Effect of Celeriac Pulp Maceration by Rhizopus sp. Pectinase on Juice Quality
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pressing Yield, pH, Content of Total Soluble Solids and Selected Sugars in the Celeriac Juice
2.2. Determination of the Antioxidant Activity in the Celeriac Juices
2.3. Identification of Phenolic Compounds in the Celeriac Juice
2.4. Content of Selected Phenolic Acids, Apigenins, and Luteolins in the Celeriac Juice
2.5. Colour Assessment in the Celeriac Juices by the CIE L*a*b* System
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Materials
3.3. Processing
3.4. Determination of the Pressing Yield, pH, Content of Total Soluble Solids, and Selected Sugars
3.5. Determination of the Antioxidant Activity
3.5.1. Determination of Antioxidant Activity Using ABTS*+ Cation Radical
3.5.2. Determination of Antioxidant Activity Using the DPPH*+ Method
3.5.3. Measurement of Ferric Ion–Reducing Antioxidant Power by the FRAP Assay
3.5.4. Determination of Total Polyphenols Content
3.5.5. Identification and Quantification of Phenolic Compounds
3.6. Colour Measurement in the CIE L*a*b* Space Analysis and Color Differences (ΔΕ)
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
PC | juice pressed from peeled celery root, no enzyme, zero incubation time, without incubation in the incubator |
PC1 | juice pressed from peeled celery root, no enzyme, 30 min incubation in an incubator, incubation temperature of 25 °C |
PC2 | juice pressed from peeled celery root, no enzyme, 60 min incubation in an incubator, incubation temperature of 25 °C |
UC | juice pressed from unpeeled celery root, no enzyme, zero incubation time, without incubation in the incubator |
UC1 | juice pressed from unpeeled celery root, no enzyme, 30 min incubation in an incubator, incubation temperature of 25 °C |
UC2 | juice pressed from unpeeled celery root, no enzyme, 60 min incubation in an incubator, incubation temperature of 25 °C |
PCE1 | juice pressed from peeled celery root, enzyme pectinase (dose: 10 mg/100 g pulp), 30 min incubation in an incubator, incubation temperature of 25 °C |
PCE2 | juice pressed from peeled celery root, enzyme pectinase (dose: 10 mg/100 g pulp), 60 min incubation in an incubator, incubation temperature of 25 °C |
UCE1 | juice pressed from unpeeled celery root, enzyme pectinase (dose: 10 mg/100 g pulp), 30 min incubation in an incubator, incubation temperature of 25 °C |
UCE2 | juice pressed from unpeeled celery root, enzyme pectinase (dose: 10 mg/100 g pulp), 60 min incubation in an incubator, incubation temperature of 25 °C |
References
- Nadulski, R.; Kobus, Z.; Guz, T. The Influence of Freezing and Thawing on the Yield and Energy Consumption of the Celeriac Juice Pressing Process. Processes 2020, 8, 378. [Google Scholar] [CrossRef] [Green Version]
- Kosson, R.; Anyszka, Z.; Grzegorzewska, M.; Golian, J.; Kohut, M.; Badełek, E. Postharvest quality of celeriac (Apium graveolens L. var. rapaceum (Mill.) Gaud.) depending on weed control methods. Prog. Plant Prot. 2014, 54, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Kooti, W.; Daraei, N. Review of the Antioxidant Activity of Celery (Apium graveolens L). J. Evid. Based Integr. Med. 2017, 22, 1029–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolarovic, J.; Popovic, M.; Mikov, M.; Mitic, R.; Gvozdenovic, L. Protective effects of celery juice in treatments with doxorubicin. Molecules 2009, 14, 1627–1638. [Google Scholar] [CrossRef] [Green Version]
- Yusni, Y.; Zufry, H.; Meutia, F.; Sucipto, K.W. The effects of celery leaf (Apium graveolens L.) treatment on blood glucose and insulin levels in elderly pre-diabetics. Saudi Med. J. 2018, 39, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Mimica-Dukić, N.; Popović, M. Apiaceae Species. A promising sources of pharmacologically active compounds and Petrosellinum crispum, Apium greveolens and Pastinaca sativa. In Recent Progress in Medicinal Plant Species; Govil, J.N., Singh, V.K., Eds.; Phytopharmacology and Therapeutic Values III, LLC: Houston, TX, USA, 2007; Volume 21, pp. 132–133. [Google Scholar]
- Sellami, I.H.; Bettaieb, I.; Bourgou, S.; Dahmani, R.; Limam, F.; Marzouk, B. Essential oil and aromacomposition of leaves, stalks and roots of celery (Apium graveolens var. dulce) from Tunisia. J. Essent. Oil Res. 2012, 24, 513–521. [Google Scholar] [CrossRef]
- Ingallina, C.; Capitani, D.; Mannina, L.; Carradori, S.; Locatelli, M.; Di Sotto, A.; Di Ciacomo, S.; Tonilo, C.; Pasqua, G.; Valetta, A.; et al. Phytochemical and biological characterization of Italian “sedano bianco di Sperlonga” Protected Geographical Indication celery ecotype: A multimethodological approach. Food Chem. 2020, 309, 125649. [Google Scholar] [CrossRef]
- Luiz, M.; Biasutti, A.; Garcia, N.A. Micellar effect on the scavenging of singlet molecular oxygen by hydroxybenzenes. Redox Rep. 2002, 7, 23–28. [Google Scholar] [CrossRef]
- Feng, K.; Xu, Z.-S.; Liu, J.-X.; Li, J.-W.; Wang, F.; Xiong, A.-S. Isolation, purifcation, and characterization of AgUCGalT1, a galactosyltransferase involved in anthocyanin galactosylation in purple celery (Apium graveolens L.). Planta 2018, 247, 1363–1375. [Google Scholar] [CrossRef]
- Li, M.Y.; Feng, K.; Hou, X.L.; Jiang, Q.; Xu, Z.S.; Wang, G.L.; Liu, J.X.; Wang, F.; Xiong, A.S. The genome sequence of celery (Apium graveolens L.), an important leaf vegetable crop rich in apigenin in the Apiaceae family. Hortic. Res. 2020, 7, 9–19. [Google Scholar] [CrossRef]
- Profir, A.; Vizireanu, C. Effect of the preservation processes on the storage stability of juice made from carrot, celery and beetroot. J. Agroaliment. Process. Technol. 2013, 19, 99–104. [Google Scholar]
- Lin, L.-Z.; Lu, S.; Harnly, J.M. Detection and Quantification of Glycosylated Flavonoid Malonates in Celery, Chinese Celery, and Celery Seed by LC-DAD-ESI/MS. J. Agric. Food Chem. 2007, 55, 1321–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Y.; Ren, G. Effect of thermal treatment on phenolic composition and antioxidant activities of two celery cultivars. LWT-Food Sci. Technol. 2011, 44, 181–185. [Google Scholar] [CrossRef]
- Lau, H.; Laserna, A.; Li, S.F.Y. 1H NMR-based metabolomics for the discrimination of celery (Apium graveolens L. var. Dulce) from different geographical origins. Food Chem. 2020, 332, 127424. [Google Scholar] [CrossRef]
- Nowak, D. Enzymy jako nowoczesne narzędzie technologiczne. Agro Przemysł 2008, 2, 28–30. [Google Scholar]
- Wightman, J.D.; Wrolstad, R.E. Beta-glucosidase activity in juice processing enzymes based on anthocyanin analysis. J. Food Sci. 1996, 61, 544–548. [Google Scholar] [CrossRef]
- Sandri, I.G.; Lorenzoni, C.M.T.; Fontana, R.C.; da Silveira, M.M. Use of pectinases produced by a new strain of Aspergillus Niger for the enzymatic treatment of apple and blueberry juice. LWT-Food Sci. Technol. 2013, 51, 469–475. [Google Scholar] [CrossRef]
- Tapre, A.R.; Jain, R.K. Pectines: Enzymes for fruit processing industry. Int. Food Res. J. 2014, 21, 447–453. [Google Scholar]
- Murad, H.A.; Azzaz, H.H. Microbial pectinases and ruminant nutrition. Res. J. Microbiol. 2011, 6, 246–269. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Nakkeeran, E.; Umesh-Kumar, S. Potential application of pectinase in developing functional foods. Annu. Rev. Food Sci. Technol. 2013, 4, 21–34. [Google Scholar] [CrossRef]
- Kohli, P.; Gupta, R. Alkaline pectinases: A review. Biocatal. Agric. Biotechnol. 2015, 4, 279–285. [Google Scholar] [CrossRef]
- Garg, G.; Singh, A.; Kaur, A.; Singh, R.; Kaur, J.; Mahajan, R. Micorial pectinases: An ecofriendly tool of nature for industries. 3 Biotech 2016, 6, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandri, I.G.; Fontana, R.C.; Barfknecht Da Silveira, M.M. Clarification of fruit juices by fungal pectinases. Food Sci. Technol. 2011, 44, 2217–2222. [Google Scholar] [CrossRef]
- Ramadan, M.F. Enzymes in fruit juice processing. In Enzymes in Food Biotechnology; Academic Press: Cambridge, MA, USA, 2019; pp. 34–59. [Google Scholar] [CrossRef]
- Urlaub, R. Modern use of enzymes in fruit processing. Fruit Process. 2002, 8, 360–361. [Google Scholar]
- Akesowan, A.; Choonhahirun, A. Effect of enzyme treatment on guava juice production using response surface methodology. J. Anim. Plant Sci. 2013, 23, 114–120. [Google Scholar]
- Nowak, D.; Tempczyk, A. Wpływ zastosowania obróbki enzymatycznej miazgi marchwiowej na wydajność i jakość otrzymanego soku. Postępy Tech. Przetwórstwa Spożywczego 2007, 1, 20–25. [Google Scholar]
- Nabrdalik, M.; Świsłowski, P. Microbiological evaluation of unpasteurized fruit and vegetable juices. Proc. ECOpole 2017, 11, 540–551. [Google Scholar]
- Salamatullah, A.; Özcan, M.; Alkaltham, M.; Uslu, N.; Hayat, K. Influence of boiling on total phenol, antioxidant activity, and phenolic compounds of celery (Apium graveolens L) root. J. Food Process. Preserv. 2020, 45, e15171. [Google Scholar] [CrossRef]
- Ertekin Filiz, B.; Korkmaz, N.; Budak, N.H.; Seydim, A.C.; Guzel Seydim, Z.B. Antioxidant Activity and Phenolic Acid Content of Selected Vegetable Broths. Czech J. Food Sci. 2017, 35, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Guerra, N.; Carrozzi, L.; Goni, M.; Roura, S.; Yommi, A. Quality Characterization of Celery (Apium graveolens L.) by Plant Zones and Two Harvest Dates. J. Food Sci. 2010, 75, S327–S332. [Google Scholar] [CrossRef]
- Fazal, S.S.; Singla, R.K. Review on the Pharmacognostical & Pharmacological Characterization of Apium Graveolens Linn. Indo Glob. J. Pharm. Sci. 2012, 2, 36–42. [Google Scholar]
- Kałwa, K. Właściwości antyoksydacyjne flawonoidów oraz ich wpływ na zdrowie człowieka. KOSMOS Probl. Nauk Biol. 2019, 68, 153–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietrich, H.; Rechner, C.D.; Patz, C.D. Bioactive compounds in fruit and juice. Fruit Process. 2004, 1, 50–55. [Google Scholar]
- Gheribi, E. Związki polifenolowe w owocach i warzywach. Med. Rodz. 2011, 4, 111–115. [Google Scholar]
- PN-EN 1132:1999; Soki Owocowe i Warzywne-Oznaczanie pH. PKN: Warsaw, Poland, 1999.
- PN-EN 12143:2000; Soki Owocowe i Warzywne-Oznaczanie Zawartości Substancji Rozpuszczalnych Metodą Refraktometryczną. PKN: Warsaw, Poland, 2000.
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M. Antioxidant activity appylying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Benzie, I.; Strain, J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The Frap assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Xianggun, G.; Ohlander, M.; Jeppson, N.; Bjork, L. Changes in antioxidant effects and their relationship to phytonutrient in fruits of sea buckthorn during maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar]
Sample Name | Delivery Capacity [%] | pH | Extract [°Bx] | Fructose [g/L] | Glucose [g/L] | Sucrose [g/L] |
---|---|---|---|---|---|---|
PC | 47 ± 0.5 a | 5.9 ± 0.0 c | 6.9± 0.1 a | 3.1± 0.3 ab | 16.0± 0.0 b | 20.6 ± 0.6 cd |
PC1 | 64 ± 0.3 d | 5.8 ± 0.2 c | 6.7 ± 0.2 a | 3.1 ± 0.2 ab | 16.5 ± 0.1 bc | 20.9 ± 0.5 d |
PC2 | 67± 0.1 de | 5.8 ± 0.2 c | 6.9 ± 0.1 a | 3.3 ± 0.2 b | 17.5 ± 0.1 c | 22.1 ± 0.1 e |
UC | 49 ± 0.2 ab | 6.0 ± 0.1 c | 8.3 ± 0.3 f | 5.2± 0.5 c | 22.1 ± 0.3 d | 19.3 ± 0.2 bc |
UC1 | 57 ± 0.1 c | 5.9 ± 0.6 c | 8.0 ± 0.2 e | 5.7 ± 0.3 cd | 25.0 ± 0.0 e | 20.9 ± 0.5 d |
UC2 | 60 ± 0.0 c | 5.9 ± 0.5 c | 8.1 ± 0.1 ef | 6.3 ± 0.3 d | 23.6 ± 0.7 de | 15.7 ± 0.4 a |
PCE1 | 47 ± 0.1 a | 4.2 ± 0.2 b | 7.2 ± 0.2 b | 2.8 ± 0.1 a | 14.9 ± 0.4 a | 20.2 ± 0.1 cd |
PCE2 | 53 ± 0.4 b | 4.2 ± 0.3 b | 7.4 ± 0.3 c | 2.8 ± 0.8 a | 15.9 ± 0.4 b | 22.0 ± 0.9 e |
UCE1 | 59 ± 0.6 c | 3.9 ± 0.0 a | 8.3 ± 0.4 f | 5.6 ± 0.8 cd | 24.8 ± 0.0 e | 20.2 ± 0.1 cd |
UCE2 | 70± 0.3 e | 3.9 ± 0.1 a | 7.7 ± 0.1 d | 5.7 ± 0.2 cd | 22.8 ± 0.2 d | 18.8 ± 0.0 b |
Three-factor analysis of variance ANOVA | ||||||
Factor 1 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0162 |
Factor 2 | 0.0003 | 0.0027 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Factor 3 | 0.0000 | 1.0000 | 0.6944 | 0.0000 | 0.0000 | 0.0000 |
Factor 1 × Factor 2 | 0.0000 | 0.0000 | 0.0000 | 0.6043 | 0.0000 | 0.0000 |
Factor 1 × Factor 3 | 0.0039 | 1.0000 | 0.0128 | 0.0000 | 0.0000 | 0.0000 |
Factor 2 × Factor 3 | 0.1453 | 1.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
Factor 1 × Factor 2 × Factor 3 | 0.1453 | 1.0000 | 0.0004 | 0.0089 | 0.0000 | 0.0000 |
Sample Name | ABTS*+ [µmol Trolox/L] | DPPH* [µmol Trolox/L] | FRAP [µmol Trolox/L] | Total Polyphenol [mg GAE/L] |
---|---|---|---|---|
PC | 4759 ± 18 e | 578 ± 8 a | 101 ± 1 a | 147 ± 7 de |
PC1 | 4041 ± 17 ab | 476 ± 23 a | 97 ± 3 a | 131 ± 6 d |
PC2 | 4505 ± 8 cd | 656 ± 2 a | 96 ± 2 a | 126 ± 6 cd |
UC | 4638 ± 12 de | 566 ± 9 a | 401 ± 2 f | 225 ± 1 f |
UC1 | 4137 ± 17 abc | 551 ± 9 a | 327 ± 7 e | 177 ± 8 e |
UC2 | 3944 ± 16 ab | 449 ± 6 a | 193± 2 d | 164 ± 3 e |
PCE1 | 3666 ± 37 a | 1108 ± 4 b | 125 ± 2 b | 112 ± 1 bc |
PCE2 | 4626 ± 21 d | 950 ± 18 b | 123 ± 2 b | 105 ± 2 ab |
UCE1 | 4367 ± 40 bcd | 938 ± 16 b | 157 ± 5 c | 117 ± 6 bcd |
UCE2 | 3847 ± 25 a | 587 ± 12 a | 193 ± 2 d | 93 ± 5 a |
Three-factor analysis of variance ANOVA | ||||
Factor 1 | 0.7693 | 0.0000 | 0.0000 | 0.0000 |
Factor 2 | 0.1982 | 0.0066 | 0.0000 | 0.0000 |
Factor 3 | 0.0975 | 0.06021 | 0.0000 | 0.0033 |
Factor 1 × Factor 2 | 0.3539 | 0.0782 | 0.0000 | 0.0000 |
Factor 1 × Factor 3 | 0.6817 | 0.0142 | 0.0000 | 0.3623 |
Factor 2 × Factor 3 | 0.0001 | 0.0413 | 0.0000 | 0.1037 |
Factor 1 × Factor 2 × Factor 3 | 0.0595 | 0.6792 | 0.0000 | 0.6324 |
Identification | tr (min) | [M-H]− (m/z) | [M-H]- MS/MS (m/z) | Λmax (nm) |
---|---|---|---|---|
Caffeic acid hexoside | 0.78 | 341 | 179,135 | 323 |
Quinic acid | 1.01 | 191 | 163 | nd |
Coumaroylquinic acid | 1.83 | 337 | 191,163 | 228,312 |
Dicaffeic acid | 3.05 | 341 | 191 | 286,338 |
Ferulic acid | 3.11 | 193 | 178,149 | 281,324 |
Caffeoylsinpylquinic acid | 4.75 | 559 | 341,179 | 275,330 |
Chrysoeriol | 2.81 | 299 | 257,169 | 281,308 |
Apigenin-6-C-glucoside | 3.91 | 431 | 341,311,269 | 335 |
Hydroxydimethoxycoumarin | 4.13 | 221 | 206,261 | 290,336 |
Kaempferol-3,7-O-diglucoside | 4.32 | 611 | 151,285 | 267,290 |
Luteolin-7-O-glucoside | 4.99 | 447 | 285 | 274,348 |
Chrysoeriol-7-O-6′′-malonyl glucoside | 5.14 | 547 | 299 | 284,322 |
Apiin | 5.47 | 563 | 431,269,225 | 266,334 |
Taxifolin hexoside I | 5.65 | 465 | 447,303,285,259 | 322 |
Chrysoeriol-7-O-apiosylglucoside | 5.85 | 593 | 285 | 265,328,346 |
Acetylated apigenin-C-hexoside-O-pentoside | 6.00 | 605 | 545,431,311,269 | 324,338 |
Acetylated luteolin hexoxyl-rhamnoside | 6.32 | 635 | 299,284 | 338,345 |
Taxifolin hexoside II | 6.62 | 465 | 285,303,447 | 267,276,321,338 |
Luteolin-7-O-malonyl-apiosylglucoside b | 6.91 | 665 | 285 | 267,276,283 |
Chrysoeriol-7-O-glucoside | 7.06 | 461 | 299 | 267,276,284 |
Sample Name | Quinic Acid [mg/L] | Dicaffeic Acid [mg/L] | Ferulic Acid [mg/L] | Total Phenolic Acids [mg/L] | Apigenin-6-C-glucoside [mg/L] | Apiin [mg/L] | Acetylated apigenin-C-hexoside-O-pentoside [mg/L] | Total Apigenins [mg/L] | Luteolin-7-O-glucoside [mg/L] | Acetylated Luteolin hexoxyl-rhamnosyde [mg/L] | Luteolin-7-O-malonyl-apiosyl glucoside b [mg/L] | Total Luteolins [mg/L] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PC | 47.9 ± 0.4 a | 6.0± 0.1 d | 5.2 ± 0.2 c | 59.1 ± 0.2 ab | 0.8 ± 0.1 cd | 3.3 ± 0.1 b | 0.3 ± 0.1 a | 4.4 ± 0.2 bc | 0.5 ± 0.1 a | 0.2± 0.1 a | 0.3 ± 0.2 ab | 1.0 ± 0.2 ab |
PC1 | 45.7± 0.7 a | 1.2 ± 0.0 c | 14.1 ± 0.2 e | 61.0 ± 0.1 b | 0.6 ± 0.2 c | 3.8 ± 0.3 c | 0.4 ± 0.0 ab | 4.8 ± 0.2 c | 0.6± 0.2 a | 0.1 ± 0.3 a | 0.1 ± 0.2 a | 0.8 ± 0.2 a |
PC2 | 43.7± 0.2 a | 0.1 ± 0.0 a | 11.5 ± 0.8 e | 55.3 ± 0.7 a | 0.2 ± 0.1 a | 3.6 ± 0.1 bc | 0.4 ± 0.2 ab | 4.2 ± 0.3 b | 0.6 ± 0.1 a | 0.1 ± 0.0 a | 0.1 ± 0.3 a | 0.8 ± 0.1 a |
UC | 106.5 ± 0.3 c | 0.2± 0.0 ab | 4.1 ± 0.4 b | 110.8 ± 0.9 d | 1.2 ± 0.2 d | 0.4 ± 0.0 a | 0.4 ± 0.2 ab | 2.0 ± 0.4 a | 4.8 ± 0.1 d | 0.5 ± 0.0 b | 0.5 ± 0.1 b | 5.8 ± 0.5 d |
UC1 | 109.1 ± 0.9 cd | 0.0 ± 0.0 a | 4.4 ± 0.2 b | 113.5 ± 0.3 de | 0.9 ± 0.2 cd | 5.1 ± 0.0 e | 0.3 ± 0.01 a | 6.3 ± 0.2 d | 3.0 ± 0.2 c | 0.4 ± 0.0 b | 0.3 ± 0.1 ab | 3.7 ± 0.3 c |
UC2 | 84.9± 0.3 b | 0.2 ± 0.0 ab | 4.2 ± 0.0 b | 89.3 ± 0.2 c | 1.2 ± 0.3 d | 6.0 ± 0.0 f | 0.4 ± 0.0 ab | 7.6 ± 0.5 e | 2.7 ± 0.3 c | 0.2 ± 0.0 a | 0.2 ± 0.0 ab | 3.1 ± 0.0 c |
PCE1 | 132.4± 0.9 e | 0.1 ± 0.0 a | 9.6 ± 0.0 d | 142.1± 0.9 f | 0.9 ± 0.2 cd | 3.1 ± 0.2 b | 0.2 ± 0.0 a | 4.2 ± 0.1 b | 0.5 ± 0.2 a | 0.3 ± 0.2 ab | 0.1 ± 0.0 a | 0.9 ± 0.0 a |
PCE2 | 100.6 ± 0.1 c | 0.1 ± 0.0 a | 9.4 ± 0.2 d | 110.1 ± 0.5 d | 0.3 ± 0.0 b | 4.6 ± 0.3 d | 0.2 ± 0.0 a | 5.1 ± 0.2 c | 0.5 ± 0.1 a | 0.1 ± 0.0 a | 0.0 ± 0.2 a | 0.6± 0.2 a |
UCE1 | 139.5 ± 0.2 e | 0.1 ± 0.0 a | 2.5 ± 0.0 a | 142.1 ± 0.3 f | 0.7 ± 0.1 c | 4.9 ± 0.8 de | 0.2± 0.0 a | 5.8 ± 0.4 d | 0.5 ± 0.1 a | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.7 ± 0.0 a |
UCE2 | 118.5 ± 0.1 d | 0.1 ± 0.0 a | 2.2 ± 0.2 a | 120.8 ± 0.3 e | 0.8± 0.1 cd | 3.9 ± 0.4 c | 0.3± 0.2 a | 5.0 ± 0.2 c | 1.1 ± 0.1 b | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 1.2 ± 0.2 b |
Three-factor analysis of variance ANOVA | ||||||||||||
Factor 1 | 0.0000 | 0.0000 | 0.0006 | 0.0000 | 0.3447 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Factor 2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0065 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Factor 3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0004 | 0.0000 | 0.0002 | 0.0039 | 0.1468 | 0.0000 | 0.0000 | 0.0154 |
Factor 1 × Factor 2 | 0.0000 | 0.0000 | 0.0024 | 0.0000 | 0.0000 | 0.0000 | 0.0140 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Factor 1 × Factor 3 | 0.0057 | 0.0000 | 0.0000 | 0.0018 | 0.0058 | 0.3221 | 0.2102 | 0.0293 | 0.0001 | 0.0019 | 0.0003 | 0.0000 |
Factor 2 × Factor 3 | 0.4116 | 0.0000 | 0.0000 | 0.2166 | 0.0000 | 0.0000 | 0.0004 | 0.9536 | 0.0476 | 0.4211 | 0.0000 | 0.0967 |
Factor 1 × Factor 2 × Factor 3 | 0.0011 | 0.0000 | 0.0000 | 0.0005 | 0.5951 | 0.0000 | 0.0005 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
Sample Name | L* | a* | b* | ΔΕ* |
---|---|---|---|---|
PC | 33.44 ± 0.02 ef | −0.01 ± 0.03 d | 4.94 ± 0.04 e | - |
PC1 | 33.60 ± 0.04 f | −0.12 ± 0.13 d | 5.51 ± 0.07 f | 0.60 |
PC2 | 33.11 ± 0.10 de | −0.62 ± 0.02 c | 4.63 ± 0.07 d | 0.76 |
UC | 36.95 ± 0.02 h | 2.22 ± 0.02 g | 9.54 ± 0.04 i | - |
UC1 | 33.28 ± 0.33 e | 0.96 ± 0.06 f | 7.48 ± 0.22 g | 4.39 |
UC2 | 34.62 ± 0.02 g | 0.63 ± 0.02 e | 7.65 ± 0.02 h | 3.40 |
PCE1 | 32.76 ± 0.06 c | −0.93 ± 0.01 a | 3.17 ± 0.01 b | 2.11 |
PCE2 | 32.89 ± 0.03 cd | −0.96 ± 0.02 a | 2.82 ± 0.02 a | 2.38 |
UCE1 | 32.19 ± 0.10 b | −0.78 ± 0.00 b | 4.65 ± 0.04 d | 7.45 |
UCE2 | 31.87 ± 0.15 a | −0.81 ± 0.01 b | 4.44 ± 0.04 c | 7.81 |
Three-factor analysis of variance ANOVA | ||||
Factor 1 | 0.0000 | 0.0000 | 0.0000 | - |
Factor 2 | 0.1049 | 0.0000 | 0.0000 | - |
Factor 3 | 0.0110 | 0.0000 | 0.0000 | - |
Factor 1 × Factor 2 | 0.0000 | 0.0000 | 0.0000 | - |
Factor 1 × Factor 3 | 0.0003 | 0.0000 | 0.3355 | - |
Factor 2 × Factor 3 | 0.0000 | 0.0509 | 0.0000 | - |
Factor 1 × Factor 2 × Factor 3 | 0.0000 | 0.0680 | 0.0000 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaworska, G.; Szarek, N.; Hanus, P. Effect of Celeriac Pulp Maceration by Rhizopus sp. Pectinase on Juice Quality. Molecules 2022, 27, 8610. https://doi.org/10.3390/molecules27238610
Jaworska G, Szarek N, Hanus P. Effect of Celeriac Pulp Maceration by Rhizopus sp. Pectinase on Juice Quality. Molecules. 2022; 27(23):8610. https://doi.org/10.3390/molecules27238610
Chicago/Turabian StyleJaworska, Grażyna, Natalia Szarek, and Paweł Hanus. 2022. "Effect of Celeriac Pulp Maceration by Rhizopus sp. Pectinase on Juice Quality" Molecules 27, no. 23: 8610. https://doi.org/10.3390/molecules27238610
APA StyleJaworska, G., Szarek, N., & Hanus, P. (2022). Effect of Celeriac Pulp Maceration by Rhizopus sp. Pectinase on Juice Quality. Molecules, 27(23), 8610. https://doi.org/10.3390/molecules27238610