Synthesis of New Cobalt(III) Meso-Porphyrin Complex, Photochemical, X-ray Diffraction, and Electrical Properties for Photovoltaic Cells
Abstract
:1. Introduction
2. Experimental
2.1. Cyclic Voltammetry Experiments
2.2. The Catalytic Degradation
2.3. Synthetic Procedures
2.3.1. Synthesis of H2TClPP (1)
2.3.2. Synthesis of [CoII(TClPP)] (2)
2.3.3. Synthesis of [CoIII(TClPP)Cl] (3)
2.3.4. Synthesis of [CoIII(TClPP)Cl(NTC)]·CH2Cl2 (4)
3. Results and Discussion
3.1. IR and Proton NMR Spectroscopic Data
3.2. Photophysical Properties
3.3. X-ray Molecular Structure of Complex 4
3.4. Hirshfeld Surface Analysis
3.5. Cyclic Voltammetry Investigation on [CoIII(TClPP)Cl(NTC)]·CH2Cl2 (4)
4. Photovoltaic Performance of DSSCs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maki, A.H.; Edelstein, N.; Davison, A.; Holm, R.H. Electron Paramagnetic Resonance Studies of the Electronic Structures of Bis(maleonitriledithiolato)copper(II), -nickel(III), -cobalt(II), and -rhodium(II) Complexes. J. Am. Chem. Soc. 1964, 86, 4580–4587. [Google Scholar] [CrossRef]
- Walker, F.A. An Electron Spin Resonance Study of Coordination to the Fifth and Sixth Positions of α,ß,γ,δ-Tetra (p-methoxyphenyl)porphinato cobalt(II). J. Am. Chem. Soc. 1970, 92, 4235–4244. [Google Scholar] [CrossRef]
- Lexa, D.; Savéant, J.; Soufflet, J. Chemical catalysis of the electrochemical reduction of alkyl halides Comparison between cobalt-tetraphenyl porphin and vitamin B12 derivatives. J. Electroanal. Chem. 1979, 100, 159–172. [Google Scholar] [CrossRef]
- Lyaskovskyy, V.; Suarez, A.I.O.; Lu, H.; Jiang, H.; Zhang, X.P.; de Bruin, B. Mechanism of Cobalt(II) Porphyrin-Catalyzed C-H Amination withOrganic Azides: Radical Nature and H-Atom Abstraction Ability of the Key Cobalt(III)-Nitrene Intermediates. J. Am. Chem. Soc. 2011, 133, 12264–12273. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lim, S.-H.; Yoon, Y.; Thangadurai, T.D.; Yoon, S. A fluorescent ammonia sensor based on a porphyrin cobalt(II)–dansyl complex. Tetrahedron Lett. 2011, 52, 2645–2648. [Google Scholar] [CrossRef]
- Karimipour, G.; Kowkabi, S.; Naghiha, A. New Amino porphyrins Bearing Urea Derivative Substituents: Synthesis, Characterization, Antibacterial and Antifungal Activity. Braz. Arch. Biol. Technol. 2015, 58, 431–442. [Google Scholar] [CrossRef] [Green Version]
- Beyene, B.B.; Wassie, G.A. Antibacterial activity of Cu(II) and Co(II) porphyrins: Role of ligand modification. BMC Chem. 2020, 14, 51. [Google Scholar] [CrossRef]
- Crawley, M.R.; Zhang, D.; Oldacre, A.N.; Beavers, C.M.; Friedman, A.E.; Cook, T.R. Tuning the Reactivity of Cofacial Porphyrin Prisms for Oxygen Reduction Using Modular Building Blocks. J. Am. Chem. Soc. 2021, 143, 1098–1106. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Wang, K.-Y.; Joseph, E.; Zhou, H.-C. Catalytic Porphyrin Framework Compounds. Trends Chem. 2020, 2, 555–568. [Google Scholar] [CrossRef]
- Cheng, N.; Kemna, C.; Goubert-Renaudin, S.; Wieckowski, A. Reduction Reaction by Porphyrin-Based Catalysts for Fuel Cells. Electrocatalysis 2012, 3, 238–251. [Google Scholar] [CrossRef]
- Zhai, Z.; Liu, Q.; Zheng, R.; Qiu, C.; Qin, J.; Li, J.; Xie, Y.; Wang, A.; Huang, J.; Song, Y. Controlled pyrolysis of ionically self-assembled metalloporphyrins on carbon as cathodic electrocatalysts of polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy 2021, 46, 11041–11050. [Google Scholar] [CrossRef]
- Alvarez, I.B.; Wu, Y.; Sanchez, J.; Ge, Y.; Ramos-Garcés, M.V.; Chu, T.; Jaramillo, T.F.; Colón, J.L.; Villagrán, D. Cobalt porphyrin intercalation into zirconium phosphate layers for electrochemical water oxidation. Sustain. Energy Fuels 2021, 5, 430–437. [Google Scholar] [CrossRef]
- Wirojsaengthong, S.; Aryuwananon, D.; Aeungmaitrepirom, W.; Pulpoka, B.; Tuntulani, T. A colorimetric paper-based optode sensor for highly sensitive and selective determination of thiocyanate in urine sample using cobalt porphyrin derivative. Talanta 2021, 231, 122371. [Google Scholar] [CrossRef]
- Fan, Z.; Zhao, B.; Wu, S.; Wang, H.; Cao, T.; Zhu, T.; Zhang, X.; Liu, L.; Tong, Z. Construction of cobalt porphyrin/tantalum molybdatenanocomposite for simultaneous electrochemical detection of ascorbic acid and dopamine. J. Mater. Sci. Res. 2021, 36, 916–924. [Google Scholar] [CrossRef]
- Benkhaya, S.; El Harfi, S.; El Harfi, A. Classifications, properties and applications of textile dyes: A review. Appl. J. Environ. Eng. Sci. 2017, 3, 311–320. [Google Scholar]
- Yamjala, K.; Nainar, M.S.; Ramisetti, N.R. Methods for the analysis of azo dyes employed in food industry—A review. Food Chem. 2016, 192, 813–824. [Google Scholar] [CrossRef]
- Ismail, M.; Akhtar, K.; Khan, M.I.; Kamal, T.; Khan, M.A.; MAsiri, A.; Seo, J.; Khan, S.B. Pollution, Toxicity and Carcinogenicity of Organic Dyes and their Catalytic Bio-Remediation. Curr. Pharm. Des. 2019, 25, 3645–3663. [Google Scholar] [CrossRef] [PubMed]
- Birhanlı, A.; Ozmen, M. Evaluation of the Toxicity and Teratogenity of Six Commercial Textile Dyes Using the Frog Embryo Teratogenesis Assay–Xenopus. Drug Chem. Toxicol. 2005, 28, 51–65. [Google Scholar] [PubMed]
- Feng, M.; Wu, L.; Wang, X.; Wang, J.; Wang, D.; Li, C. A strategy of designed anionic metal–organic framework adsorbent based on reticular chemistry for rapid selective capture of carcinogenic dyes. Appl. Organomet. Chem. 2022, 35, e6546. [Google Scholar] [CrossRef]
- Chen, H.; Liu, P.; Liu, J.; Feng, X.; Zhou, S. Mechanochemical in-situ incorporation of Ni on MgO/MgH2 surface for the selective O-/C-terminal catalytic hydrogenation of CO2 to CH4. J. Catal. 2021, 394, 397–405. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; Zhang, K.; Hu, W.; Cheng, Z.; Chen, H.; Feng, X.; Peng, T.; Kou, Z. Monodispersed ruthenium nanoparticles interfacially bonded with defective nitrogen-and-phosphorus-doped carbon nanosheets enable pH-universal hydrogen evolution reaction. Appl. Catal. B Environ. 2022, 306, 121095. [Google Scholar] [CrossRef]
- Zhang, H.; Li, W.; Feng, X.; Zhu, L.; Fang, Q.; Li, S.; Wang, L.; Li, Z.; Kou, Z. A chainmail effect of ultrathin N-doped carbon shell on Ni2P nanorod arrays for efficient hydrogen evolution reaction catalysis. Colloid Interface Sci. 2022, 607, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Li, Y.; Li, D.; Liao, D.; Qin, T.; Prakash, O.; Kumar, A.; Liu, J.-Q. A new 3D 8-connected Cd(ii) MOF as a potent photocatalyst for oxytetracycline antibiotic degradation. CrystEngComm 2022, 24, 6933–6943. [Google Scholar] [CrossRef]
- Zheng, M.; Chen, J.; Zhang, L.; Cheng, Y.; Lu, C.; Liu, Y.; Singh, A.; Trivedi, M.; Kumar, A.; Liu, J. Metal Organic Framework as an Efficient Adsorbent for Drugs from Wastewater. Mater. Today Commun. 2022, 31, 103514. [Google Scholar] [CrossRef]
- La, D.D.; Nguyen, T.A.; Nguyen, X.S.; Truong, T.N.; Ninh, H.D.; Vo, H.T.; Bhosale, S.V.; Chang, S.W.; Rene, E.R.; Nguyen, T.H.; et al. Self-assembly of porphyrin on the surface of a novel composite high performance photocatalyst for the degradation of organic dye from water: Characterization and performance evaluation. J. Environ. Chem. Eng. 2021, 9, 106034. [Google Scholar] [CrossRef]
- Li, M.; Zhao, H.; Lu, Z.-Y. Porphyrin-based porous organic polymer, Py-POP, as a multifunctional platform for efficient selective adsorption and photocatalytic degradation of cationic dyes. Microporous Mesoporous Mater. 2020, 292, 109774. [Google Scholar] [CrossRef]
- Silvestri, S.; Fajardo, A.R.; Iglesias, B.A. Supported porphyrins for the photocatalytic degradation of organic contaminants in water: A review. Environ. Chem. Lett. 2022, 20, 731–771. [Google Scholar] [CrossRef]
- Kechiche, A.; Fradi, T.; Noureddine, O.; Guergueb, M.; Loiseau, F.; Guerineau, V.; Issoui, N.; Lemeune, A.; Nasri, H. Synthesis, characterization and catalytic studies of chromium(III) porphyrin complex with axial cyanate ligands. J. Mol. Struct. 2022, 1250, 131801. [Google Scholar] [CrossRef]
- Amiri, N.; Taheur, F.B.; Chevreux, S.; Rodrigues, C.M.; Dorcet, V.; Lemercier, G.; Nasri, H. Syntheses, crystal structures, photo-physical properties, antioxidant and antifungal activities of Mg(II) 4,4′-bipyridine and Mg(II) pyrazine complexes of the 5,10,15,20 tetrakis(4–bromophenyl) porphyrin. Inorg. Chim. Acta 2021, 525, 120466. [Google Scholar] [CrossRef]
- Amiri, N.; Guergueb, M.; Al-Fakeh, M.S.; Bourguiba, M.; Nasri, H. A new cobalt(ii) meso-porphyrin: Synthesis, characterization, electric properties and application in the catalytic degradation of dyes. RSC Adv. 2020, 10, 44920–44932. [Google Scholar] [CrossRef]
- Mansour, A.; Belghith, Y.; Belkhiria, M.S.; Bujacz, A.; Guérineau, V.; Nasri, H. Synthesis, crystal structures and spectroscopic characterization of Co(II) bis(4,4′-bipyridine) with meso-porphyrins α,β,α,β-tetrakis(o-pivalamidophenyl) porphyrin (α,β,α,β-TpivPP) and tetraphenylporphyrin (TPP). J. Porphyr. Phthalocyanines 2013, 17, 1094–1103. [Google Scholar] [CrossRef]
- Guergueb, M.; Nasri, S.; Brahmi, J.; Loiseau, F.; Molton, F.; Roisnel, T.; Guerineau, V.; Turowska-Tyrk, I.; Aouadi, K.; Nasri, H. Effect of the coordination of p-acceptor 4-cyanopyridine ligand on the structural and electronic properties of meso-tetra(para-methoxy)and meso-tetra(para-chlorophenyl) porphyrincobalt(II) coordination compounds. Application in the catalytic degradation of methylene blue dye. RSC Adv. 2020, 10, 6900–6918. [Google Scholar] [PubMed]
- Guergueb, M.; Nasri, S.; Brahmi, J.; Al-Ghamdi, Y.O.; Loiseau, F.; Molton, F.; Roisnel, T.; Guerineau, V.; Nasri, H. Spectroscopic characterization, X-ray molecular structures and cyclic voltammetry study of two (piperazine) cobalt(II) meso-arylporphyincomplexes. Application as a catalyst for the degradation of 4-nitrophenol. Polyhedron 2021, 209, 115468. [Google Scholar] [CrossRef]
- Sugimoto, H.; Ueda, N.; Mori, M. Preparation and Physicochemical Properties of Tervalent Cobalt Complexes of Porphyrins. Bull. Chem. Soc. Jpn. 1981, 54, 3425–3432. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, M.; Maji, P.; Häusl, C.; Monney, A.; Müller-Bunz, H. N-Heterocyclic carbene bonding to cobalt porphyrin complexes. Inorg. Chim. Acta 2012, 380, 90–95. [Google Scholar] [CrossRef]
- Weiss, R.; Fischer, J.; Bulach, V.; Schünemann, V.; Gerdan, M.; Trautwein, A.X.; Shelnutt, J.A.; Gros, C.P.; Tabard, A.; Guilard, R. Structure and mixed spin state of the chloro iron(III) complex of 2,3,7,8,12,13,17,18-octaphenyl-5,10,15,20-tetraphenylporphyrin, Fe(dpp)Cl. Inorg. Chim. Acta 2002, 337, 223–232. [Google Scholar] [CrossRef]
- Owens, J.W.; Smith, R.; Robinson, R.; Robins, M. Photophysical properties of porphyrins, phthalocyanines, and benzochlorins. Inorg. Chim. Acta 1998, 279, 226–231. [Google Scholar] [CrossRef]
- Amiri, N.; Nouir, S.; Hajji, M.; Roisnel, T.; Guerfel, T.; Simonneaux, G.; Nasri, H. Synthesis, structure, photophysical properties and biological activity of a cobalt(II) coordination complex with 4,4′-bipyridine and porphyrin chelating ligands. J. Saudi Chem. Soc. 2019, 23, 781–794. [Google Scholar] [CrossRef]
- Kingsbury, C.J.; Senge, M.O. The shape of porphyrins. Coord. Chem. Rev. 2021, 431, 213760. [Google Scholar] [CrossRef]
- Chen, L.; Fox, J.J.B.; Yi, G.-B.; Khan, M.A.; Richter-Addo, G.B. Synthesis and molecular structures of N,N-dialkyl-4-nitrosoaniline adducts of formally d6 metalloporphyrins of ruthenium and cobalt. J. Porphyr. Phthalocyanines 2001, 5, 702–707. [Google Scholar] [CrossRef]
- Li, J.; Noll, B.; Oliver, A.; Ferraudi, G.; Lappin, A.G.; Scheidt, W.R. Oxygenation of Cobalt Porphyrinates: Coordination or Oxidation? Inorg. Chem. 2010, 49, 2398–2406. [Google Scholar] [CrossRef] [PubMed]
- Belghith, Y.; Daran, J.-C.; Nasri, H. Chlorido(pyridine-jN)(5,10,15,20-tetraphenylporphyrinato-j4 N)cobalt(III)chloroform hemisolvate. Acta Cryst. 2012, 68, m1104–m1105. [Google Scholar]
- Kaduk, J.A.; Scheidt, W.R. Stereochemistry of low-spin cobalt porphyrins. V. Molecular stereochemistry of nitro-.alpha.,.beta.,.gamma.,.delta.-tetraphenylporphinato(3,5-lutidine)cobalt(III). Inorg. Chem. 1974, 13, 1875–1880. [Google Scholar] [CrossRef]
- Goodwin, J.; Bailey, R.; Pennington, W.; Rasberry, R.; Green, T.; Shasho, S.; Yongsavanh, M.; Echevarria, V.; Tiedeken, J.; Brown, C.; et al. Structural and Oxo-Transfer Reactivity Differences of Hexacoordinate and Pentacoordinate (Nitro)(tetraphenylporphinato)cobalt(III) Derivatives. Inorg. Chem. 2001, 40, 4217–4225. [Google Scholar] [CrossRef] [PubMed]
- Doppelt, P.; Fischer, J.; Weiss, R. Synthesis and structure of bis(mercapto)cobalt(III) porphyrins. Models for the active site of cytochromes P 450. J. Am. Chem. Soc. 1984, 106, 5188–5193. [Google Scholar] [CrossRef]
- Sakurai, T.; Yamamoto, K.; Naito, H.; Nakamoto, N. The Crystal and Molecular Structure of Chloro-α,β,γ,δ-tetraphenylporphinatocobalt(III). Bull. Chem. Soc. Jpn. 1976, 49, 3042–3046. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer17; The University of Western Australia: Perth, Australia, 2017. [Google Scholar]
- Venkatesan, P.; Thamotharan, S.; Ilangovan, A.; Liang, H.; Sundius, T. Crystal structure, Hirshfeld surfaces and DFT computation of NLO active (2E)-2-(ethoxycarbonyl)-3-[(1-methoxy-1-oxo-3-phenylpropan-2-yl)amino] prop-2-enoic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 153, 625–636. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta. Cryst C. 2015, 71, 9–18. [Google Scholar] [CrossRef] [Green Version]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 7, 3814–3816. [Google Scholar] [CrossRef]
- Dennington, R.; Keith, T.; Millam, J. GaussView, Version 5; SemiChem Inc.: Shawnee, KS, USA, 2009. [Google Scholar]
- Kadish, K.M.; Lin, X.Q.; Han, B.C. Chloride-binding reactions, and electrochemistry of (tetraphenylporphyrinato)cobalt and chloro(tetraphenylporphyrinato)cobalt in dichloromethane. Inorg. Chem. 1987, 26, 4161–4167. [Google Scholar] [CrossRef]
- Rauf, M.A.; Bukallah, S.B.; Hammadi, A.; Soliman, A.; Hammadi, F. The effect of operational parameters on the photoinduced decoloration of dyes using a hybrid catalyst V2O5/TiO2. Chem. Eng. J. 2007, 129, 167–172. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Arami, M.; Limaee, N.Y.; Tabrizi, N.S. Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. J. Colloid Interface Sci. 2006, 295, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Mhamdi, A.; Sweii, F.B.S.; Bouazizi, A. Effect of Thermal Annealing on the Electrical Properties of Inverted Organic Solar Cells Based on PCDTBT: PC70BM Nanocomposites. J. Electron. Mater. 2019, 48, 352–357. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.-L.; Chao, T.-S.; Sze, S. A new parallel adaptive finite volume method for the numerical simulation of semiconductor devices. Comput. Phys. Commun. 2001, 142, 285–289. [Google Scholar] [CrossRef]
- Hamza, S.; Mhamdi, A.; Aloui, W.; Bouazizi, A.; Khirouni, K.; Saidi, H. Effect of illumination on the dielectrical properties of P3HT:PC70BM nanocomposites. Mater. Res. Express 2017, 4, 055003. [Google Scholar] [CrossRef]
- Campoy-Quiles, M.; Ferenczi, T.A.M.; Agostinelli, T.; Etchegoin, P.G.; Kim, Y.; Anthopoulos, T.D.; Stavrinou, P.N.; Bradley, D.D.C.; Nelson, J. Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. Nat. Mater. 2008, 7, 158–164. [Google Scholar] [CrossRef]
- Brahmi, J.; Nasri, S.; Saidi, H.; Nasri, H. Aouadi. K. Synthesis of new porphyrin complexes: Evaluations on optical, electrochemical, electronic properties and application as an optical sensor. Chem. Select. 2019, 4, 31–37. [Google Scholar]
- Ezhov, A.V.; Aleksandrov, A.E.; Zhdanova, K.A.; Zhdanov, A.P.; Klyukin, I.N.; Zhizhin, K.Y.; Bragina, N.A.; Mironov, A.F.; Tameev, A.R. Synthesis of Zn(II) porphyrin dyes and revealing an influence of their alkyl substituents on performance of dye-sensitized solar cells. Synth. Met. 2020, 269, 116567. [Google Scholar] [CrossRef]
- Rashmi; Kappor, A.K.; Annapoorni, S.; Kumar, V. Conduction mechanisms in poly(3-hexylthiophene) thin-film sandwiched structures. Semicond. Sci. Technol. 2008, 23, 035008. [Google Scholar] [CrossRef]
- Murgatroyd, P.N. Theory of space-charge-limited current enhanced by Frenkel effect. J. Phys. D: Appl. Phys. 1970, 3, 151–156. [Google Scholar] [CrossRef]
- Amorim, C.; Cavallari, M.; Santos, G.; Fonseca, F.; Andrade, A.; Mergulhão, S. Determination of carrier mobility in MEH-PPV thin-films by stationary and transient current techniques. J. Non-Cryst. Solids 2012, 358, 484–491. [Google Scholar] [CrossRef]
Compound | Hβ-Pyrrolic Protons (ppm) | H-Phenyl Protons (ppm) | Ref. |
---|---|---|---|
Meso-arylporphyrins | |||
H2TPP a | 8.84 | 8.23; 7.91; 7.67; 7.26 | [31] |
H2TMPP b | 8.86 | 8.08; 7.27 | [32] |
H2ClTPP (1) | 8.89 | 8.18; 7.74 | t.w. |
[CoII(TPP)] a | 15.75 | 13.10; 9.80; 7.95 | [31] |
[CoII(TMPP)] b | 15.90 | 13.10; 9.43 | [33] |
[CoII(TClPP)] (2) | 15.75 | 12.93; 9.9 | t.w. |
[CoIII(TPP)(Cl)(py)] | 9.00 | 8.80; 7.70 | [34] |
[CoIII(TPP)(DMI)]+,a,c | 8.95 | 7.86; 7.71 | [35] |
[CoIII(TPP)Cl(DMI)] a,c | 8.83 | 7.87; 7.65 | [35] |
[CoIII(TClPP)(Cl)] (3) | 8.95 | 7.95; 7.78 | t.w. |
[CoIII(TClPP)(Cl)(NTC)] (4) | 9.08 | 8.09; 7.75 | t.w. |
Compound | λmax (nm) (ε × 10−3 M−1.cm−1) | Eg (eV) | Ref. | |
---|---|---|---|---|
Soret Band | Q Bands | |||
Free-base meso-arylporphyrins | ||||
H2TClPP (1) | 421(335) | 522(85) 557(56) 599(29) 651(36) | 1.88 | t.w. |
H2TMPP a | 423(344) | 521(24) 558(20) 597(16) 650(15) | 1.76 | [21] |
Cobalt meso-arylporphyrins | ||||
[CoII(TClPP)] (2) | 414 (340) | 532(56) | 2.01 | t.w. |
[CoII(TPP)] b | 412 | 528 | [21] | |
[CoIII(TClPP)(Cl)] (3) | 442(296) | 557(50) 596(36) | 1.96 | t.w. |
[CoIII(TClPP)Cl(NTC)] (4) | 455(335) | 560 (sh) 696(59) | 1.73 | t.w. |
Compound | λmax (nm) | φf a | τf b (in ns) | Solvent | Ref. | |
---|---|---|---|---|---|---|
O(0,0) | Q(0,1) | |||||
Free-base meso-arylporphyrins | ||||||
H2TPP c | 653 | 722 | 0.120 | 9.60 | DMF | [37] |
H2TMPP d | 656 | 719 | 0.080 | 7.16 | CH2Cl2 | [32] |
H2TClPP (1) | 650 | 714 | 0.089 | 7.40 | CH2Cl2 | this work |
Cobalt(II) meso-arylporphyrins | ||||||
[CoII(TMPP)] d | 655 | 719 | 0.035 | 6.02 | CH2Cl2 | [32] |
[CoII(TClPP)] (2) | 641 | 709 | 0.04 | 6.10 | CH2Cl2 | this work |
[CoII(TClPP)(4-CNpy)] | 653 | 714 | 0.06 | 2.00 | CH2Cl2 | [32] |
[CoII(TPBP)(4,4′-bipy)2] e | 652 | 718 | 0.036 | CH2Cl2 | [38] | |
Cobalt(III) meso-arylporphyrins | ||||||
[CoIII(TClPP)Cl] (3) | 641 | 705 | 0.051 | 2.30 | CH2Cl2 | this work |
[CoIII(TClPP)Cl(NTC)] (4) | 637 | 699 | 0.065 | 2.50 | CH2Cl2 | this work |
Compound | Porphyrin Core Deformation Type a | Cp–Np b | Co–XL c | Ref. |
---|---|---|---|---|
[CoIII(TPP)(ONC6H4NMe2)2] d,e | Ruf ++,Wav ++ | 1.957(1) | 1.94(2)/1.98(2) | [40] |
[CoIII(TpivPP)(2-MeIm)(2-MeHIm)] f,g,i | Ruf +,Wav +++ | 1.938(3) | 1.972(4)/1.953(3) | [41] |
[CoIII(TPP)Cl(py)] d,j | Ruf +,Wav + | 1.938(3) | 2.234(1) 1/1.999(2) 2 | [42] |
[CoIII(TPP)(NO2)(2,5-Lut)] d,k | Ruf ++,Wav ++ | 1.953 | 1.948 3/2.037 4 | [43] |
[CoIII(TPP)(NO2)(Cl2py)] d,l | Ruf ++,Wav ++ | 1.955(3) | 1.912(3) 3/2.044(3) 4 | [44] |
[CoIII(TPP)(DMIC)(MeOH)]BF4 m | Ruf +++,Wav +++ | 1.927(3) | 2.059(2) 5/1.929(3) 6 | [40] |
[CoIII(TPP)(SPhF4)2] d,n | Planar | 1.978 | 2.347 | [45] |
[CoIII(TPP)Cl] d | Planar | 1.984 | 2.150 | [46] |
[CoIII(TClPP)Cl(NTC)]·CH2Cl2 (4) | Ruf +++,Wav +++ | 1.939(4) | 2.230(1) 1/1.991(4) 7 | this work |
Oxidation | Reduction | Ref. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Complex | 1st Metal Oxd | 2nd Metal Oxd | 1st Metal Red | 2nd Metal Red | 1st Metal Red | ||||||
(O1, R1) | (O2, R2) | (1a) | (1b) | (3) | (4) (R4, O4) | ||||||
E1/2 a | E1/2 a | Eap b | Ecp c | Eap b | Ecp c | Eap b | Ecp c | Eap b | Ecp c | ||
[CoIII(TPP)Cl] d | 0.90 | 1.15 | - | 0.10 | - | 0.57 | - | −0.90 | - | −1.42 | [53] |
[CoIII(TClPP)Cl(NTC)] | 1.06 | 1.43 | - | 0.37 | - | −0.71 | - | −1.29 | - | −1.65 | this work |
Complex | ||
---|---|---|
(3) | ||
(4) | 0.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasri, S.; Guergueb, M.; Brahmi, J.; Al-Ghamdi, Y.O.; Molton, F.; Loiseau, F.; Turowska-Tyrk, I.; Nasri, H. Synthesis of New Cobalt(III) Meso-Porphyrin Complex, Photochemical, X-ray Diffraction, and Electrical Properties for Photovoltaic Cells. Molecules 2022, 27, 8866. https://doi.org/10.3390/molecules27248866
Nasri S, Guergueb M, Brahmi J, Al-Ghamdi YO, Molton F, Loiseau F, Turowska-Tyrk I, Nasri H. Synthesis of New Cobalt(III) Meso-Porphyrin Complex, Photochemical, X-ray Diffraction, and Electrical Properties for Photovoltaic Cells. Molecules. 2022; 27(24):8866. https://doi.org/10.3390/molecules27248866
Chicago/Turabian StyleNasri, Soumaya, Mouhieddinne Guergueb, Jihed Brahmi, Youssef O. Al-Ghamdi, Florian Molton, Frédérique Loiseau, Ilona Turowska-Tyrk, and Habib Nasri. 2022. "Synthesis of New Cobalt(III) Meso-Porphyrin Complex, Photochemical, X-ray Diffraction, and Electrical Properties for Photovoltaic Cells" Molecules 27, no. 24: 8866. https://doi.org/10.3390/molecules27248866
APA StyleNasri, S., Guergueb, M., Brahmi, J., Al-Ghamdi, Y. O., Molton, F., Loiseau, F., Turowska-Tyrk, I., & Nasri, H. (2022). Synthesis of New Cobalt(III) Meso-Porphyrin Complex, Photochemical, X-ray Diffraction, and Electrical Properties for Photovoltaic Cells. Molecules, 27(24), 8866. https://doi.org/10.3390/molecules27248866