The Role of Taraxacum mongolicum in a Puccinellia tenuiflora Community under Saline–Alkali Stress
Abstract
:1. Introduction
2. Results
2.1. Accumulation and Distribution of Elements in T. mongolicum
2.2. Responses of Primary Metabolites to Saline–Alkali Stress
2.3. Responses of Phenolic Metabolites to Saline–Alkali Stress
3. Materials and Methods
3.1. Plant Materials and Growth Conditions
Measurement of Elemental Contents
- BF = Mplant/Mmedium;
- TF = Mleaf/Mroot; and
3.2. Measurement of Primary Metabolites
3.3. Measurement of Phenolic Metabolites
3.4. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Guo, R.; Shi, L.X.; Yan, C.; Zhong, X.; Gu, F.X.; Liu, Q.; Xia, X.; Li, H. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in Maize (Zea mays L.) seedlings. BMC Plant Biol. 2017, 17, 41–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Takano, T.; Liu, S. Screening and evaluation of saline-alkaline tolerant germplasm of rice (Oryza sativa L.) in soda saline-alkali Soil. Agronomy 2018, 8, 205–221. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Hou, X.; Liang, X. Response mechanisms of plants under saline-alkali stress. Front. Plant Sci. 2021, 12, 667458. [Google Scholar] [CrossRef] [PubMed]
- Youssef, R.; Giampaolo, R.; Luigi, L.; Petronia, C.; Kyriacou, M.C.; Giuseppe, C.; Valerio, C.; Antonio, P.; Christophe, E.N.; Stefania, D.P. Physiological and metabolic responses triggered by omeprazole improve tomato plant tolerance to NaCl stress. Front. Plant Sci. 2018, 9, 249–267. [Google Scholar]
- Jia, X.M.; Wang, H.; Svetla, S.; Zhu, Y.F.; Hu, Y.; Cheng, L.; Zhao, T.; Wang, Y. Comparative physiological responses and adaptive strategies of apple Malus halliana to salt, alkali and saline-alkali stress. Sci. Hortic. 2019, 245, 154–162. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Yan, X.; Guo, J. Physiological and transcriptomic analyses of yellow horn (Xanthoceras sorbifolia) provide important insights into salt and saline-alkali stress tolerance. PLoS ONE 2020, 15, e0244365. [Google Scholar] [CrossRef]
- Zhang, K.; Tang, J.; Wang, Y.; Kang, H.; Zeng, J. The tolerance to saline-alkaline stress was dependent on the roots in wheat. Physiol. Mol. Biol. Plants 2020, 26, 947–954. [Google Scholar]
- Chuamnakthong, S.; Mampei, M.; Ueda, A. Characterization of Na+ exclusion mechanism in rice under saline-alkaline stress conditions. Plant Sci. 2019, 287, 110171. [Google Scholar] [CrossRef]
- Liu, A.; Xiao, Z.; Li, M.W.; Wong, F.L.; Yung, W.S.; Ku, Y.S.; Wang, Q.; Wang, X.; Xie, M.; Yim, A.K.Y.; et al. Transcriptomic reprogramming in soybean seedlings under salt stress. Plant Cell Environ. 2019, 42, 98–114. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, X.; Guan, Y.A.; Li, M.A.; Wang, Y.B.; An, M.C.; Zhang, Y.C.; Liu, G.D.; Xu, N.; Sun, G. Physiological and proteomic responses of reactive oxygen species metabolism and antioxidant machinery in mulberry (Morus alba L.) seedling leaves to NaCl and NaHCO3 stress-sciencedirect. Ecotoxicol. Environ. Saf. 2020, 193, 110259–110270. [Google Scholar]
- Guo, k.; Xu, Z.; Huo, Y.; Sun, Q.; Wang, Y.; Che, Y.; Wang, J.; Li, W.; Zhang, H. Effects of salt concentration, pH, and their interaction on plant growth, nutrient uptake, and photochemistry of alfalfa (Medicago sativa) leaves. Plant Signal. Behav. 2020, 12, 1832373. [Google Scholar] [CrossRef] [PubMed]
- Hui, Z.; Liu, X.L.; Zhang, R.X.; Yuan, H.Y.; Wang, M.M.; Yang, H.; Ma, H.Y.; Duo, L.; Jiang, C.J.; Liang, Z.-W. Root damage under alkaline stress is associated with reactive oxygen species accumulation in rice (Oryza sativa L.). Front. Plant Sci. 2017, 8, 1580. [Google Scholar]
- Latef, A.A.A.H.; Tran, L.S. Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front. Plant Sci. 2016, 7, 243–253. [Google Scholar]
- Hannachi, S.; Labeke, M.V. Salt Stress Affects Germination, Seedling growth and physiological responses differentially in eggplant cultivars (Solanum melongena L.). Sci. Hortic. 2018, 228, 56–65. [Google Scholar] [CrossRef]
- Jia, X.M.; Zhu, Y.; Zhang, R.; Zhu, Z.; Wang, Y. Ionomic and metabolomic analyses reveal the resistance response mechanism to saline-alkali stress in Malus halliana seedlings. Plant Physiol. Biochem. 2019, 147, 77–90. [Google Scholar] [CrossRef]
- Arif, Y.; Singh, P.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Biochem. 2020, 156, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Pang, J.; Zhang, F.; Sun, L.; Yang, L.; Zhao, Y.; Yang, Y.; Wang, Y.; Siddique, K. Integrated transcriptomics and metabolomics analysis to characterize alkali stress responses in Canola (Brassica napus L.). Plant Physiol. Biochem. 2021, 166, 605–620. [Google Scholar] [CrossRef]
- Han, X.; Yang, Y.; Wu, Y.; Liu, X.; Lei, X.; Guo, Y. A bioassay-guided fractionation system to identify endogenous small molecules that activate plasma membrane H+-atpase activity in Arabidopsis. J. Exp. Bot. 2017, 11, 2951–2962. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.M.; Zhu, Y.F.; Hu, Y.; Zhang, R.; Wang, Y.X. Integrated physiologic, proteomic, and metabolomic analyses of Malus halliana adaptation to saline-alkali stress. Hortic. Res. 2019, 6, 91–110. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.H.; Ma, Q.J.; Hu, D.G.; Zhu, X.P.; Hao, Y.J. The glucose sensor mdhxk1 phosphorylates a tonoplast Na+/H+ exchanger to improve salt tolerance. Plant Physiol. 2018, 176, 2977–2990. [Google Scholar] [CrossRef] [Green Version]
- Ye, T.; Wang, Y.; Feng, Y.Q.; Chan, Z. Physiological and metabolomic responses of bermudagrass (Cynodon dactylon) to alkali stress. Physiol. Plant. 2020, 171, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhao, W.; Wang, Y.; Zhang, L.; Lin, J. Metabolomics analysis reveals the alkali tolerance mechanism in Puccinellia tenuiflora plants inoculated with Arbuscular mycorrhizal Fungi. Microorganisms 2020, 8, 327–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Jin, Y.; Zhang, Z.H.; Cao, M.; Wei, G.Y.; Guo, X.; Zhang, J.; Lu, X.; Tang, Z. Ionomic and metabolomic analyses reveal different response mechanisms to saline-alkali stress between Suaeda salsa Community and Puccinellia tenuiflora Community. Front. Plant Sci. 2021, 12, 2500. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Lu, X.; Guo, X.; Pan, Y.; Yu, B.; Tang, Z.; Guo, Q. Differential responses to Cd Stress induced by exogenous application of Cu, Zn or Ca in the medicinal plant Catharanthus roseus. Ecotoxicol. Environ. Saf. 2018, 157, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, K.; Sun, Y.; Cui, H.; Cao, S.; Xu, M. Growth, physiology, and transcriptional analysis of two contrasting Carex rigescens genotypes under salt stress reveals salt-tolerance mechanisms. J. Plant Physiol. 2018, 229, 77–88. [Google Scholar]
- Qian, L.; Yang, A.; Zhang, W.H. Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativa L.). J. Exp. Bot. 2016, 67, 6431–6444. [Google Scholar]
- Wang, X.S.; Ren, H.L.; Wei, Z.W.; Wang, Y.W.; Ren, W.B. Effects of neutral salt and alkali on ion distributions in the roots, shoots, and leaves of two Alfalfa cultivars with differing degrees of salt tolerance. J. Integr. Agric. 2017, 16, 1800–1807. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y. Unraveling salt stress signaling in plants. J. Integr. Plant Biol. 2018, 60, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Fang, J.; Wu, X.; Dong, L. Na+/K+ balance and transport regulatory mechanisms in weedy and cultivated rice (Oryza sativa L.) under salt stress. BMC Plant Biol. 2018, 18, 375. [Google Scholar] [CrossRef] [Green Version]
- Kleczkowski, L.A.; Igamberdiev, A.U. Magnesium signaling in plants. Int. J. Mol. Sci. 2021, 22, 1159. [Google Scholar] [CrossRef]
- Raven, J.A. Interactions between above and below ground plant structures: Mechanisms and ecosystem services. Front. Agric. Sci. Eng. 2022, 9, 17. [Google Scholar]
- Alpaslan, M.; Gunes, A. Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants. Plant Soil 2001, 236, 123–128. [Google Scholar] [CrossRef]
- Bellaloui, N. Effect of water stress and foliar boron application on seed protein, oil, fatty acids, and nitrogen metabolism in soybean. Am. J. Plant Sci. 2011, 2, 692–701. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Hu, C.; Tan, Q.; Liu, J.; Liu, H. Endogenous hormone in response to molybdenum in winter wheat roots under low temperature stress. J. Food Agric. Environ. 2010, 8, 597–601. [Google Scholar]
- Mizuno, H.; Kasuga, S.; Kawahigashi, H. Root lodging is a physical stress that changes gene expression from sucrose accumulation to degradation in sorghum. BMC Plant Biol. 2018, 18, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Forieri, I.; Hildebrandt, U.; Rostás, M. Salinity stress effects on direct and indirect defence metabolites in Maize. Environ. Exp. Bot. 2016, 122, 68–77. [Google Scholar] [CrossRef]
- Abdallah, S.B.; Aung, B.; Amyot, L.; Lalin, I.; Lachaal, M.; Karray-Bouraoui, N.; Hannoufa, A. Salt Stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiol. Plant. 2016, 38, 72. [Google Scholar] [CrossRef]
- Lin, J.; Yu, D.; Shi, Y.; Sheng, H.; Li, C.; Wang, Y.; Mu, C.; Li, X. Salt-alkali tolerance during germination and establishment of Leymus chinensis in the Songnen Grassland of China. Ecol. Eng. 2016, 95, 763–769. [Google Scholar] [CrossRef]
- Song, T.; Xu, H.; Na, S.; Liu, J.; Tian, P.; Yong, Y.; Yang, W.; Cai, H.; Cui, G. Metabolomic analysis of Alfalfa (Medicago sativa L.) root-symbiotic rhizobia responses under alkali stress. Front. Plant Sci. 2017, 8, 1208–1223. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, J.; Jia, R.; Bao, S.; Haixia; Chen, X. Physiological and Tmt-based proteomic analysis of oat early seedlings in response to alkali stress. J. Proteom. 2019, 193, 10–26. [Google Scholar] [CrossRef]
- Fan, W.; Ge, G.; Liu, Y.; Wang, W.; Liu, L.; Jia, Y. Proteomics integrated with metabolomics: Analysis of the internal causes of nutrient changes in Alfalfa at different growth stages. BMC Plant Biol. 2018, 18, 78–93. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wang, Y.; He, Q.; Li, H.; Zhang, X.; Zhang, F. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration. BMC Plant Biol. 2016, 16, 188–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalhais, L.C.; Schenk, P.M.; Dennis, P.G. Jasmonic acid signalling and the plant holobiont. Curr. Opin. Microbiol. 2017, 37, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.S.; Zhang, J.; Li, M.X.; Shi, L.X. Metabolomics analysis reveals the salt-tolerant mechanism in Glycine soja. J. Plant Growth Regul. 2017, 36, 460–471. [Google Scholar] [CrossRef]
- Salama, K.H.A.; Mansour, M.M.F. Choline priming-induced plasma membrane lipid alterations contributed to improved wheat salt tolerance. Acta Physiol. Plant. 2015, 37, 170–177. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Per, F.; Anjum, T.S.; Khan, N.A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 2015, 6, 462–479. [Google Scholar] [CrossRef] [Green Version]
- Pang, Q.Y.; Zhang, Q.; Zang, W.; Wei, L.; Yan, X. Integrated proteomics and metabolomics for dissecting the mechanism of global responses to salt and alkali stress in Suaeda corniculata. Plant Soil 2016, 402, 379–394. [Google Scholar] [CrossRef]
- Dünser, K.; Kleine-Vehn, J. Differential growth regulation in plants-the acid growth balloon theory. Curr. Opin. Plant Biol. 2015, 28, 55–59. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Levizou, E.; Ntatsi, G.; Fernandes, A.; Pertrotos, K.; Akoumianakis, K.; Barros, L.; Ferreira, I. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chem. 2017, 214, 129–136. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress. Entific. Rep. 2018, 8, 12349. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Li, G.; Yang, J.; Huang, X.F.; Ji, Q.; Zhou, K.; Khan, S.; Ke, W.D.; Hou, H.W. Investigation of an antioxidative system for salinity tolerance in Oenanthe javanica. Antioxidants 2020, 9, 940. [Google Scholar] [CrossRef] [PubMed]
- Pi, E.; Zhu, C.; Wei, F.; Huang, Y.; Qu, L.; Li, Y.; Zhao, Q.; Ding, F.; Qiu, L.; Wang, H.; et al. Quantitative phosphoproteomic and metabolomic analyses reveal Gmmyb173 optimizes flavonoid metabolism in soybean under salt stress. Mol. Cell. Proteom. 2018, 17, 1209–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, D.; Sun, D.; Wang, C.; Li, Y.; Guo, T. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol. Biochem. 2014, 2014, 80. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Wang, S.; Huang, Z.; Zhang, S.; Liao, Q.; Zhang, C.; Tao, L.; Mao, Q.; Meng, P.; Yang, C.; et al. Rewiring of the fruit metabolome in tomato breeding. Cell 2018, 172, 249. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Lv, L.; Meng, C.; Zhang, C.; Li, Y. Integrative analysis of the metabolome and transcriptome of sorghum bicolor reveals dynamic changes in flavonoids accumulation under saline-alkali stress. J. Agric. Food Chem. 2020, 68, 14781–14789. [Google Scholar] [CrossRef]
- Deng, B.; Li, Y.; Lei, G.; Liu, G. Effects of nitrogen availability on mineral nutrient balance and flavonoid accumulation in Cyclocarya paliurus. Plant Physiol. Biochem. 2019, 135, 111–118. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, H.; Yan, H.; Jiang, X.; Ma, Y.; Qin, Y. Carbon and nitrogen metabolism under nitrogen variation affects flavonoid accumulation in the leaves of Coreopsis tinctoria. Peer J. 2021, 9, e12152. [Google Scholar] [CrossRef]
- Kennington, S. Signal transduction in the light regulation of the flavonoid biosynthetic pathway in Arabidopsis. Atherosclerosis 2006, 174, 343–347. [Google Scholar]
- Li, Z.Y.; Jiang, H.; Qin, Y.N.; Yan, H.Z.; Jiang, X.M.; Qin, Y. Nitrogen deficiency maintains the yield and improves the antioxidant activity of Coreopsis tinctoria Nutt. Biosci. Biotechnol. Biochem. 2021, 85, 1492–1505. [Google Scholar] [CrossRef]
- Wang, F.; Kong, W.; Wong, G.; Fu, L.; Peng, R.; Li, Z.; Yao, Q. Atmyb12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana. Mol. Genet. Genom. 2016, 291, 1545–1559. [Google Scholar] [CrossRef]
- Zhuang, X.Y.; Zhao, B.; Liu, S.; Song, F.R.; Cui, F.C.; Liu, Z.Q.; Li, Y.Q. Noncovalent interactions between superoxide dismutase and flavonoids studied by native mass spectrometry combined with molecular simulations. Anal. Chem. 2016, 88, 11720–11726. [Google Scholar] [CrossRef] [PubMed]
- Kovinich, N.; Kayanja, G.; Chanoca, A.; Otegui, M.S.; Grotewold, E. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signal. Behav. 2015, 10, e1027850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rietjens, I.M.; Huseiny, W.A.; Boersma, M.G. Flavonoids and alkenylbenzenes: New concepts in bioactivation studies. Chem. Biol. Interact. 2011, 192, 87–95. [Google Scholar] [CrossRef] [PubMed]
Metabolites | VIP | p-Value | |
---|---|---|---|
sugars | tagatose | 1.70 | *** |
sorbose | 1.67 | ** | |
sucrose | 1.60 | *** | |
melezitose | 1.56 | *** | |
D-talose | 1.46 | *** | |
fucose | 1.30 | ** | |
D-galactose | 1.26 | ** | |
fructose | 1.19 | *** | |
lyxose | 1.14 | ** | |
ribulose-5-phosphate | 1.13 | ** | |
sedoheptulose | 1.08 | ** | |
galactonic acid | 1.05 | * | |
lactobionic acid | 1.00 | ** | |
amino acids | threonic acid | 1.44 | ** |
tyrosine | 1.40 | *** | |
carbamylglutamate | 1.33 | *** | |
hydroxyaspartate | 1.27 | ** | |
valine | 1.13 | ** | |
hydroxynorvaline | 1.05 | ** | |
nicotinoylglycine | 1.02 | ** | |
alcohols | allo-inositol | 2.08 | **** |
myo-inositol | 2.06 | **** | |
phytol | 1.74 | *** | |
phenylethanol | 1.70 | **** | |
dodecanol | 1.42 | *** | |
dihydrocarveol | 1.27 | ** | |
glycerol | 1.31 | *** | |
deoxyerythritol | 1.18 | ** | |
D-arabitol | 1.08 | * | |
mannitol | 1.04 | ** | |
esters | tocopherol acetate | 1.38 | ** |
monostearin | 1.36 | *** | |
monopalmitin | 1.28 | *** | |
D-erythronolactone | 1.25 | ** | |
methyl heptadecanoate | 1.21 | ** | |
methylfumarate | 1.17 | ** | |
dioctyl phthalate | 1.05 | ** | |
methyl octadecanoate | 1.05 | ** | |
nonanoic acid methyl ester | 1.04 | ** | |
stearic acid | 1.02 | ** | |
prostaglandin A2 | 1.01 | ** | |
palmitic acid | 1.01 | ** | |
prostaglandin E2 | 1.00 | ** | |
acids | hydroxyphenylacetic acid | 1.89 | **** |
5-hydroxyindole-2-carboxylic acid | 1.64 | *** | |
tartaric acid | 1.43 | **** | |
alpha-ketoglutaric acid | 1.36 | *** | |
benzenetriol | 1.34 | *** | |
gluconic acid | 1.32 | ** | |
hydroxybenzoic acid | 1.30 | *** | |
phloroglucinol | 1.24 | *** | |
mucic acid | 1.23 | *** | |
trans-muconic acid | 1.23 | *** | |
fumaric acid | 1.23 | ** | |
pyruvic acid | 1.22 | *** | |
oxalic acid | 1.21 | *** | |
guaiacol | 1.20 | *** | |
glycerol 1-phosphate | 1.18 | ** | |
vanillylmandelic acid | 1.17 | ** | |
dehydroascorbic acid | 1.17 | ** | |
ketobutyric acid | 1.16 | ** | |
L-gulonic acid | 1.14 | ** | |
4-hydroxy-3-methoxybenzoic acid | 1.13 | ** | |
hydroxybenzoic acid | 1.11 | ** | |
epigallocatechin | 1.10 | ** | |
creatine | 1.08 | ** | |
nicotinic acid | 1.07 | ** | |
lactic acid | 1.06 | ** | |
citraconic acid | 1.03 | ** | |
furoic acid | 1.01 | ** | |
hydrocinnamic acid | 1.01 | ** |
Phenolic Metabolites | VIP | p-Value |
---|---|---|
vanillic acid | 1.40 | **** |
p-hydroxybenzoic acid | 1.30 | **** |
gallic acid | 1.23 | **** |
chlorogenic acid | 1.18 | **** |
syringic acid | 1.17 | **** |
myricitrin | 1.09 | ** |
petunidin | 1.09 | ** |
quercetin-3-O-rhamnoside | 1.06 | ** |
ferulic acid | 1.02 | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Jin, Y.; Guo, X.; Xu, M.; Tang, Z.; Chen, Q. The Role of Taraxacum mongolicum in a Puccinellia tenuiflora Community under Saline–Alkali Stress. Molecules 2022, 27, 8746. https://doi.org/10.3390/molecules27248746
Lu X, Jin Y, Guo X, Xu M, Tang Z, Chen Q. The Role of Taraxacum mongolicum in a Puccinellia tenuiflora Community under Saline–Alkali Stress. Molecules. 2022; 27(24):8746. https://doi.org/10.3390/molecules27248746
Chicago/Turabian StyleLu, Xueyan, Yan Jin, Xiaorui Guo, Mingyuan Xu, Zhonghua Tang, and Qi Chen. 2022. "The Role of Taraxacum mongolicum in a Puccinellia tenuiflora Community under Saline–Alkali Stress" Molecules 27, no. 24: 8746. https://doi.org/10.3390/molecules27248746
APA StyleLu, X., Jin, Y., Guo, X., Xu, M., Tang, Z., & Chen, Q. (2022). The Role of Taraxacum mongolicum in a Puccinellia tenuiflora Community under Saline–Alkali Stress. Molecules, 27(24), 8746. https://doi.org/10.3390/molecules27248746