B.R. In Vivo Prediction of the Nutrient Status of Individual Microalgal Cells Using Raman Microspectroscopy. FEMS Microbiol. Lett. 2007, 275, 24–30. [Google Scholar] [CrossRef]
- Böttger, U.; de Vera, J.-P.; Fritz, J.; Weber, I.; Hübers, H.-W.; Schulze-Makuch, D. Optimizing the Detection of Carotene in Cyanobacteria in a Martian Regolith Analogue with a Raman Spectrometer for the ExoMars Mission. Planet Space Sci. 2012, 60, 356–362. [Google Scholar] [CrossRef]
- Li, B.; George, E.W.; Rognon, G.T.; Gorusupudi, A.; Ranganathan, A.; Chang, F.-Y.; Shi, L.; Frederick, J.M.; Bernstein, P.S. Imaging Lutein and Zeaxanthin in the Human Retina with Confocal Resonance Raman Microscopy. Proc. Natl. Acad. Sci. USA 2020, 117, 12352–12358. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, H.; Sekimoto, Y.; Tasumi, M.; Okamoto, H.; Sekimoto, Y.; Tasumi, M. Assignment and Anharmonicity Analysis of Overtone and Combination Bands Observed in the Resonance Raman Spectra of Carotenoids. AcSpA 1994, 50, 1467–1473. [Google Scholar] [CrossRef]
- Horiue, H.; Sasaki, M.; Yoshikawa, Y.; Toyofuku, M.; Shigeto, S. Raman Spectroscopic Signatures of Carotenoids and Polyenes Enable Label-Free Visualization of Microbial Distributions within Pink Biofilms. Sci. Rep. 2020, 10, 7704–7710. [Google Scholar] [CrossRef]
- Bhosale, P.; Larson, A.J.; Frederick, J.M.; Southwick, K.; Thulin, C.D.; Bernstein, P.S. Identification and Characterization of a Pi Isoform of Glutathione S-Transferase (GSTP1) as a Zeaxanthin-Binding Protein in the Macula of the Human Eye. J. Biol. Chem. 2004, 279, 49447–49454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Vachali, P.; Frederick, J.M.; Bernstein, P.S. Identification of StARD3 as a Lutein-Binding Protein in the Macula of the Primate Retina. Biochemistry 2011, 50, 2541–2549. [Google Scholar] [CrossRef] [Green Version]
- Casella, M.; Lucotti, A.; Tommasini, M.; Bedoni, M.; Forvi, E.; Gramatica, F.; Zerbi, G. Raman and SERS Recognition of β-Carotene and Haemoglobin Fingerprints in Human Whole Blood. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 915–919. [Google Scholar] [CrossRef]
- Ullah, R.; Khan, S.; Farman, F.; Bilal, M.; Krafft, C.; Shahzad, S. Demonstrating the Application of Raman Spectroscopy Together with Chemometric Technique for Screening of Asthma Disease. Biomed. Opt. Express 2019, 10, 600. [Google Scholar] [CrossRef]
- Ullah, R.; Khan, S.; Chaudhary, I.I.; Shahzad, S.; Ali, H.; Bilal, M. Cost Effective and Efficient Screening of Tuberculosis Disease with Raman Spectroscopy and Machine Learning Algorithms. Photodiagnosis. Photodyn. Ther. 2020, 32, 101963. [Google Scholar] [CrossRef]
- Khan, S.; Ullah, R.; Shahzad, S.; Anbreen, N.; Bilal, M.; Khan, A. Analysis of Tuberculosis Disease through Raman Spectroscopy and Machine Learning. Photodiagnosis. Photodyn. Ther. 2018, 24, 286–291. [Google Scholar] [CrossRef]
- Khan, S.; Ullah, R.; Javaid, S.; Shahzad, S.; Ali, H.; Bilal, M.; Saleem, M.; Ahmed, M. Raman Spectroscopy Combined with Principal Component Analysis for Screening Nasopharyngeal Cancer in Human Blood Sera. Appl. Spectrosc. 2017, 71, 2497–2503. [Google Scholar] [CrossRef] [PubMed]
- Barkur, S.; Bankapur, A.; Chidangil, S.; Mathur, D. Effect of Infrared Light on Live Blood Cells: Role of β-Carotene. J. Photochem. Photobiol. B 2017, 171, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2007, 42, 493–541. [Google Scholar] [CrossRef]
- Bonnier, F.; Byrne, H.J. Understanding the Molecular Information Contained in Principal Component Analysis of Vibrational Spectra of Biological Systems. Analyst 2012, 137, 322–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uriarte, L.M.; Bonales, L.J.; Dubessy, J.; Lobato, A.; Baonza, V.G.; Cáceres, M. The Self-Absorption Phenomenon in Quantitative Raman Spectroscopy and How to Correct Its Effects. Microchem. J. 2018, 139, 134–138. [Google Scholar] [CrossRef]
- Darvin, M.E.; Meinke, M.C.; Sterry, W.; Lademann, J.M. Optical Methods for Noninvasive Determination of Carotenoids in Human and Animal Skin. J. Biomed. Opt. 2013, 18, 061230. [Google Scholar] [CrossRef]
- Zia-Ul-Haq, M.; Riaz, M.; Modhi, A.O. Carotenoids and Bone Health. In Carotenoids: Structure and Function in the Human Body; Springer: Cham, Switzerland, 2021; pp. 697–713. [Google Scholar] [CrossRef]
- Ermakov, I.V.; Ermakova, M.R.; Rosenberg, T.D.; Gellermann, W. Optical Detection of Carotenoid Antioxidants in Human Bone and Surrounding Tissue. J. Biomed. Opt. 2013, 18, 117006. [Google Scholar] [CrossRef]
- Hashimoto, A.; Yamaguchi, Y.; Chiu, L.; Morimoto, C.; Fujita, K.; Takedachi, M.; Kawata, S.; Murakami, S.; Tamiya, E. Time-Lapse Raman Imaging of Osteoblast Differentiation. Sci. Rep. 2015, 5, 12529. [Google Scholar] [CrossRef] [Green Version]
- Hsu, T.H.-S.; Lin, S.-Y.; Lin, C.-C.; Cheng, W.-T.; Li, M.-J. Spectral Diagnosis and Analysis of a Superior Vesical Artery Calcification. Urol. Res. 2009, 37, 253–256. [Google Scholar] [CrossRef]
- Buschman, H.P.; Deinum, G.; Motz, J.T.; Fitzmaurice, M.; Kramer, J.R.; van der Laarse, A.; Bruschke, A.V.; Feld, M.S. Raman Microspectroscopy of Human Coronary Atherosclerosis: Biochemical Assessment of Cellular and Extracellular Morphologic Structures In Situ. Cardiovasc. Pathol. 2001, 10, 69–82. [Google Scholar] [CrossRef]
- Bec, J.; Shaik, T.A.; Krafft, C.; Bocklitz, T.W.; Alfonso-Garcia, A.; Margulies, K.B.; Popp, J.; Marcu, L. Investigating Origins of FLIm Contrast in Atherosclerotic Lesions Using Combined FLIm-Raman Spectroscopy. Front. Cardiovasc. Med. 2020, 7, 122. [Google Scholar] [CrossRef] [PubMed]
- Sć;epanović, O.R.; Fitzmaurice, M.; Miller, A.; Kong, C.-R.; Volynskaya, Z.; Dasari, R.R.; Kramer, J.R.; Feld, M.S. Multimodal Spectroscopy Detects Features of Vulnerable Atherosclerotic Plaque. J. Biomed. Opt. 2011, 16, 011009. [Google Scholar] [CrossRef] [PubMed]
- You, A.Y.F.; Bergholt, M.S.; St-Pierre, J.-P.; Kit-Anan, W.; Pence, I.J.; Chester, A.H.; Yacoub, M.H.; Bertazzo, S.; Stevens, M.M. Raman Spectroscopy Imaging Reveals Interplay between Atherosclerosis and Medial Calcification in the Human Aorta. Sci. Adv. 2017, 3, e1701156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeng, M.-J.; Sharma, M.; Sharma, L.; Chao, T.-Y.; Huang, S.-F.; Chang, L.-B.; Wu, S.-L.; Chow, L. Raman Spectroscopy Analysis for Optical Diagnosis of Oral Cancer Detection. J. Clin. Med. 2019, 8, 1313. [Google Scholar] [CrossRef]
- Shafer-Peltier, K.E.; Haka, A.S.; Fitzmaurice, M.; Crowe, J.; Myles, J.; Dasari, R.R.; Feld, M.S. Raman Microspectroscopic Model of Human Breast Tissue: Implications for Breast Cancer Diagnosisin Vivo. J. Raman Spectrosc. 2002, 33, 552–563. [Google Scholar] [CrossRef]
- Zheng, C.; Jia, H.Y.; Liu, L.Y.; Wang, Q.; Jiang, H.C.; Teng, L.S.; Geng, C.Z.; Jin, F.; Tang, L.L.; Zhang, J.G.; et al. Molecular Fingerprint of Precancerous Lesions in Breast Atypical Hyperplasia. J. Int. Med. Res. 2020, 48, 030006052093161. [Google Scholar] [CrossRef]
- Camerlingo, C.; d’Apuzzo, F.; Grassia, V.; Perillo, L.; Lepore, M. Micro-Raman Spectroscopy for Monitoring Changes in Periodontal Ligaments and Gingival Crevicular Fluid. Sensors 2014, 14, 22552–22563. [Google Scholar] [CrossRef] [Green Version]
- Darvin, M.E.; Gersonde, I.; Albrecht, H.; Sterry, W.; Lademann, J. In Vivo Raman Spectroscopic Analysis of the Influence of UV Radiation on Carotenoid Antioxidant Substance Degradation of the Human Skin. Laser Phys. 2006, 16, 833–837. [Google Scholar] [CrossRef]
- Darvin, M.E.; Sterry, W.; Lademann, J.; Vergou, T. The Role of Carotenoids in Human Skin. Molecules 2011, 16, 10491–10506. [Google Scholar] [CrossRef]
- Ermakov, I.V.; Sharifzadeh, M.; Ermakova, M.; Gellermann, W. Resonance Raman Detection of Carotenoid Antioxidants in Living Human Tissue. J. Biomed. Opt. 2005, 10, 064028. [Google Scholar] [CrossRef]
- Stahl, W.; Heinrich, U.; Wiseman, S.; Eichler, O.; Sies, H.; Tronnier, H. Dietary Tomato Paste Protects against Ultraviolet Light–Induced Erythema in Humans. J. Nutr. 2001, 131, 1449–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, A.R.; Sheehan, J.M.; Chadwick, C.A.; Potten, C.S. Protection by Ultraviolet A and B Sunscreens against In Situ Dipyrimidine Photolesions in Human Epidermis Is Comparable to Protection against Sunburn. J. Investig. Dermatol. 2000, 115, 37–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahns, L.; Johnson, L.K.; Mayne, S.T.; Cartmel, B.; Picklo, M.J., Sr.; Ermakov, I.V.; Gellermann, W.; Whigham, L.D. Skin and Plasma Carotenoid Response to a Provided Intervention Diet High in Vegetables and Fruit: Uptake and Depletion Kinetics 1-5. Am. J. Clin. Nutr. 2014, 100, 930–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greul, A.K.; Grundmann, J.U.; Heinrich, F.; Pfitzner, I.; Bernhardt, J.; Ambach, A.; Biesalski, H.K.; Gollnick, H. Photoprotection of UV-Irradiated Human Skin: An Antioxidative Combination of Vitamins E and C, Carotenoids, Selenium and Proanthocyanidins. Skin Pharmacol. Appl. Skin Physiol. 2002, 15, 307–315. [Google Scholar] [CrossRef]
- Palombo, P.; Fabrizi, G.; Ruocco, V.; Ruocco, E.; Fluhr, J.; Roberts, R.; Morganti, P. Beneficial Long-Term Effects of Combined Oral/Topical Antioxidant Treatment with the Carotenoids Lutein and Zeaxanthin on Human Skin: A Double-Blind, Placebo-Controlled Study. Skin Pharmacol. Physiol. 2007, 20, 199–210. [Google Scholar] [CrossRef]
- Ermakov, I.V.; Gellermann, W. Optical Detection Methods for Carotenoids in Human Skin. Arch. Biochem. Biophys. 2015, 572, 101–111. [Google Scholar] [CrossRef]
- Ermakov, I.V.; Ermakova, M.; Sharifzadeh, M.; Gorusupudi, A.; Farnsworth, K.; Bernstein, P.S.; Stookey, J.; Evans, J.; Arana, T.; Tao-Lew, L.; et al. Optical Assessment of Skin Carotenoid Status as a Biomarker of Vegetable and Fruit Intake. Arch. Biochem. Biophys. 2018, 646, 46–54. [Google Scholar] [CrossRef]
- Mayne, S.T.; Cartmel, B.; Scarmo, S.; Lin, H.; Leffell, D.J.; Welch, E.; Ermakov, I.; Bhosale, P.; Bernstein, P.S.; Gellermann, W. Noninvasive Assessment of Dermal Carotenoids as a Biomarker of Fruit and Vegetable Intake. Am. J. Clin. Nutr. 2010, 92, 794–800. [Google Scholar] [CrossRef] [Green Version]
- Ermakov, I.; Ermakova, M.; Gellermann, W.; Bernstein, P.S. Macular Pigment Raman Detector for Clinical Applications. J. Biomed. Opt. 2004, 9, 139. [Google Scholar] [CrossRef]
- Darvin, M.E.; Gersonde, I.; Albrecht, H.; Meinke, M.; Sterry, W.; Lademann, J. Non-Invasive in Vivo Detection of the Carotenoid Antioxidant Substance Lycopene in the Human Skin Using the Resonance Raman Spectroscopy. Laser Phys. Lett. 2006, 3, 460–463. [Google Scholar] [CrossRef]
- Narayanamurthy, V.; Padmapriya, P.; Noorasafrin, A.; Pooja, B.; Hema, K.; Al’aina Yuhainis, C.; Khan, F.; Nithyakalyani, K.; Samsuri, F. Skin Cancer Detection Using Non-Invasive Techniques. RSC Adv. 2018, 8, 28095–28130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darvin, M.E.; Gersonde, I.; Meinke, M.; Sterry, W.; Lademann, J. Non-Invasive in Vivo Determination of the Carotenoids Beta-Carotene and Lycopene Concentrations in the Human Skin Using the Raman Spectroscopic Method. J. Phys. D Appl. Phys. 2005, 38, 2696–2700. [Google Scholar] [CrossRef]
- Lademann, J.; Caspers, P.J.; van der Pol, A.; Richter, H.; Patzelt, A.; Zastrow, L.; Darvin, M.; Sterry, W.; Fluhr, J.W. In Vivo Raman Spectroscopy Detects Increased Epidermal Antioxidative Potential with Topically Applied Carotenoids. Laser Phys. Lett. 2009, 6, 76–79. [Google Scholar] [CrossRef]
- Caspers, P.J.; Lucassen, G.W.; Carter, E.A.; Bruining, H.A.; Puppels, G.J. In Vivo Confocal Raman Microspectroscopy of the Skin: Noninvasive Determination of Molecular Concentration Profiles. J. Investig. Dermatol. 2001, 116, 434–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caspers, P.J.; Lucassen, G.W.; Puppels, G.J. Combined in Vivo Confocal Raman Spectroscopy and Confocal Microscopy of Human Skin. Biophys. J. 2003, 85, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Werncke, W.; Latka, I.; Sassning, S.; Dietzek, B.; Darvin, M.E.; Meinke, M.C.; Popp, J.; König, K.; Fluhr, J.W.; Lademann, J. Two-Color Raman Spectroscopy for the Simultaneous Detection of Chemotherapeutics and Antioxidative Status of Human Skin. Laser Phys. Lett. 2011, 8, 895–900. [Google Scholar] [CrossRef]
- Darvin, M.E.; Haag, S.F.; Meinke, M.C.; Sterry, W.; Lademann, J. Determination of the Influence of IR Radiation on the Antioxidative Network of the Human Skin. J. Biophotonics. 2011, 4, 21–29. [Google Scholar] [CrossRef]
- Darvin, M.E.; Fluhr, J.W.; Meinke, M.C.; Zastrow, L.; Sterry, W.; Lademann, J. Topical Beta-Carotene Protects against Infra-Red-Light-Induced Free Radicals. Exp. Dermatol. 2011, 20, 125–129. [Google Scholar] [CrossRef]
- Joshipura, K.J.; Hu, F.B.; Manson, J.E.; Stampfer, M.J.; Rimm, E.B.; Speizer, F.E.; Colditz, G.; Ascherio, A.; Rosner, B.; Spiegelman, D.; et al. The Effect of Fruit and Vegetable Intake on Risk for Coronary Heart Disease. Ann. Intern. Med. 2001, 134, 1106–1114. [Google Scholar] [CrossRef]
- Lindenauer, P.; Rastegar, D.A.; von Goeler, D. Fruit and Vegetable Intake and Coronary Heart Disease. Ann. Intern. Med. 2002, 137, 144. [Google Scholar] [CrossRef] [Green Version]
- Bellavia, A.; Larsson, S.C.; Bottai, M.; Wolk, A.; Orsini, N. Fruit and Vegetable Consumption and All-Cause Mortality: A Dose-Response Analysis. Am. J. Clin. Nutr. 2013, 98, 454–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darvin, M.E.; Patzelt, A.; Knorr, F.; Blume-Peytavi, U.; Sterry, W.; Lademann, J. One-Year Study on the Variation of Carotenoid Antioxidant Substances in Living Human Skin: Influence of Dietary Supplementation and Stress Factors. J. Biomed. Opt. 2008, 13, 044028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesterberg, K.; Lademann, J.M.; Patzelt, A.; Sterry, W.; Darvin, M.E. Raman Spectroscopic Analysis of the Increase of the Carotenoid Antioxidant Concentration in Human Skin after a 1-Week Diet with Ecological Eggs. J. Biomed. Opt. 2009, 14, 024039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, S.S.; Wengreen, H.J.; Lefevre, M.; Madden, G.J.; Gast, J. Skin Carotenoids: A Biomarker of Fruit and Vegetable Intake in Children. J. Acad. Nutr. Diet 2014, 114, 1174–1180. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.M.; Scherr, R.E.; Linnell, J.D.; Ermakov, I.V.; Gellermann, W.; Jahns, L.; Keen, C.L.; Miyamoto, S.; Steinberg, F.M.; Young, H.M.; et al. Evaluating the Relationship between Plasma and Skin Carotenoids and Reported Dietary Intake in Elementary School Children to Assess Fruit and Vegetable Intake. Arch. Biochem. Biophys. 2015, 572, 73–80. [Google Scholar] [CrossRef]
- Scarmo, S.; Henebery, K.; Peracchio, H.; Cartmel, B.; Lin, H.; Ermakov, I.V.; Gellermann, W.; Bernstein, P.S.; Duffy, V.B.; Mayne, S.T. Skin Carotenoid Status Measured by Resonance Raman Spectroscopy as a Biomarker of Fruit and Vegetable Intake in Preschool Children. Eur. J. Clin. Nutr. 2012, 66, 555–560. [Google Scholar] [CrossRef] [Green Version]
- Blume-Peytavi, U.; Rolland, A.; Darvin, M.E.; Constable, A.; Pineau, I.; Voit, C.; Zappel, K.; Schäfer-Hesterberg, G.; Meinke, M.; Clavez, R.L.; et al. Cutaneous Lycopene and β-Carotene Levels Measured by Resonance Raman Spectroscopy: High Reliability and Sensitivity to Oral Lactolycopene Deprivation and Supplementation. Eur. J. Pharm. Biopharm. 2009, 73, 187–194. [Google Scholar] [CrossRef]
- Meinke, M.C.; Lauer, A.; Taskoparan, B.; Gersonde, I.; Lademann, J.; Darvin, M.E. Influence on the Carotenoid Levels of Skin Arising from Age, Gender, Body Mass Index in Smoking/Non-Smoking Individuals. Free Radic. Antioxid. 2011, 1, 15–20. [Google Scholar] [CrossRef] [Green Version]
- van der Vliet, A. Cigarettes, Cancer, and Carotenoids: A Continuing, Unresolved Antioxidant Paradox. Am. J. Clin. Nutr. 2000, 72, 1421–1423. [Google Scholar] [CrossRef]
- Hammond, B.R.; Wooten, B.R.; Snodderly, D.M. Cigarette Smoking and Retinal Carotenoids: Implications for Age-Related Macular Degeneration. Vision Res. 1996, 36, 3003–3009. [Google Scholar] [CrossRef] [Green Version]
- Rerksuppaphol, S.; Rerksuppaphol, L. Effect of Fruit and Vegetable Intake on Skin Carotenoid Detected by Non-Invasive Raman Spectroscopy. J. Med. Assoc. Thail. 2006, 89, 1206–1212. [Google Scholar]
- Haag, S.F.; Taskoparan, B.; Darvin, M.E.; Groth, N.; Lademann, J.; Sterry, W.; Meinke, M.C. Determination of the Antioxidative Capacity of the Skin in Vivo Using Resonance Raman and Electron Paramagnetic Resonance Spectroscopy. Exp. Dermatol. 2011, 20, 483–487. [Google Scholar] [CrossRef]
- Leung, W.C.; Hessel, S.; Méplan, C.; Flint, J.; Oberhauser, V.; Tourniaire, F.; Hesketh, J.E.; Lintig, J.; Lietz, G. Two Common Single Nucleotide Polymorphisms in the Gene Encoding Β-carotene 15,15′-monoxygenase Alter Β-carotene Metabolism in Female Volunteers. FASEB J. 2009, 23, 1041–1053. [Google Scholar] [CrossRef]
- Ferrucci, L.; Perry, J.R.B.; Matteini, A.; Perola, M.; Tanaka, T.; Silander, K.; Rice, N.; Melzer, D.; Murray, A.; Cluett, C.; et al. Common Variation in the β-Carotene 15,15′-Monooxygenase 1 Gene Affects Circulating Levels of Carotenoids: A Genome-Wide Association Study. Am. J. Hum. Genet. 2009, 84, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.S.; Lott, M.N.; Marcus, D.M. The Macular Xanthophylls. Surv. Ophthalmol. 2005, 50, 183–193. [Google Scholar] [CrossRef]
- Lombardo, M.; Serrao, S.; Lombardo, G. Challenges in Age-Related Macular Degeneration: From Risk Factors to Novel Diagnostics and Prevention Strategies. Front. Med. (Lausanne) 2022, 9, 1377. [Google Scholar] [CrossRef]
- Putnam, C.M. Clinical Imaging of Macular Pigment Optical Density and Spatial Distribution. Clin. Exp. Optom. 2017, 100, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Gellermann, W.; Bernstein, P.S. Noninvasive Detection of Macular Pigments in the Human Eye. J. Biomed. Opt. 2004, 9, 75. [Google Scholar] [CrossRef]
- Bhosale, P.; Ermakov, I.V.; Ermakova, M.R.; Gellermann, W.; Bernstein, P.S. Resonance Raman Quantification of Nutritionally Important Carotenoids in Fruits, Vegetables, and Their Juices in Comparison to High-Pressure Liquid Chromatography Analysis. J. Agric. Food Chem. 2004, 52, 3281–3285. [Google Scholar] [CrossRef]
- Bernstein, P.S.; Yoshida, M.D.; Katz, N.B.; McClane, R.W.; Gellermann, W. Raman Detection of Macular Carotenoid Pigments in Intact Human Retina. Investig. Ophthalmol. Vis. Sci. 1998, 39, 2003–2011. [Google Scholar]
- Bernstein, P.S. New Insights into the Role of the Macular Carotenoids in Age-Related Macular Degeneration. Resonance Raman Studies. Pure Appl. Chem. 2002, 74, 1419–1425. [Google Scholar] [CrossRef]
- Martus, P.; Stroux, A.; Budde, W.M.; Mardin, C.Y.; Korth, M.; Jonas, J.B. Predictive Factors for Progressive Optic Nerve Damage in Various Types of Chronic Open-Angle Glaucoma. Am. J. Ophthalmol. 2005, 139, 999–1009. [Google Scholar] [CrossRef]
- Britton, G. Carotenoids. In Natural Food Colorants; Springer: Boston, MA, USA, 1996; pp. 197–243. [Google Scholar]
- Bernstein, P.S.; Zhao, D.Y.; Sharifzadeh, M.; Ermakov, I.V.; Gellermann, W. Resonance Raman Measurement of Macular Carotenoids in the Living Human Eye. Arch. Biochem. Biophys. 2004, 430, 163–169. [Google Scholar] [CrossRef]
- Neelam, K.; O’Gorman, N.; Nolan, J.; O’Donovan, O.; Wong, H.B.; Eong, K.G.A.; Beatty, S. Measurement of Macular Pigment: Raman Spectroscopy versus Heterochromatic Flicker Photometry. Investig. Opthalmol. Vis. Sci. 2005, 46, 1023. [Google Scholar] [CrossRef]
- Gellermann, W.; Ermakov, I.V.; McClane, R.W.; Bernstein, P.S. Raman Imaging of Human Macular Pigments. Opt. Lett. 2002, 27, 833. [Google Scholar] [CrossRef]
- Sharifzadeh, M.; Zhao, D.-Y.; Bernstein, P.S.; Gellermann, W. Resonance Raman Imaging of Macular Pigment Distributions in the Human Retina. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2008, 25, 947. [Google Scholar] [CrossRef] [Green Version]
- Sharifzadeh, M.; Zhao, D.Y.; Bernstein, P.S.; Gellermann, W. In Vitro Raman Imaging of Macular Pigments in Human Donor Eyes. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1779. [Google Scholar]
- Ermakov, I.V.; Bernstein, P.S.; McClane, R.W.; Gellermann, W. Resonant Raman Detection of Macular Pigment Levels in the Living Human Retina. Opt. Lett. 2001, 26, 202–204. [Google Scholar] [CrossRef]
- Rekha, P.; Aruna, P.; Bharanidharan, G.; Koteeswaran, D.; Baludavid, M.; Ganesan, S. Near Infrared Raman Spectroscopic Characterization of Blood Plasma of Normal, Oral Premalignant and Malignant Conditions—A Pilot Study. J. Raman Spectrosc. 2015, 46, 735–743. [Google Scholar] [CrossRef]
- Huang, Y.M.; Yan, S.F.; Ma, L.; Zou, Z.Y.; Xu, X.R.; Dou, H.L.; Lin, X.M. Serum and Macular Responses to Multiple Xanthophyll Supplements in Patients with Early Age-Related Macular Degeneration. Nutrition 2013, 29, 387–392. [Google Scholar] [CrossRef]
- Bernstein, P.S.; Zhao, D.-Y.; Wintch, S.W.; Ermakov, I.V.; Mcclane, R.W.; Gellermann, W. Resonance Raman Measurement of Macular Carotenoids in Normal Subjects and in Age-Related Macular Degeneration Patients. Ophthalmology 2002, 109, 1780–1787. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.Y.; Wintch, S.W.; Ermakov, I.V.; Gellermann, W.; Bernstein, P.S. Resonance Raman Measurement of Macular Carotenoids in Retinal, Choroidal, and Macular Dystrophies. Arch. Ophthalmol. 2003, 121, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Byrne, H.J.; Bonnier, F.; McIntyre, J.; Parachalil, D.R. Quantitative Analysis of Human Blood Serum Using Vibrational Spectroscopy. Clin. Spectrosc. 2020, 2, 100004. [Google Scholar] [CrossRef]
- Parachalil, D.R.; McIntyre, J.; Byrne, H.J. Potential of Raman Spectroscopy for the Analysis of Plasma/Serum in the Liquid State: Recent Advances. Anal. Bioanal. Chem. 2020, 412, 1993–2007. [Google Scholar] [CrossRef] [Green Version]
- Aune, D.; Doris, S.M.; Chan, A.R.; Vieira, D.A.; Rosenblatt, N.; Vieira, R.; Greenwood, D.C.; Norat, T. Dietary Compared with Blood Concentrations of Carotenoids and Breast Cancer Risk: A Systematic Review and Meta-Analysis of Prospective Studies. Am. J. Clin. Nutr. 2012, 96, 96–373. [Google Scholar] [CrossRef] [Green Version]
- Ramanauskaite, R.B.; Segers-Nolten, I.G.M.J.; de Grauw, K.J.; Sijtsema, N.M.; van der Maas, L.; Greve, J.; Otto, C.; Figdor, C.G. Carotenoid Levels in Human Lymphocytes, Measured by Raman Microspectroscopy. Pure Appl. Chem. 1997, 69, 2131–2134. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, L.B. The Immune System. Essays Biochem. 2016, 60, 275–301. [Google Scholar] [CrossRef] [Green Version]
- Sahu, A.K.; Dhoot, S.; Singh, A.; Sawant, S.S.; Nandakumar, N.; Talathi-Desai, S.; Garud, M.; Pagare, S.; Srivastava, S.; Nair, S.; et al. Oral Cancer Screening: Serum Raman Spectroscopic Approach. J. Biomed. Opt. 2015, 20, 115006. [Google Scholar] [CrossRef]
- Li, X.; Chen, H.; Zhang, S.; Yang, H.; Gao, S.; Xu, H.; Wang, L.; Xu, R.; Zhou, F.; Hu, J.; et al. Blood Plasma Resonance Raman Spectroscopy Combined with Multivariate Analysis for Esophageal Cancer Detection. J. Biophotonics 2021, 14. [Google Scholar] [CrossRef]
- Li, P.; Chen, C.; Deng, X.; Mao, H.; Jin, S. Drop Coating Deposition Raman Spectroscopy of Blood Plasma for the Detection of Colorectal Cancer. J. Biomed. Opt. 2015, 20, 037004. [Google Scholar] [CrossRef]
- Li, X.; Yang, T.; Li, S. Discrimination of Serum Raman Spectroscopy between Normal and Colorectal Cancer Using Selected Parameters and Regression-Discriminant Analysis. Appl. Opt. 2012, 51, 5038. [Google Scholar] [CrossRef] [PubMed]
- González-Solís, J.L.; Martínez-Espinosa, J.C.; Salgado-Román, J.M.; Palomares-Anda, P. Monitoring of Chemotherapy Leukemia Treatment Using Raman Spectroscopy and Principal Component Analysis. Lasers Med. Sci. 2014, 29, 1241–1249. [Google Scholar] [CrossRef]
- Zheng, X.; Yin, L.; Lv, G.; Lv, X.; Chen, C.; Wu, G. Serum Log-Transformed Raman Spectroscopy Combined with Multivariate Analysis for the Detection of Echinococcosis. Optik 2021, 226, 165687. [Google Scholar] [CrossRef]
- Lü, G.; Zheng, X.; Lü, X.; Chen, P.; Wu, G.; Wen, H. Label-Free Detection of Echinococcosis and Liver Cirrhosis Based on Serum Raman Spectroscopy Combined with Multivariate Analysis. Photodiagnosis. Photodyn. Ther. 2021, 33, 102164. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Sawant, S.; Mamgain, H.; Krishna, C.M. Raman Spectroscopy of Serum: An Exploratory Study for Detection of Oral Cancers. Analyst 2013, 138, 4161. [Google Scholar] [CrossRef] [PubMed]
- Conrady, C.D.; Bell, J.P.; Besch, B.M.; Gorusupudi, A.; Farnsworth, K.; Ermakov, I.; Sharifzadeh, M.; Ermakova, M.; Gellermann, W.; Bernstein, P.S. Correlations Between Macular, Skin, and Serum Carotenoids. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3616–3627. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, B.S.; Chan, G.; Hoffman, R.O.; Sharifzadeh, M.; Ermakov, I.V.; Gellermann, W.; Bernstein, P.S. Interrelationships Between Maternal Carotenoid Status and Newborn Infant Macular Pigment Optical Density and Carotenoid Status. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5568–5578. [Google Scholar] [CrossRef]
- Bernstein, P.S.; Sharifzadeh, M.; Liu, A.; Ermakov, I.; Nelson, K.; Sheng, X.; Panish, C.; Carlstrom, B.; Hoffman, R.O.; Gellermann, W. Blue-Light Reflectance Imaging of Macular Pigment in Infants and Children. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4034–4040. [Google Scholar] [CrossRef] [Green Version]
- Ermakov, I.V.; Ermakova, M.R.; Bernstein, P.S.; Chan, G.M.; Gellermann, W. Resonance Raman Based Skin Carotenoid Measurements in Newborns and Infants. J. Biophotonics 2013, 6, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, M.; Nakamura, M.; Ogawa, K.; Ikoma, Y.; Ando, F.; Yano, M. Bone Mineral Density in Post-Menopausal Female Subjects Is Associated with Serum Antioxidant Carotenoids. Osteoporos. Int. 2007, 19, 211–219. [Google Scholar] [CrossRef]
- Sahni, S.; Hannan, M.T.; Blumberg, J.; Cupples, L.A.; Kiel, D.P.; Tucker, K.L. Protective Effect of Total Carotenoid and Lycopene Intake on the Risk of Hip Fracture: A 17-Year Follow-Up from the Framingham Osteoporosis Study. J. Bone Miner. Res. 2009, 24, 1086. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Ahmed, F.; Bernstein, P.S. Studies on the Singlet Oxygen Scavenging Mechanism of Human Macular Pigment. Arch. Biochem. Biophys. 2010, 504, 56. [Google Scholar] [CrossRef] [PubMed]
- Raman Scattering Spectroscopy to Measure Macular Pigment-Full Text View-ClinicalTrials. Available online: https://clinicaltrials.gov/ct2/show/NCT00060580 (accessed on 10 October 2022).
Carotenoid | Concentration (μmol/L) | |
---|---|---|
Lycopene | 0.62 ± 0.01 | n = 56 studies |
Beta Carotene | 0.47 ± 0.01 | n = 78 studies |
Lutein/Zeaxanthin | 0.31 ± 0.01 | n = 31 studies |
Cryptoxanthin | 0.17 ± 0.01 | n = 44 studies |
Beta Carotene | 0.12 ± 0.01 | n = 53 studies |
Carotenoid | Skin Source | |||
---|---|---|---|---|
1 | 2 | 3 | Mean | |
Lycopene and Z-isomers | 105 | 9 | 93 | 69 |
Carotenes (α, β, γ, ξ) | 96 | 8 | 55 | 53 |
Lutein and Zeaxanthin | 26 | ND | ND | 9 |
Phytoene and Phytofluene | 113 | 51 | 74 | 79 |
Total | 340 | 68 | 222 | 210 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udensi, J.; Loughman, J.; Loskutova, E.; Byrne, H.J. Raman Spectroscopy of Carotenoid Compounds for Clinical Applications—A Review. Molecules 2022, 27, 9017. https://doi.org/10.3390/molecules27249017
Udensi J, Loughman J, Loskutova E, Byrne HJ. Raman Spectroscopy of Carotenoid Compounds for Clinical Applications—A Review. Molecules. 2022; 27(24):9017. https://doi.org/10.3390/molecules27249017
Chicago/Turabian StyleUdensi, Joy, James Loughman, Ekaterina Loskutova, and Hugh J. Byrne. 2022. "Raman Spectroscopy of Carotenoid Compounds for Clinical Applications—A Review" Molecules 27, no. 24: 9017. https://doi.org/10.3390/molecules27249017
APA StyleUdensi, J., Loughman, J., Loskutova, E., & Byrne, H. J. (2022). Raman Spectroscopy of Carotenoid Compounds for Clinical Applications—A Review. Molecules, 27(24), 9017. https://doi.org/10.3390/molecules27249017