Ranolazine Interacts Antagonistically with Some Classical Antiepileptic Drugs—An Isobolographic Analysis
Abstract
:1. Introduction
2. Results
2.1. Interactions between Ranolazine and Classical Antiepileptic Drugs in Maximal-Electroshock-Induced Seizures in Mice—An Isobolographic Analysis
2.2. Effect of Ranolazine, Antiepileptic Drugs, and Combinations of Ranolazine with Antiepileptic Drugs on Motor Coordination in Mice
2.3. Influence of Ranolazine on the Brain Concentrations of Antiepileptic Drugs
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Drugs
4.3. Maximal Electroshock Seizure Test
4.4. Isobolographic Analysis
4.5. Chimney Test
4.6. Measurement of Brain Concentrations of Antiepileptic Drugs
4.7. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fragakis, N.; Koskinas, K.C.; Vassilikos, V. Ranolazine as a promising treatment option for atrial fibrillation: Electrophysiologic mechanisms, experimental evidence, and clinical implications. Pacing Clin. Electrophysiol. 2014, 37, 1412–1420. [Google Scholar] [CrossRef] [PubMed]
- Borowicz-Reutt, K.K. Effects of antiarrhythmic drugs on antiepileptic drug action—A critical review of experimental findings. Int. J. Mol. Sci. 2022, 23, 2891. [Google Scholar] [CrossRef] [PubMed]
- Uran, C. Through the heart and beyond: A review on ranolazine. Monaldi Arch. Chest Dis. 2021, 92, 1806. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekhar, S.; Hamasaki, A.C.; Clay, R.; McCalley, A.; Herbelin, R.; Pasnoor, M.; Jawdat, O.; Dimachkie, M.M.; Baronh, R.J.; Statland, J. Open-label pilot study of ranolazine for cramps in amyotrophic lateral sclerosis. Muscle Nerv. 2022, 66, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Rouhana, S.; Virsolvy, A.; Fares, N.; Richard, S.; Thireau, J. Ranolazine: An old drug with emerging potential; lessons from pre-clinical and clinical investigations for possible repositioning. Pharmaceuticals 2022, 15, 31. [Google Scholar] [CrossRef] [PubMed]
- Lenz, M.; Salzmann, M.; Ciotu, C.I.; Kaun, C.; Krychtiuk, K.A.; Rehberger Likozar, A.; Sebestjen, S.; Goederle, L.; Rauscher, S.; Krivaja, Z.; et al. Pharmacologic modulation of intracellular Na+ concentration with ranolazine impacts inflammatory response in humans and mice. Proc. Natl. Acad. Sci. USA 2022, 119, e2207020119. [Google Scholar] [CrossRef] [PubMed]
- Kahlig, K.M.; Lepist, I.; Leung, K.; Rajamani, S.; George, A.L., Jr. Ranolazine selectively blocks persistent current evoked by epilepsy-associated NaV1.1 mutations. Brit. J. Pharmacol. 2010, 161, 1414–1426. [Google Scholar] [CrossRef] [Green Version]
- Kahlig, K.M.; Hirakawa, R.; Liu, L.; George, A.L.; Belardinelli, L.; Rajamani, S. Ranolazine reduces neuronal excitability by interacting with inactivated states of brain sodium channels. Mol. Pharmacol. 2014, 85, 162–174. [Google Scholar] [CrossRef] [Green Version]
- Anderson, L.L.; Thompson, C.H.; Hawkins, N.A.; Nath, R.D.; Petersohn, A.A.; Rajamani, S.; Bush, W.S.; Frankel, W.L.; Vanoye, C.G.; Kearney, J.A.; et al. Antiepileptic activity of preferential inhibitors of persistent sodium current. Epilepsia 2014, 55, 1274–1283. [Google Scholar] [CrossRef] [Green Version]
- Castel-Branco, M.M.; Alves, G.L.; Figueiredo, I.V.; Falcão, A.C.; Caramona, M.M. The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drug. Methods Find. Exp. Clin. Pharmacol. 2009, 31, 101–106. [Google Scholar] [CrossRef]
- Du, J.; Vegh, V.; Reutens, D.C. Persistent sodium current blockers can suppress seizures caused by loss of low-threshold D-type potassium currents: Predictions from an in silico study of Kv1 channel disorders. Epilepsia Open 2020, 5, 86–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurer-Morelli, C.V.; Marchesini, R.B.; Secolin, R.; Santos, N.F.; Kobayashi, E.; Cendes, F.; Lopes-Cendes, I. Linkage study of voltage-gated potassium channels in familial mesial temporal lobe epilepsy. Arq. Neuropsiquiatr. 2007, 65, 20–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicita, F.; Spalice, A.; Raucci, U.; Iannetti, P.; Parisi, P. The possible use of the L-type calcium channel antagonist verapamil in drug-resistant epilepsy. Expert Rev. Neurother. 2016, 16, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.; Grecksch, G.; Rüthrich, H.; Krug, M. Effects of nicardipine, an antagonist of L-type voltage-dependent calcium channels, on kindling development, kindling-induced learning deficits and hippocampal potentiation phenomena. Neuropharmacology 1999, 38, 1841–1850. [Google Scholar] [CrossRef] [PubMed]
- Sathyanarayana Rao, K.N.; Subbalakshmi, N.K. An experimental study of the anticonvulsant effect of amlodipine in mice. Singap. Med. J. 2010, 51, 424–428. [Google Scholar]
- Kułak, W.; Sobaniec, W.; Wojtal, K.; Czuczwar, S.J. Calcium modulation in epilepsy. Pol. J. Pharmacol. 2004, 56, 29–41. [Google Scholar]
- Virág, L.; Iost, N.; Opincariu, M.; Szolnoky, J.; Szécsi, J.; Bogáts, G.; Szenohradszky, P.; Varró, A.; Papp, J.G. The slow component of the delayed rectifier potassium current in undiseased hyman ventricle myocytes. Cardiovasc. Res. 2001, 49, 790–797. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Du, L.; Li, M. Update on the slow delayed rectifier potassium current (I(Ks)): Role in modulating cardiac function. Curr. Med. Chem. 2012, 19, 1405–1420. [Google Scholar] [CrossRef]
- Kinboshi, M.; Ikeda, A.; Ohno, Y. Role of astrocytic inwardly rectifying (Kir) 4.1 channels in epilepsy. Front. Neurol. 2020, 11, 626658. [Google Scholar] [CrossRef]
- Witchel, H.J.; Hancox, J.C. Familial and acquired long qt syndrome and the cardiac rapid delayed rectifier potassium current. Clin. Exp. Pharmacol. Physiol. 2000, 27, 753–766. [Google Scholar] [CrossRef] [Green Version]
- Danielsson, B.R.; Lansdell, K.; Patmore, L.; Tomson, T. Effects of the antiepileptic drugs lamotrigine, topiramate and gabapentin on hERG potassium currents. Epilepsy Res. 2005, 63, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Zavala-Tecuapetla, C.; Manjarrez-Marmolejo, J.; Ramírez-Jarquín, J.O.; Rivera-Cerecedo, C.V. Eslicarbazepine, but not lamotrigine or ranolazine, shows anticonvulsant efficacy in carbamazepine-resistant rats developed by window-pentylenetetrazole kindling. Brain Sci. 2022, 12, 629. [Google Scholar] [CrossRef] [PubMed]
- Stone, W.E.; Javid, M.J. Anticonvulsive and convulsive effects of lidocaine: Comparion with those of phenytoin, and implication for mechanism of action concepts. Neurol. Res. 1988, 10, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.C.; Huang, C.S.; Kuo, C.C. Lidocaine, carbamazepine, and imipramine have partially overlapping binding sites and additive inhibitory effect on neural Na+ channels. Anesthesiology 2010, 113, 160–174. [Google Scholar] [CrossRef] [Green Version]
- Lingamaneni, R.; Hemmings, H.C., Jr. Differential interaction of anaesthetics and antiepileptic drugs with neuronal Na+ channels, Ca2+ channels and GABA(A) receptors. Br. J. Anaesth. 2003, 90, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Deckers, C.L.; Czuczwar, S.J.; Hekster, Y.A.; Keyser, A.; Kubova, H.; Meinardi, H.; Patsalos, P.N.; Renier, W.O.; Van Rijn, C.M. Selection of antiepileptic drug polytherapy based on mechanisms of action: The evidence reviewed. Epilepsia 2000, 41, 1364–1374. [Google Scholar] [CrossRef]
- Kito, M.; Maehara, M.; Watanabe, K. Antiepileptic drugs-calcium current interaction in cultured human neuroblastoma cells. Seizure 1994, 3, 141–149. [Google Scholar] [CrossRef]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2008, 22, 659–661. [Google Scholar] [CrossRef] [Green Version]
- DrugBank. Available online: https://go.drugbank.com/drugs/DB00243 (accessed on 10 November 2022).
- Gottardo, R.; De Battisti, Z.; Busetti, F.; Murari, M.; Tagliaro, F. Fatal, intentional overdose of ranolazine: Postmortem distribution of parent drug and its major metabolite. J. Anal. Toxicol. 2020, 46, 216–220. [Google Scholar] [CrossRef]
- Litchfield, J.T.; Wilcoxon, F. A simplified method of evaluating dose-effect experiments. J. Pharmacol. Exp. Ther. 1949, 96, 99–113. [Google Scholar]
- Tallarida, R.J. Quantitative methods for assessing drug synergism. Genes Cancer 2011, 2, 1003–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porreca, F.; Jiang, Q.; Tallarida, R.J. Modulation of morphine antinociception by peripheral [Leu5] enkephalin: A synergistic interaction. Eur. J. Pharmacol. 1990, 179, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Borowicz, K.K.; Swiader, M.; Luszczki, J.; Czuczwar, S.J. Effect of gabapentin on the anticonvulsant activity of antiepileptic drugs against electroconvulsions in mice: An isobolographic analysis. Epilepsia 2002, 43, 956–963. [Google Scholar] [CrossRef]
- Luszczki, J.J.; Borowicz, K.K.; Swiader, M.; Czuczwar, S.J. Interactions between oxcarbazepine and conventional antiepileptic drugs in the maximal electroshock test in mice: An isobolographic analysis. Epilepsia 2003, 44, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Boissier, P.J.-R.; Tardy, J.; Diverres, J.-C. Une nouvelle méthode simple pour explorer l’action «tranquillisante»: Le test de la cheminée. Pharmacology 1960, 3, 81–84. [Google Scholar] [CrossRef]
Drug | ED50 (mg/kg) | SEM |
---|---|---|
Ranolazine | 96.4 (89.1–104.4) | 4.8 |
Valproate | 353.6 (327.2–382.2) | 17.1 |
Carbamazepine | 13.9 (12.3–15.7) | 1.2 |
Phenytoin | 13.2 (12.0–15.4) | 0.7 |
Phenobarbital | 26.9 (24.3–29.8) | 1.6 |
Drug Combination | ED50add | ED50mix | I |
---|---|---|---|
F | |||
RNL + VPA | |||
1:3 | 289.3 ± 14.0 | 352.3 ± 30.5 | A |
1:1 | 225.9 ± 10.9 | 278.4 ± 21.8 | A |
3:1 | 160.7 ± 7.8 | 171.0 ± 3.7 | A |
RNL + CBZ | |||
1:3 | 34.5 ± 1.8 | 45.0 ± 2.2 * | Ant |
1:1 | 55.2 ± 2.8 | 75.1 ± 2.6 * | Ant |
3:1 | 75.8 ± 3.8 | 86.4 ± 2.8 | A |
RNL + PHT | |||
1:3 | 34.0 ± 1.7 | 47.3 ± 3.6 * | Ant |
1:1 | 54.8 ± 2.7 | 75.5 ± 2.3 * | Ant |
3:1 | 75.6 ± 3.8 | 86.4 ± 2.8 | A |
RNL + PB | |||
1:3 | 44.4 ± 2.4 | 69.7 ± 1.3 * | Ant |
1:1 | 61.7 ± 3.2 | 81.8 ± 2.1 * | Ant |
3:1 | 79.1 ± 4.0 | 81.5 ± 4.0 | A |
Drugs (mg/kg) | F | Mice Impaired (%) |
---|---|---|
Control | 0 | |
RNL (96.4) | 0 | |
VPA (353.6) | 20 | |
CBZ (13.9) | 0 | |
PHT (13.2) | 10 | |
PB (26.9) | 30 | |
RNL (24.1) + VPA (265.2) | 1:3 | 10 |
RNL (48.2) + VPA (176.8) | 1:1 | 20 |
RNL (24.1) + CBZ (10.4) | 1:3 | 10 |
RNL (48.2) + CBZ (7.0) | 1:1 | 10 |
RNL (24.1) + PHT (9.9) | 1:3 | 0 |
RNL (48.2) + PHT (6.6) | 1:1 | 10 |
RNL (24.1) + PB (20.2) | 1:3 | 30 |
RNL (48.2) + PB (13.5) | 1:1 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowicz-Reutt, K.; Banach, M. Ranolazine Interacts Antagonistically with Some Classical Antiepileptic Drugs—An Isobolographic Analysis. Molecules 2022, 27, 8955. https://doi.org/10.3390/molecules27248955
Borowicz-Reutt K, Banach M. Ranolazine Interacts Antagonistically with Some Classical Antiepileptic Drugs—An Isobolographic Analysis. Molecules. 2022; 27(24):8955. https://doi.org/10.3390/molecules27248955
Chicago/Turabian StyleBorowicz-Reutt, Kinga, and Monika Banach. 2022. "Ranolazine Interacts Antagonistically with Some Classical Antiepileptic Drugs—An Isobolographic Analysis" Molecules 27, no. 24: 8955. https://doi.org/10.3390/molecules27248955
APA StyleBorowicz-Reutt, K., & Banach, M. (2022). Ranolazine Interacts Antagonistically with Some Classical Antiepileptic Drugs—An Isobolographic Analysis. Molecules, 27(24), 8955. https://doi.org/10.3390/molecules27248955