In Vitro Assessment on Designing Novel Antibiofilms of Pseudomonas aeruginosa Using a Computational Approach
Abstract
:1. Introduction
2. Results
2.1. Determination of the PMM/PGM Active Site via Redocking Analysis
2.2. Ligand Exploration by Using TLA as Template
2.3. Inhibitory Mechanism of TLA, GA, DS, and AA via Molecular Docking Analysis
2.4. Prediction of Drug-Likeness, Bioavailability, Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET)
2.5. In Vitro Assessment of Ligands against P. aeruginosa Biofilm
2.5.1. Microtiter Plate Assay
2.5.2. Antibiofilm Assessment of P. aeruginosa on the Nitrocellulose Membrane
2.5.3. Scanning Electron Microscopic Visualization of Ligand-Treated P. aeruginosa Biofilm
3. Discussion
4. Materials and Methods
4.1. Materials and Bacteria
4.2. Ligands as PMM/PGM Inhibitors
4.3. Receptors and Ligands
4.4. Molecular Docking
4.5. Pharmacokinetic Study
4.6. In Vitro Assay of Biofilm Matrix Extracellular Inhibition
4.6.1. Microtiter Plate Assay
4.6.2. Colony Biofilm Assay
4.6.3. Surface Morphological Investigation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Peters, B.M.; Jabra-Rizk, M.A.; O’May, G.A.; Costerton, J.W.; Shirtliff, M.E. Polymicrobial interactions: Impact on pathogenesis and human disease. Clin. Microbiol. Rev. 2012, 25, 193–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, M.E.; Lopes, S.P.; Pereira, P.R.; Azevedo, N.F.; Lourenc, A.; Henriques, M.; Pereira, M.O. Polymicrobial ventilator-associated pneumonia: Fighting in vitro Candida albicans-Pseudomonas aeruginosa biofilms with antifungal-antibacterial combination therapy. PLoS ONE 2017, 12, e0170433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barzani, Y. Nonfermenting and Miscellaneous Gram-Negative Bacilli. In Text Book of Diagnostic Microbiology, 6th ed.; Mahon, C.R., Lehman, D.C., Eds.; Elsevier Saunders: St. Louis, MO, USA, 2019; p. 472. [Google Scholar]
- Nuzulah, Y.F.; Suharti, S. Initial Characterization of Alkaline Protease from Pseudomonas sp. Isolated from Chicken Feces (POSTER). Sci. J. Chem. Res. 2018, 3, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Baidya, S.; Sharma, S.; Mishra, S.; Kattel, H.; Parajuli, K.; Sherchand, J.B. Biofilm formation by pathogens causing ventilator-associated pneumonia at intensive care units in a tertiary Care Hospital: An armor for refuge. BioMed Res. Int. 2021, 2021, 8817700. [Google Scholar] [CrossRef] [PubMed]
- Diaconu, O.; Siriopol, I.; Poloșanu, L.I.; Grigoraș, I. Endotracheal tube biofilm and its impact on the pathogenesis of ventilator-associated pneumonia. J. Crit. Care Med. 2018, 4, 50–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoyle, B.D.; Costerton, J.W. Bacterial resistance to antibiotics: The role of biofilms. Prog. Drug Res. 1991, 3, 91–105. [Google Scholar]
- Wei, Q.; Ma, L.Z. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2013, 14, 20983–21005. [Google Scholar] [CrossRef]
- Ryder, C.; Byrd, M.; Wozniak, D.J. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr. Opin. Microbiol. 2007, 10, 644–648. [Google Scholar] [CrossRef] [Green Version]
- Laverty, G.; Gorman, S.P.; Gilmore, B.F. Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation. Pathogens 2014, 3, 596–632. [Google Scholar] [CrossRef] [Green Version]
- Rasamiravaka, T.; Labtani, Q.; Duez, P.; El Jaziri, M. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. Bio. Med. Res. Int. 2015, 2015, 759348. [Google Scholar]
- Govan, J.R.W.; Deretic, V. Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 1996, 60, 539–574. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.; Ye, R.W.; Schlictman, D.; Chakrabarty, A.M. Exopolysaccharide alginate synthesis in Pseudomonas aeruginosa: Enzymology and regulation of gene expression. Adv. Enzymol. Relat. Areas Mol. Biol. 1995, 70, 221–255. [Google Scholar] [PubMed]
- Olvera, C.; Goldberg, J.B.; Sánchez, R.; Soberón-Chávez, G. The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol. Lett. 1999, 179, 85–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, R.W.; Zielinski, N.A.; Chakrabarty, A.M. Purification and characterization of phosphomannomutase/phosphoglucomutase from Pseudomonas aeruginosa involved in biosynthesis of both alginate and lipopolysaccharide. J. Bacteriol. 1994, 176, 4851–4857. [Google Scholar] [CrossRef] [Green Version]
- Regni, C.; Tipton, P.A.; Beamer, L.J. Crystal structure of PMM/PGM: An enzyme in the biosynthetic pathway of P. aeruginosa virulence factors. Structure 2002, 10, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Miari, M.; Rasheed, S.S.; Ahmad, N.H.; Itani, D.; Fayad, A.A.; Matar, G.M. Natural products and polysorbates: Potential inhibitors of biofilm formation in Pseudomonas aeruginosa. J. Infect. Dev. Ctries. 2020, 14, 580–588. [Google Scholar] [CrossRef]
- Batoni, G.; Maisetta, G.; Esin, S. Microbial biofilms and antibiofilm agents 2.0. Int. J. Mol. Sci. 2022, 23, 7932. [Google Scholar] [CrossRef]
- Zhou, Y.; Elmes, M.W.; Sweeney, J.M.; Joseph, O.M.; Che, J.; Hsu, H.C.; Li, H.; Deutsch, D.G.; Ojima, I.; Kaczocha, M.; et al. Identification of fatty acid binding protein 5 inhibitors through similarity-based screening. Biochemistry 2019, 58, 4304–4316. [Google Scholar] [CrossRef]
- Chen, D.; Oezguen, N.; Urvil, P.; Ferguson, C.; Dann, S.M.; Savidge, T.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci. Adv. 2016, 2, e1501240. [Google Scholar] [CrossRef] [Green Version]
- Pantsar, T.; Poso, A. Binding affinity via docking: Fact and fiction. Molecules 2018, 23, 1899. [Google Scholar] [CrossRef] [Green Version]
- Aarjane, M.; Slassi, S.; Ghaleb, A.; Tazi, B.; Amine, A. Synthesis, biological evaluation, molecular docking and in silico ADMET screening studies of novel isoxazoline derivatives from acridone. Arab. J. Chem. 2021, 14, 103057. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Ndombera, F.T.; Maiyoh, G.K.K.; Tuei, V.C. Pharmacokinetic, physicochemical and medicinal properties of N-glycoside anticancer agent more potent than 2-deoxy-D-glucose in lung cancer cells. J. Pharm. Pharmacol. 2019, 7, 165–176. [Google Scholar]
- Han, Y.; Zhang, J.; Hu, C.Q.; Zhang, X.; Ma, B.; Zhang, P. In silico ADME and toxicity prediction of ceftazidime and its impurities. Front. Pharmacol. 2019, 10, 434. [Google Scholar] [CrossRef] [PubMed]
- Baktir, A.; Masfufatun; Hadi, S. Preclinic study of Bgl2 ligand as component of mix antibiofilm toward Candida albicans on mucous intestinal biofilm preinduced Rattus novergicus. Pharm. Chem. 2015, 7, 113–118. [Google Scholar]
- Allen, W.J.; Balius, T.E.; Mukherjee, S.; Brozell, S.R.; Moustakas, D.T.; Lang, P.T.; Case, D.A.; Kuntz, I.D.; Rizzoet, R.C. DOCK 6: Impact of new features and current docking performance. J. Comput. Chem. 2015, 36, 1132–1156. [Google Scholar] [CrossRef] [Green Version]
- Siswanto, I.; Pranowo, H.D.; Mudasir, M. Docking of new designed compounds derived from 1,6-dihydro-1,3,5-triazine-2,4-diamine toward quadruple mutant plasmodium dihydrofolate reductase. Indones. J. Chem. 2019, 19, 777–785. [Google Scholar] [CrossRef] [Green Version]
- Yasmeen, S.; Gupta, P. Interaction of selected terpenoids from Dalbergia sissoo with catalytic domain of matrix metalloproteinase-1: An in silico assessment of their anti-wrinkling potential. Bioinform. Biol. Insights 2019, 13, 1177932219896538. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.H.; Serry, F.M.; El-Masry, E.M. Combating Pseudomonas aeruginosa biofilms by potential biofilm inhibitors. Asian J. Res. Pharm. Sci. 2012, 2, 66–72. [Google Scholar]
- Ebert, C.; Tuchscherr, L.; Pöllath, C.; Gladigau, F.; Löffler, B.; Neugebauer, U. Correlation of crystal violet biofilm test results of Staphylococcus aureus clinical isolates with Raman spectroscopic read-out. J. Raman Spectrosc. 2021, 52, 2660–2670. [Google Scholar] [CrossRef]
- Eswaranandam, S.; Hettiarachchy, N.S.; Johnson, M.G. Antimicrobial activity of citric, lactic, malic, or tartaric acids and nisin-incorporated soy protein film against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella gaminara. J. Food. Sci. 2006, 69, 79–84. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives. Available online: https://www.who.int/groups/joint-fao-who-expert-committee-on-food-additives-(jecfa)/about (accessed on 16 February 2022).
- Babayan, B.G.; Mikaelyan, A.R.; Asatryan, N.L.; Melkumyan, M.A.; Bagdasaryan, S.; Grigoryan, A.M.; Baghdasaryan, A.S.; Soghomonyan, T.M. Phytopathogenic pseudomonas growth inhibition by tartaric acid new derivatives. Sch. Acad. J. Biosci. 2020, 8, 127–132. [Google Scholar] [CrossRef]
- Peh, E.; Kittler, S.; Reich, F.; Kehrenberg, C. Antimicrobial activity of organic acids against Campylobacter spp. and development of combinations-A synergistic effect? PLoS ONE 2020, 15, e0239312. [Google Scholar] [CrossRef] [PubMed]
- Hanausek, M.; Walaszek, Z.; Slaga, T.J. Detoxifying cancer causing agents to prevent cancer. Integr. Cancer Ther. 2003, 2, 139–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walaszek, Z.; Szemraj, J.; Narog, M.; Adams, A.; Kilgore, J.; Sherman, U.; Hanausek, M. Metabolism, uptake, and excretion of a D-glucaric acid salt and its potential use in cancer prevention. Cancer Detect. Prev. 1997, 21, 178–190. [Google Scholar]
- De Cock, P.; Mäkinen, K.; Honkala, E.; Saag, M.; Kennepohl, E.; Eapen, A. Erythritol is more effective than xylitol and sorbitol in managing Oral Health endpoints. Int. J. Dent. 2016, 2016, 9868421. [Google Scholar] [CrossRef]
- Awuchi, C.G. Sugar alcohols: Chemistry, production, health concerns and nutritional importance. Int. J. Adv. Acad. Res. Sci. Technol. Eng. 2017, 3, 31–66. [Google Scholar]
- Nisar, Z.; Stodieck, L.; Zea, L. Ground Testing of Biofilm Formation on Spaceflight-Relevant Materials; BioServe Space Technologies; University of Colorado Boulder: Boulder, CO, USA, 2013. [Google Scholar]
- Hess, D.J.; Henry-Stanley, M.J.; Barnes, A.M.; Dunny, G.M.; Wells, C.L. Ultrastructure of a novel bacterial form located in Staphylococcus aureus in vitro and in vivo catheter-associated biofilms. J. Histochem. Cytochem. 2012, 60, 770–776. [Google Scholar] [CrossRef] [Green Version]
- Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA: An efficient program for end-state free energy calculations. J. Chem. Theor. Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
- Jakalian, A.; Jack, D.B.; Bayly, C.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 2002, 23, 1623–1641. [Google Scholar] [CrossRef]
- Liu, K.; Kokubo, H. Prediction of ligand binding mode among multiple cross-docking poses by molecular dynamics simulations. J. Comput. Aided Mol. Des. 2020, 34, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Pratiwi, S.U.T.; Lagendijk, E.L.; de Weert, S.; Idroes, R.; Hertiani, T.; Van den Hondel, C. Effect of Cinnamomum burmannii Nees ex Bl. and Massoia aromatica Becc. essential oils on planktonic growth and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus in vitro. Int. J. Appl. Res. Nat. Prod. 2015, 8, 1–13. [Google Scholar]
- Kazmierczak, N.N.; Piechowicz, L. A sample preparation protocol for scanning electron microscope examination of Staphylococcus aureus biofilm. In Proceedings of the International Sopot Youth Conference, Sopot, Poland, 25 May 2018. [Google Scholar]
Code | Lipinski’s Rule (a) | Veber’s Rule (b) | Validations/n | ||||
---|---|---|---|---|---|---|---|
M LogP | MW (g/mol) | ∑ HBD | ∑ HBA | ∑ Rotatable Bonds | TPSA (Å2) | ||
TLA | −2.37 | 148.07 | 2 | 6 | 1 | 108.74 | 0 |
GA | −3.17 | 208.12 | 4 | 8 | 3 | 149.20 | 1 |
DS | −2.77 | 182.17 | 6 | 6 | 5 | 121.38 | 1 |
AA | −2.60 | 176.12 | 4 | 6 | 2 | 107.22 | 0 |
Code | Log Po/w (X LogP3) | Log S (ESOL) | Fraction Csp3 | Bioavailability Score |
---|---|---|---|---|
TLA | −0.12 | −0.62 | 0.50 | 0.55 |
GA | −1.35 | −0.08 | 0.67 | 0.55 |
DS | −3.10 | 1.31 | 1.00 | 0.55 |
AA | −1.64 | 0.23 | 0.50 | 0.56 |
Parameters | TLA | GA | DS | AA |
---|---|---|---|---|
Absorption | ||||
Caco-2 permeability (log Papp in 10−6 cm/s) | −0.71 | −1.10 | −0.74 | −0.30 |
Intestinal absorption-human (% absorbed) | 0 | 0 | 15.68 | 55.13 |
Distribution | ||||
BBB permeability (log BB) | −1.26 | −1.81 | −1.58 | −1.13 |
Metabolism | ||||
CYP1A2 inhibitor | No | No | No | No |
CYP2C19 inhibitor | No | No | No | No |
CYP2C9 inhibitor | No | No | No | No |
CYP2D6 inhibitor | No | No | No | No |
CYP3A4 inhibitor | No | No | No | No |
Excretion | ||||
Renal OCT2 substrate | No | No | No | No |
Toxicity | ||||
AMES toxicity | No | No | No | No |
Hepatotoxicity | No | No | No | No |
Skin sensitization | No | No | No | No |
L-Tartaric Acid | Glucaric Acid | D-Sorbitol | Ascorbic Acid | ||||
---|---|---|---|---|---|---|---|
Dose (µg/mL) × 103 | % Inhibition | Dose (µg/mL) × 103 | % Inhibition | Dose (µg/mL) × 103 | % Inhibition | Dose (µg/mL) × 103 | % Inhibition |
0.25 | 0 | 0.03 | 6.1 | 25 | 0 | 3.125 | 18.45 |
0.5 | 1.14 | 0.06 | 29.3 | 50 | 0.2 | 6.25 | 63.76 |
1 | 33.64 | 0.125 | 44.75 | 100 | 0.7 | 12.5 | 91.5 |
2 | 68.11 | 0.25 | 61.43 | 200 | 1.25 | 25 | 91.6 |
4 | 95.87 | 0.5 | 81.18 | 400 | 91.87 | 50 | 90.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rachmawati, D.; Fahmi, M.Z.; Abdjan, M.I.; Wasito, E.B.; Siswanto, I.; Mazlan, N.; Rohmah, J.; Baktir, A. In Vitro Assessment on Designing Novel Antibiofilms of Pseudomonas aeruginosa Using a Computational Approach. Molecules 2022, 27, 8935. https://doi.org/10.3390/molecules27248935
Rachmawati D, Fahmi MZ, Abdjan MI, Wasito EB, Siswanto I, Mazlan N, Rohmah J, Baktir A. In Vitro Assessment on Designing Novel Antibiofilms of Pseudomonas aeruginosa Using a Computational Approach. Molecules. 2022; 27(24):8935. https://doi.org/10.3390/molecules27248935
Chicago/Turabian StyleRachmawati, Dian, Mochammad Zakki Fahmi, Muhammad Ikhlas Abdjan, Eddy Bagus Wasito, Imam Siswanto, Nurzafirah Mazlan, Jazirotur Rohmah, and Afaf Baktir. 2022. "In Vitro Assessment on Designing Novel Antibiofilms of Pseudomonas aeruginosa Using a Computational Approach" Molecules 27, no. 24: 8935. https://doi.org/10.3390/molecules27248935
APA StyleRachmawati, D., Fahmi, M. Z., Abdjan, M. I., Wasito, E. B., Siswanto, I., Mazlan, N., Rohmah, J., & Baktir, A. (2022). In Vitro Assessment on Designing Novel Antibiofilms of Pseudomonas aeruginosa Using a Computational Approach. Molecules, 27(24), 8935. https://doi.org/10.3390/molecules27248935