A Model Iron Gall Ink: An In-Depth Study of Ageing Processes Involving Gallic Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Optimisation
2.1.1. Chromatographic Method Optimisation
2.1.2. Extraction Method Optimisation
2.2. Model Gallic Acid Ink
- the dimerisation promotes the formation of digallic acids intermediates, and subsequently the C-C bond is formed and a dehydration reaction takes place.
2.3. Ageing Degradation Markers
2.4. Colorimetric Measurements
2.5. Cases Studies
3. Materials and Methods
3.1. Reagents and Solvents
3.2. Reference Model Ink
3.3. Reference Mock-Ups and Ageing Tests
3.4. Historical Samples of Ink Handwriting
3.5. Sample Treatments
3.6. Colorimetric Measurements
3.7. HPLC-DAD-MS2 Analysis
3.8. Quantitative Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sharma, N.; Agarwal, A.; Negi, Y.; Bhardwaj, H.; Jaiswal, J. History and Chemistry of Ink—A Review. World J. Pharm. Res. 2014, 3, 2096–2105. [Google Scholar]
- Laporte, G.M.; Stephens, J.C. Analysis Techniques Used for the Forensic Examination of Writing and Printing Inks. In Forensic Chemistry Handbook; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 225–250. [Google Scholar]
- Drury, N.; Ramotowski, R.; Moini, M. A Comparison between DART-MS and DSA-MS in the Forensic Analysis of Writing Inks. Forensic Sci. Int. 2018, 289, 27–32. [Google Scholar] [CrossRef]
- Pines, C.C. The Story of Ink. Am. J. Police Sci 1931, 2, 290–301. [Google Scholar] [CrossRef]
- Teixeira, N.; Nabais, P.; de Freitas, V.; Lopes, J.A.; Melo, M.J. In-Depth Phenolic Characterization of Iron Gall Inks by Deconstructing Representative Iberian Recipes. Sci. Rep. 2021, 11, 8811. [Google Scholar] [CrossRef] [PubMed]
- Díaz Hidalgo, R.J.; Córdoba, R.; Nabais, P.; Silva, V.; Melo, M.J.; Pina, F.; Teixeira, N.; Freitas, V. New Insights into Iron-Gall Inks through the Use of Historically Accurate Reconstructions. Herit. Sci. 2018, 6, 63. [Google Scholar] [CrossRef]
- Kolar, J.; Strlic, M. Iron Gall Inks: On Manufacture Characterisation, Degradation and Stabilisation; National and University Library of Slovenia: Ljubljana, Slovenia, 2006; ISBN 9616551191. [Google Scholar]
- Carvalho, D.N. Forty Centuries of Ink or a Chronological Narrative Concerning Ink and Its Backgrounds; C.Griffin & Company Ltd.: London, UK, 1904. [Google Scholar]
- Degano, I.; Mattonai, M.; Sabatini, F.; Colombini, M.P. A Mass Spectrometric Study on Tannin Degradation within Dyed Woolen Yarns. Molecules 2019, 24, 2318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pant, A.F.; Özkasikci, D.; Fürtauer, S.; Reinelt, M. The Effect of Deprotonation on the Reaction Kinetics of an Oxygen Scavenger Based on Gallic Acid. Front. Chem. 2019, 7, 680. [Google Scholar] [CrossRef] [PubMed]
- Pant, A.F.; Sangerlaub, S.; Muller, K. Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films. Materials 2017, 10, 489. [Google Scholar] [CrossRef] [PubMed]
- Nkhili, E.; Loonis, M.; Mihai, S.; El Hajji, H.; Dangles, O. Reactivity of Food Phenols with Iron and Copper Ions: Binding, Dioxygen Activation and Oxidation Mechanisms. Food Funct. 2014, 5, 1186–1202. [Google Scholar] [CrossRef]
- Badhani, B.; Sharma, N.; Kakkar, R. Gallic Acid: A Versatile Antioxidant with Promising Therapeutic and Industrial Applications. RSC Adv. 2015, 5, 27540–27557. [Google Scholar] [CrossRef]
- Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; et al. Pharmacological Effects of Gallic Acid in Health and Disease: A Mechanistic Review. Iran. J. Basic Med. Sci. 2019, 22, 225–237. [Google Scholar] [CrossRef]
- Melo, M.J.; Otero, V.; Nabais, P.; Teixeira, N.; Pina, F.; Casanova, C.; Fragoso, S.; Sequeira, S.O. Iron—Gall Inks: A Review of Their Degradation Mechanisms and Conservation Treatments. Herit. Sci. 2022, 10, 145. [Google Scholar] [CrossRef]
- Rouchon, V.; Belhadj, O.; Duranton, M.; Gimat, A.; Massiani, P. Application of Arrhenius Law to DP and Zero-Span Tensile Strength Measurements Taken on Iron Gall Ink Impregnated Papers: Relevance of Artificial Ageing Protocols. Appl. Phys. A 2016, 122, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kolar, J.; Strlič, M.; Budnar, M.; Malešič, J.; Šelih, V.S.; Simčič, J. Stabilisation of Corrosive Iron Gall Inks. Acta Chim. Slov. 2003, 50, 763–770. [Google Scholar]
- Strlič, M.; Menart, E.; Cigić, I.K.; Kolar, J.; de Bruin, G.; Cassar, M. Emission of Reactive Oxygen Species during Degradation of Iron Gall Ink. Polym. Degrad. Stab. 2010, 95, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Kolar, J.; Štolfa, A.; Strlič, M.; Pompe, M.; Pihlar, B.; Budnar, M.; Simčič, J.; Reissland, B. Historical Iron Gall Ink Containing Documents—Properties Affecting Their Condition. Anal. Chim. Acta 2006, 555, 167–174. [Google Scholar] [CrossRef]
- Hahn, O.; Malzer, W.; Kanngiesser, B.; Beckhoff, B. Characterization of Iron-Gall Inks in Historical Manuscripts and Music Compositions Using x-Ray Fluorescence Spectrometry. X-ray Spectrom. 2004, 33, 234–239. [Google Scholar] [CrossRef]
- Duh, J.; Krstić, D.; Desnica, V.; Fazinić, S. Non-Destructive Study of Iron Gall Inks in Manuscripts. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2018, 417, 96–99. [Google Scholar] [CrossRef]
- Lerf, A.; Wagner, F.E.; Dreher, M.; Espejo, T.; Pérez-Rodríguez, J.L. Mössbauer Study of Iron Gall Inks on Historical Documents. Herit. Sci. 2021, 9, 1–14. [Google Scholar] [CrossRef]
- Wagner, B.; Bulska, E.; Stahl, B.; Heck, M.; Ortner, H.M. Analysis of Fe Valence States in Iron-Gall Inks from XVIth Century Manuscripts by 57Fe Mössbauer Spectroscopy. Anal. Chim. Acta 2004, 527, 195–202. [Google Scholar] [CrossRef]
- Arcon, I.; Kolar, J.; Kodre, A.; Hanzel, D.; Strlič, M. XANES Analysis of Fe Valence in Iron Gall Inks. X-ray Spectrom. 2007, 36, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Wilke, M.; Hahn, O.; Woodland, A.B.; Rickers, K. The Oxidation State of Iron Determined by Fe K-Edge XANES -Application to Iron Gall Ink in Historical Manuscripts. J. Anal. At. Spectrom. 2009, 24, 1364–1372. [Google Scholar] [CrossRef]
- Proost, K.; Janssens, K.; Wagner, B.; Bulska, E.; Schreiner, M. Determination of Localized Fe2+/Fe3+ Ratios in Inks of Historic Documents by Means of μ-XANES. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2004, 213, 723–728. [Google Scholar] [CrossRef]
- Rouchon-Quillet, V.; Remazeilles, C.; Bernard, J.; Wattiaux, A.; Fournes, L. The Impact of Gallic Acid on Iron Gall Ink Corrosion. Appl. Phys. A 2004, 79, 389–392. [Google Scholar] [CrossRef]
- Ursescu, M.; Mǎluţan, T.; Ciovicǎ, S. Iron Gall Inks Influence on Papers’ Thermal Degradation FTIR Spectroscopy Applications. Eur. J. Sci. Theol. 2009, 5, 71–84. [Google Scholar]
- Ferrer, N.; Carme Sistach, M. Analysis of Sediments on Iron Gall Inks in Manuscripts. Restaurator 2013, 34, 175–193. [Google Scholar] [CrossRef]
- Tse, S.; Guild, S.; Orlandini, V.; Trojan-Bedynski, M. Microfade Testing of 19th Century Iron Gall Inks. Res. Tech. Stud. Spec. Group Postprints 2010, 2, 56–68. [Google Scholar]
- Kosek, J.; Barry, C. Investigating the Condition of Iron Gall Ink Drawings: Developing an Assessment Survey. J. Inst. Conserv. 2019, 42, 191–209. [Google Scholar] [CrossRef]
- Liu, Y.; Fearn, T.; Strlič, M. Photodegradation of Iron Gall Ink Affected by Oxygen, Humidity and Visible Radiation. Dye Pigment 2022, 198, 109947. [Google Scholar] [CrossRef]
- Lee, A.S.; Mahon, P.J.; Creagh, D.C. Raman Analysis of Iron Gall Inks on Parchment. Vib. Spectrosc. 2006, 41, 170–175. [Google Scholar] [CrossRef]
- Degano, I.; La Nasa, J. Trends in High Performance Liquid Chromatography for Cultural Heritage. Top. Curr. Chem. 2016, 374, 20. [Google Scholar] [CrossRef] [PubMed]
- Degano, I.; Ribechini, E.; Modugno, F.; Colombini, M.P. Analytical Methods for the Characterization of Organic Dyes in Artworks and in Historical Textiles. Appl. Spectrosc. Rev. 2009, 44, 363–410. [Google Scholar] [CrossRef]
- Daley, S.K.; Downer-Riley, N. The Biomimetic Synthesis of Balsaminone A and Ellagic Acid via Oxidative Dimerization. Beilstein J. Org. Chem. 2020, 16, 2026–2031. [Google Scholar] [CrossRef] [PubMed]
- Nikolić, G.; Veselinović, A.; Mitić, Ž.; Živanović, S. HPLC-DAD Study of Gallic Acid Autoxidation in Alkaline Aqueous Solutions and the Influence of MG(II) Ion. Acta Fac. Med. Naissensis 2011, 28, 219–224. [Google Scholar]
- Caregnato, P.; Gara, P.M.D.; Bosio, G.N.; Gonzalez, C.; Michelini, C.; Ma, D.O. Theoretical and Experimental Investigation on the Oxidation of Gallic Acid by Sulfate Radical Anions. J. Phys. Chem. A 2008, 112, 1188–1194. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, D.; Andreux, P.A.; Valdés, P.; Singh, A.; Rinsch, C.; Auwerx, J. Impact of the Natural Compound Urolithin A on Health, Disease, and Aging. Trends Mol. Med. 2021, 27, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Toney, A.M.; Fox, D.; Chaidez, V.; Ramer-Tait, A.E.; Chung, S. Immunomodulatory Role of Urolithin a on Metabolic Diseases. Biomedicines 2021, 9, 192. [Google Scholar] [CrossRef] [PubMed]
- González-Barrio, R.; Edwards, C.A.; Crozier, A. Colonic Catabolism of Ellagitannins, Ellagic Acid, and Raspberry Anthocyanins: In Vivo and in Vitro Studies. Drug Metab. Dispos. 2011, 39, 1680–1688. [Google Scholar] [CrossRef] [PubMed]
- Reissland, B.; Cowan, M.W. The Light Sensitivity of Iron Gall Inks. Stud. Conserv. 2002, 47, 180–184. [Google Scholar] [CrossRef]
- Csefalvayová, L.; Havlínová, B.; Čeppan, M.; Jakubíková, Z. The Influence of Iron Gall Ink on Paper Ageing. Restaurator 2007, 28, 129–139. [Google Scholar] [CrossRef]
Extraction Method | mg/g (Average) of Gallic Acid | S (mg/g) | CV % |
---|---|---|---|
EDTA-DMF (0.1% of EDTA in H2O/DMF 1:1) | 10.4 | 0.4 | 4 |
Methanolysis (HCl/MeOH 1:30) redissolved in H2O/MeOH | 2.7 | 0.6 | 23 |
Ageing Marker | tR (min) | [M-H]− | MS2 | Raw Formula (ppm) | Hypothesised Structure |
---|---|---|---|---|---|
m1 | 2.9 | 213.0041 | 151.002, 123.007, 107.014 | C8H6O7 −0.3 | |
m2 | 3.9 | 221.0094 | 177.016, 149.023, 132.018, 121.026, 109.029, 105.031 | C10H6O6 1.2 | |
m3 | 4.4 | 197.0097 | 152.010, 125.024, 107.013 | C8H6O6 3.1 | |
m4 | 4.6 | 211.0254 | 167.032, 150.915, 139.040, 124.016, 109.028 | C9H8O6 3.2 | n.a. |
m5 | 6.2 | 181.0139 | 137.022, 109.029 | C8H6O5 −1.4 | |
m6 | 7.3 | 211.0245 | 167.032, 150.920, 132.904, 124.015, 107.013 | C9H8O6 −1.7 | n.a. |
m7 | 8.2 | 221.0093 | 177.015, 166.859, 148.012, 133.025, 123.008, 115.016, 103.016 | C10H6O6 0.1 | |
m8 | 8.9 | 221.0088 | 177.015, 160.014, 149.021, 133.025, 121.029, 105.031 | C10H6O6 −1.8 | |
m9 | 9.5 | 347.0040 | 259.026, 213.021, 187.041, 109.030 | C15H8O10 −1.8 | |
m10 | 9.7 | 195.0303 | 150.031, 136.017, 123.044, 108.021 | C9H8O5 1.9 | |
m11 | 9.9 | 239.0169 | 193.009, 167.035, 152.011, 125.024, 107.013 | C10H8O7 −3.5 | |
m12 | 10.5 | 389.0145 | 301.037, 258.018, 165.020, 123.010 | C17H10O11 −1.2 | n.a. |
m13 | 12.3 | 287.0198 | 243.025, 225.015, 197.020, 171.042, 159.041, 143.047 | C14H8O7 0.3 | |
m14 | 13.2 | 315.0145 | 287.021, 271.024, 243.031, 215.036, 197.025, 187.040, 171.046, 159.047, 143.050 | C15H8O8 0.5 |
Analyte | Chemical Structure | tR (min) HPLC-DAD | λmax (nm) | tR (Min) HPLC-MS | MS ([M-H]−) | MS2 |
---|---|---|---|---|---|---|
Gallic acid | 2.8 | 271 | 2.8 | 169.014 | 125.024, 107.014 | |
Ellagic acid | 13.1 | 255, 367 | 11.8 | 300.997 | 300.994, 283.993, 257.006, 229.014, 185.026, 145.029 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferretti, A.; Sabatini, F.; Degano, I. A Model Iron Gall Ink: An In-Depth Study of Ageing Processes Involving Gallic Acid. Molecules 2022, 27, 8603. https://doi.org/10.3390/molecules27238603
Ferretti A, Sabatini F, Degano I. A Model Iron Gall Ink: An In-Depth Study of Ageing Processes Involving Gallic Acid. Molecules. 2022; 27(23):8603. https://doi.org/10.3390/molecules27238603
Chicago/Turabian StyleFerretti, Adele, Francesca Sabatini, and Ilaria Degano. 2022. "A Model Iron Gall Ink: An In-Depth Study of Ageing Processes Involving Gallic Acid" Molecules 27, no. 23: 8603. https://doi.org/10.3390/molecules27238603
APA StyleFerretti, A., Sabatini, F., & Degano, I. (2022). A Model Iron Gall Ink: An In-Depth Study of Ageing Processes Involving Gallic Acid. Molecules, 27(23), 8603. https://doi.org/10.3390/molecules27238603