A Comprehensive Review on Zeolite Chemistry for Catalytic Conversion of Biomass/Waste into Green Fuels
Abstract
:1. Introduction
2. Types of Zeolites and Chemistry
2.1. Zeolites Structure, Properties, and Different Forms
2.2. Mesoporosity, Acidity and Crystal Size Effect
2.3. Zeolites Chemistry and Its Design Advancement
2.4. Carbohydrates Chemical Science
3. Potential and Challenges of Zeolite
3.1. Zeolites Role in Environment Protection
3.2. Zeolites for Biomass Transformation into Fuel, Chemical Feedstock, Aromatics, and Levulinic Acid through Several Processes
3.3. Challenges Associated with Zeolites Structure
4. Future Prospects and Recommendations
5. Conclusive Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nuttens, N.; Verboekend, D.; Deneyer, A.; van Aelst, J.; Sels, B.F. Potential of Sustainable Hierarchical Zeolites in the Valorization of α-Pinene. ChemSusChem 2015, 8, 1197–1205. [Google Scholar] [CrossRef] [PubMed]
- Slak, J.; Pomeroy, B.; Kostyniuk, A.; Grilc, M.; Likozar, B. A Review of Bio-Refining Process Intensification in Catalytic Conversion Reactions, Separations and Purifications of Hydroxymethylfurfural (HMF) and Furfural. Chem. Eng. J. 2022, 429, 132325. [Google Scholar] [CrossRef]
- Zahid, I.; Ayoub, M.; Abdullah, B.B.; Nazir, M.H.; Ameen, M.; Zulqarnain; Mohd Yusoff, M.H.; Inayat, A.; Danish, M. Production of Fuel Additive Solketal via Catalytic Conversion of Biodiesel-Derived Glycerol. Ind. Eng. Chem. Res. 2020, 59, 20961–20978. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, F.; Wei, X.; Yang, Y.; Xu, S.; Deng, D.; Wang, Y.-Z. From Trash to Treasure: Chemical Recycling and Upcycling of Commodity Plastic Waste to Fuels, High-Valued Chemicals and Advanced Materials. J. Energy Chem. 2022, 69, 369–388. [Google Scholar] [CrossRef]
- Yu, I.K.M.; Chen, H.; Abeln, F.; Auta, H.; Fan, J.; Budarin, V.L.; Clark, J.H.; Parsons, S.; Chuck, C.J.; Zhang, S.; et al. Chemicals from Lignocellulosic Biomass: A Critical Comparison between Biochemical, Microwave and Thermochemical Conversion Methods. Crit. Rev. Environ. Sci. Technol. 2020, 51, 1479–1532. [Google Scholar] [CrossRef]
- Papanikolaou, G.; Centi, G.; Perathoner, S.; Lanzafame, P. Catalysis for e-Chemistry: Need and Gaps for a Future De-Fossilized Chemical Production, with Focus on the Role of Complex (Direct) Syntheses by Electrocatalysis. ACS Catal. 2022, 12, 2861–2876. [Google Scholar] [CrossRef]
- Giannakoudakis, D.A.; Colmenares, J.C.; Tsiplakides, D.; Triantafyllidis, K.S. Nanoengineered Electrodes for Biomass-Derived 5-Hydroxymethylfurfural Electrocatalytic Oxidation to 2,5-Furandicarboxylic Acid. ACS Sustain. Chem. Eng. 2021, 9, 1970–1993. [Google Scholar] [CrossRef]
- Martín, A.J.; Mondelli, C.; Jaydev, S.D.; Pérez-Ramírez, J. Catalytic Processing of Plastic Waste on the Rise. Chem 2021, 7, 1487–1533. [Google Scholar] [CrossRef]
- Lynd, L.R.; Beckham, G.T.; Guss, A.M.; Jayakody, L.N.; Karp, E.M.; Maranas, C.; McCormick, R.L.; Amador-Noguez, D.; Bomble, Y.J.; Davison, B.H.; et al. Toward Low-Cost Biological and Hybrid Biological/Catalytic Conversion of Cellulosic Biomass to Fuels. Energy Environ. Sci. 2022, 15, 938–990. [Google Scholar] [CrossRef]
- Ennaert, T.; van Aelst, J.; Dijkmans, J.; de Clercq, R.; Schutyser, W.; Dusselier, M.; Verboekend, D.; Sels, B.F. Potential and Challenges of Zeolite Chemistry in the Catalytic Conversion of Biomass. Chem. Soc. Rev. 2016, 45, 584–611. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Arends, I.; Hanefeld, U. Green Chemistry and Catalysis; John Wiley & Sons: Hoboken, NJ, USA, 2007; p. 433. [Google Scholar]
- Chen, D.; Yin, L.; Wang, H.; He, P. Reprint of: Pyrolysis Technologies for Municipal Solid Waste: A Review. Waste Manag. 2015, 37, 116–136. [Google Scholar] [CrossRef]
- Li, A.; Antizar-Ladislao, B.; Khraisheh, M. Bioconversion of Municipal Solid Waste to Glucose for Bio-Ethanol Production. Bioprocess Biosyst. Eng. 2007, 30, 189–196. [Google Scholar] [CrossRef]
- Lange, J.P.; van der Heide, E.; van Buijtenen, J.; Price, R. Furfural—A Promising Platform for Lignocellulosic Biofuels. ChemSusChem 2012, 5, 150–166. [Google Scholar] [CrossRef]
- Luo, H.Y.; Lewis, J.D.; Román-Leshkov, Y. Lewis Acid Zeolites for Biomass Conversion: Perspectives and Challenges on Reactivity, Synthesis, and Stability. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 663–692. [Google Scholar] [CrossRef] [Green Version]
- Zhou, N.; Dai, L.; Lyu, Y.; Li, H.; Deng, W.; Guo, F.; Chen, P.; Lei, H.; Ruan, R. Catalytic Pyrolysis of Plastic Wastes in a Continuous Microwave Assisted Pyrolysis System for Fuel Production. Chem. Eng. J. 2021, 418, 129412. [Google Scholar] [CrossRef]
- Choi, I.H.; Lee, H.J.; Rhim, G.B.; Chun, D.H.; Lee, K.H.; Hwang, K.R. Catalytic Hydrocracking of Heavy Wax from Pyrolysis of Plastic Wastes Using Pd/Hβ for Naphtha-Ranged Hydrocarbon Production. J. Anal. Appl. Pyrolysis 2022, 161, 105424. [Google Scholar] [CrossRef]
- Shehata, W.M.; Mohamed, M.F.; Gad, F.K. Monitoring and Modelling of Variables Affecting Isomerate Octane Number Produced from an Industrial Isomerization Process. Egypt. J. Pet. 2018, 27, 945–953. [Google Scholar] [CrossRef]
- Dhar, A.; Vekariya, R.L.; Bhadja, P. N-Alkane Isomerization by Catalysis—A Method of Industrial Importance: An Overview. Cogent Chem. 2018, 4, 1514686. [Google Scholar] [CrossRef]
- Maghrebi, R.; Buffi, M.; Bondioli, P.; Chiaramonti, D. Isomerization of Long-Chain Fatty Acids and Long-Chain Hydrocarbons: A Review. Renew. Sustain. Energy Rev. 2021, 149, 111264. [Google Scholar] [CrossRef]
- Imyen, T.; Wannapakdee, W.; Limtrakul, J.; Wattanakit, C. Role of Hierarchical Micro-Mesoporous Structure of ZSM-5 Derived from an Embedded Nanocarbon Cluster Synthesis Approach in Isomerization of Alkenes, Catalytic Cracking and Hydrocracking of Alkanes. Fuel 2019, 254, 115593. [Google Scholar] [CrossRef]
- Serrano, D.P.; Melero, J.A.; Morales, G.; Iglesias, J.; Pizarro, P. Progress in the Design of Zeolite Catalysts for Biomass Conversion into Biofuels and Bio-Based Chemicals. Catal. Rev. 2017, 60, 1–70. [Google Scholar] [CrossRef]
- Cheng, Y.-T.; Jae, J.; Shi, J.; Fan, W.; Huber, G.W. Production of Renewable Aromatic Compounds by Catalytic Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSM-5 Catalysts. Angew. Chem. 2012, 124, 1416–1419. [Google Scholar] [CrossRef] [Green Version]
- Ciesielski, P.N.; Pecha, M.B.; Lattanzi, A.M.; Bharadwaj, V.S.; Crowley, M.F.; Bu, L.; Vermaas, J.V.; Steirer, K.X.; Crowley, M.F. Advances in Multiscale Modeling of Lignocellulosic Biomass. ACS Sustain. Chem. Eng. 2020, 8, 3512–3531. [Google Scholar] [CrossRef]
- Abdelhamid, A.E.; Labena, A.; Mansor, E.S.; Husien, S.; Moghazy, R.M. Highly Efficient Adsorptive Membrane for Heavy Metal Removal Based on Ulva Fasciata Biomass. Biomass Convers. Biorefin. 2021, 2021, 1–16. [Google Scholar] [CrossRef]
- Joniver, C.F.H.; Photiades, A.; Moore, P.J.; Winters, A.L.; Woolmer, A.; Adams, J.M.M. The Global Problem of Nuisance Macroalgal Blooms and Pathways to Its Use in the Circular Economy. Algal Res. 2021, 58, 102407. [Google Scholar] [CrossRef]
- Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D.L. Biomass for a Sustainable Bioeconomy: An Overview of World Biomass Production and Utilisation. Renew. Sustain. Energy Rev. 2021, 139, 110691. [Google Scholar] [CrossRef]
- Manikandan, S.; Subbaiya, R.; Biruntha, M.; Krishnan, R.Y.; Muthusamy, G.; Karmegam, N. Recent Development Patterns, Utilization and Prospective of Biofuel Production: Emerging Nanotechnological Intervention for Environmental Sustainability—A Review. Fuel 2022, 314, 122757. [Google Scholar] [CrossRef]
- Belachew, N.; Hinsene, H. Preparation of Zeolite 4A for Adsorptive Removal of Methylene Blue: Optimization, Kinetics, Isotherm, and Mechanism Study. Silicon 2021, 14, 1629–1641. [Google Scholar] [CrossRef]
- Yu, L.; Shang, X.; Chen, H.; Xiao, L.; Zhu, Y.; Fan, J. A Tightly-Bonded and Flexible Mesoporous Zeolite-Cotton Hybrid Hemostat. Nat. Commun. 2019, 10, 1932. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.; Pei, X.; Pan, H.; Wan, K.; Chen, H.; Zhang, Z.; Zhang, Y. Biomass Catalytic Pyrolysis over Zeolite Catalysts with an Emphasis on Porosity and Acidity: A State-of-the-Art Review. Energy Fuels 2020, 34, 11771–11790. [Google Scholar] [CrossRef]
- Masoumifard, N.; Guillet-Nicolas, R.; Kleitz, F.; Masoumifard, N.; Guilletnicolas, R.; Kleitz, F. Synthesis of Engineered Zeolitic Materials: From Classical Zeolites to Hierarchical Core–Shell Materials. Adv. Mater. 2018, 30, 1704439. [Google Scholar] [CrossRef] [PubMed]
- Argyle, M.D.; Bartholomew, C.H. Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catalysts 2015, 5, 145–269. [Google Scholar] [CrossRef] [Green Version]
- Ochoa, A.; Bilbao, J.; Gayubo, A.G.; Castaño, P. Coke Formation and Deactivation during Catalytic Reforming of Biomass and Waste Pyrolysis Products: A Review. Renew. Sustain. Energy Rev. 2020, 119, 109600. [Google Scholar] [CrossRef]
- Mika, L.T.; Cséfalvay, E.; Németh, Á. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chem. Rev. 2018, 118, 505–613. [Google Scholar] [CrossRef] [PubMed]
- Holtzapple, M.T.; Wu, H.; Weimer, P.J.; Dalke, R.; Granda, C.B.; Mai, J.; Urgun-Demirtas, M. Microbial Communities for Valorizing Biomass Using the Carboxylate Platform to Produce Volatile Fatty Acids: A Review. Bioresour. Technol. 2022, 344, 126253. [Google Scholar] [CrossRef]
- Alalwan, H.A.; Alminshid, A.H.; Aljaafari, H.A.S. Promising Evolution of Biofuel Generations. Subject Review. Renew. Energy Focus 2019, 28, 127–139. [Google Scholar] [CrossRef]
- Gómez Millán, G.; Hellsten, S.; Llorca, J.; Luque, R.; Sixta, H.; Balu, A.M. Recent Advances in the Catalytic Production of Platform Chemicals from Holocellulosic Biomass. ChemCatChem 2019, 11, 2022–2042. [Google Scholar] [CrossRef]
- Siwal, S.S.; Zhang, Q.; Devi, N.; Saini, A.K.; Saini, V.; Pareek, B.; Gaidukovs, S.; Thakur, V.K. Recovery Processes of Sustainable Energy Using Different Biomass and Wastes. Renew. Sustain. Energy Rev. 2021, 150, 111483. [Google Scholar] [CrossRef]
- Sharma, S.; Kundu, A.; Basu, S.; Shetti, N.P.; Aminabhavi, T.M. Sustainable Environmental Management and Related Biofuel Technologies. J. Environ. Manag. 2020, 273, 111096. [Google Scholar] [CrossRef]
- Lei, L.; Wang, Y.; Zhang, Z.; An, J.; Wang, F. Transformations of Biomass, Its Derivatives, and Downstream Chemicals over Ceria Catalysts. ACS Catal. 2020, 10, 8788–8814. [Google Scholar] [CrossRef]
- Santander Muñoz, M.; Rodríguez Cortina, J.; Vaillant, F.E.; Escobar Parra, S. An Overview of the Physical and Biochemical Transformation of Cocoa Seeds to Beans and to Chocolate: Flavor Formation. Crit. Rev. Food Sci. Nutr. 2019, 60, 1593–1613. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.H.; Hao, N.; Wang, Y.Y.; Dou, C.; Lin, F.; Shen, R.; Bura, R.; Hodge, D.B.; Dale, B.E.; Ragauskas, A.J.; et al. Transforming Biorefinery Designs with ‘Plug-In Processes of Lignin’ to Enable Economic Waste Valorization. Nat. Commun. 2021, 12, 3912. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, L.; Wang, S.; Wu, Y. Recent Advances in Aqueous-Phase Catalytic Conversions of Biomass Platform Chemicals Over Heterogeneous Catalysts. Front. Chem. 2019, 7, 948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parihar, A.; Bhattacharya, S. Cellulose Fast Pyrolysis for Platform Chemicals: Assessment of Potential Targets and Suitable Reactor Technology. Biofuels Bioprod. Biorefining 2020, 14, 446–468. [Google Scholar] [CrossRef]
- Takkellapati, S.; Li, T.; Gonzalez, M.A. An Overview of Biorefinery Derived Platform Chemicals from a Cellulose and Hemicellulose Biorefinery. Clean Technol. Environ. Policy 2018, 20, 1615. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.T.; Wang, Z.; Gilbert, C.J.; Fan, W.; Huber, G.W. Production of P-Xylene from Biomass by Catalytic Fast Pyrolysis Using ZSM-5 Catalysts with Reduced Pore Openings. Angew. Chem. 2012, 51, 11097–11100. [Google Scholar] [CrossRef]
- Pérez Pariente, J.; Martínez Sánchez, M. Zeolites and Ordered Porous Solids: Fundamentals and Applications; Valencia Polytechnic University: Valencia, Spain, 2011; ISBN 9788483637074. [Google Scholar]
- Tran, Y.T.; Lee, J.; Kumar, P.; Kim, K.H.; Lee, S.S. Natural Zeolite and Its Application in Concrete Composite Production. Compos. B Eng. 2019, 165, 354–364. [Google Scholar] [CrossRef]
- Javaid, R.; Urata, K.; Furukawa, S.; Komatsu, T. Factors affecting coke formation on H-ZSM-5 in naphtha cracking. Appl. Catal. A. 2015, 491, 100–105. [Google Scholar] [CrossRef]
- El-Nassera, K.S.; Taha, T.A.; Alia, I.O.; Donya, H. Hydrothermal Synthesis, Structure, and Antibacterial Studies of a Nanosized Iron Zeolite. arXiv 2022. [Google Scholar] [CrossRef]
- Georgieva, V.M.; Bruce, E.L.; Verbraeken, M.C.; Scott, A.R.; Casteel, W.J.; Brandani, S.; Wright, P.A. Triggered Gate Opening and Breathing Effects during Selective CO2 Adsorption by Merlinoite Zeolite. J. Am. Chem. Soc. 2019, 141, 12744–12759. [Google Scholar] [CrossRef]
- Chai, Y.; Dai, W.; Wu, G.; Guan, N.; Li, L. Confinement in a Zeolite and Zeolite Catalysis. Acc. Chem. Res. 2021, 54, 2894–2904. [Google Scholar] [CrossRef] [PubMed]
- Harun, N.A.M.; Shaari, N.; Nik Zaiman, N.F.H. A Review of Alternative Polymer Electrolyte Membrane for Fuel Cell Application Based on Sulfonated Poly(Ether Ether Ketone). Int. J. Energy Res. 2021, 45, 19671–19708. [Google Scholar] [CrossRef]
- Tahir, N.; Nadeem, F.; Jabeen, F.; Singhania, R.R.; Qazi, U.Y.; Patel, A.K.; Javaid, R.; Zhang, Q. Enhancing biohydrogen production from lignocellulosic biomass of paulownia waste by charge facilitation in Zn doped SnO2 nanocatalysts. Bioresour. Technol. 2022, 1355, 127299. [Google Scholar] [CrossRef] [PubMed]
- Lv, K.; Fichter, S.; Gu, M.; März, J.; Schmidt, M. An Updated Status and Trends in Actinide Metal-Organic Frameworks (An-MOFs): From Synthesis to Application. Coord. Chem. Rev. 2021, 446, 214011. [Google Scholar] [CrossRef]
- Król, M. Natural vs. Synthetic Zeolites. Crystals 2020, 10, 622. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, W.; Zhang, Q.; Li, Y.; Chen, L.; Xu, Y.; Wang, C.; Ma, L. Production of Hydrocarbon Fuels from Heavy Fraction of Bio-Oil through Hydrodeoxygenative Upgrading with Ru-Based Catalyst. Fuel 2018, 215, 825–834. [Google Scholar] [CrossRef]
- Chai, Y.; Shang, W.; Li, W.; Wu, G.; Dai, W.; Guan, N.; Li, L.; Chai, Y.; Shang, W.; Li, W.; et al. Noble Metal Particles Confined in Zeolites: Synthesis, Characterisation, and Applications. Adv. Sci. 2019, 6, 1900299. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Xu, J.; Ma, Z.; Yang, Y.; Zhou, B.; Wu, C.; Ye, J.; Zhao, C.; Liu, X.; Chen, D.; et al. Bio-BTX Production from the Shape Selective Catalytic Fast Pyrolysis of Lignin Using Different Zeolite Catalysts: Relevance between the Chemical Structure and the Yield of Bio-BTX. Fuel Process. Technol. 2021, 216, 106792. [Google Scholar] [CrossRef]
- Li, Y.; Yu, J. Emerging Applications of Zeolites in Catalysis, Separation and Host–Guest Assembly. Nat. Rev. Mater. 2021, 6, 1156–1174. [Google Scholar] [CrossRef]
- Menon, U.; Rahman, M.; Khatib, S.J. A Critical Literature Review of the Advances in Methane Dehydroaromatization over Multifunctional Metal-Promoted Zeolite Catalysts. Appl. Catal. A Gen. 2020, 608, 117870. [Google Scholar] [CrossRef]
- Rahman, M.M.; Liu, R.; Cai, J. Catalytic Fast Pyrolysis of Biomass over Zeolites for High Quality Bio-Oil—A Review. Fuel Process. Technol. 2018, 180, 32–46. [Google Scholar] [CrossRef]
- Hwang, A.; Bhan, A. Deactivation of Zeolites and Zeotypes in Methanol-to-Hydrocarbons Catalysis: Mechanisms and Circumvention. Acc. Chem. Res. 2019, 52, 2647–2656. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, J.; Corma, A. Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities. Adv. Mater. 2020, 32, 2002927. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Yu, J. Applications of Zeolites in Sustainable Chemistry. Chem 2017, 3, 928–949. [Google Scholar] [CrossRef] [Green Version]
- Cnudde, P.; Demuynck, R.; Vandenbrande, S.; Waroquier, M.; Sastre, G.; van Speybroeck, V. Light Olefin Diffusion during the MTO Process on H-SAPO-34: A Complex Interplay of Molecular Factors. J. Am. Chem. Soc. 2020, 142, 6007–6017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Tang, J.; Zhang, Q.; Liu, Q.; Li, Y.; Chen, L.; Wang, C.; Ma, L. Hydrodeoxygenation of Lignin-Derived Phenolic Compounds into Aromatic Hydrocarbons under Low Hydrogen Pressure Using Molybdenum Oxide as Catalyst. Catal. Today 2019, 319, 41–47. [Google Scholar] [CrossRef]
- Dai, W.; Yang, L.; Wang, C.; Wang, X.; Wu, G.; Guan, N.; Obenaus, U.; Hunger, M.; Li, L. Effect of N-Butanol Cofeeding on the Methanol to Aromatics Conversion over Ga-Modified Nano H-ZSM-5 and Its Mechanistic Interpretation. ACS Catal. 2018, 8, 1352–1362. [Google Scholar] [CrossRef]
- Taarning, E.; Osmundsen, C.M.; Yang, X.; Voss, B.; Andersen, S.I.; Christensen, C.H. Zeolite-Catalyzed Biomass Conversion to Fuels and Chemicals. Energy Environ. Sci. 2011, 4, 793–804. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, W.; Xiong, D.; Liu, L. Fast Fabrication of Self-Supported Porous Nickel Phosphide Foam for Efficient Durable Oxygen Evolution and Overall Water Splitting. J. Mater. Chem. A 2016, 4, 5639–5646. [Google Scholar] [CrossRef]
- Resasco, D.E.; Wang, B.; Crossley, S. Zeolite-Catalysed C–C Bond Forming Reactions for Biomass Conversion to Fuels and Chemicals. Catal. Sci. Technol. 2016, 6, 2543–2559. [Google Scholar] [CrossRef]
- Ennaert, T.; Feys, S.; Hendrikx, D.; Jacobs, P.A.; Sels, B.F. Reductive splitting of hemicellulose with stable ruthenium-loaded USY zeolites. Green Chem. 2016, 18, 5295–5304. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Goh, K.; Birer, Ö.; Karahan, H.E.; Chang, J.; Zhai, S.; Chen, X.; Chen, Y. A Hierarchically Porous Nickel–Copper Phosphide Nano-Foam for Efficient Electrochemical Splitting of Water. Nanoscale 2017, 9, 4401–4408. [Google Scholar] [CrossRef]
- Mitchell, S.; Michels, N.L.; Kunze, K.; Pérez-Ramírez, J. Visualization of Hierarchically Structured Zeolite Bodies from Macro to Nano Length Scales. Nat. Chem. 2012, 4, 825–831. [Google Scholar] [CrossRef]
- Jasra, R.V.; Tyagi, B.; Badheka, Y.M.; Choudary, V.N.; Bhat, T.S.G. Effect of Clay Binder on Sorption and Catalytic Properties of Zeolite Pellets. Ind. Eng. Chem. Res. 2003, 42, 3263–3272. [Google Scholar] [CrossRef]
- Vogt, E.T.C.; Whiting, G.T.; Dutta Chowdhury, A.; Weckhuysen, B.M. Zeolites and Zeotypes for Oil and Gas Conversion. Adv. Catal. 2015, 58, 143–314. [Google Scholar] [CrossRef]
- Whiting, G.T.; Chung, S.H.; Stosic, D.; Chowdhury, A.D.; van der Wal, L.I.; Fu, D.; Zecevic, J.; Travert, A.; Houben, K.; Baldus, M.; et al. Multiscale Mechanistic Insights of Shaped Catalyst Body Formulations and Their Impact on Catalytic Properties. ACS Catal. 2019, 9, 4792–4803. [Google Scholar] [CrossRef]
- Kantarelis, E.; Yang, W.; Blasiak, W. Effect of Zeolite to Binder Ratio on Product Yields and Composition during Catalytic Steam Pyrolysis of Biomass over Transition Metal Modified HZSM5. Fuel 2014, 122, 119–125. [Google Scholar] [CrossRef]
- Whiting, G.T.; Chowdhury, A.D.; Oord, R.; Paalanen, P.; Weckhuysen, B.M. The Curious Case of Zeolite–Clay/Binder Interactions and Their Consequences for Catalyst Preparation. Faraday Discuss. 2016, 188, 369–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Uriarte, P.; Gamero, M.; Ateka, A.; Díaz, M.; Aguayo, A.T.; Bilbao, J. Effect of the Acidity of HZSM-5 Zeolite and the Binder in the DME Transformation to Olefins. Ind. Eng. Chem. Res. 2016, 55, 1513–1521. [Google Scholar] [CrossRef]
- Michels, N.-L.; Mitchell, S.; Pérez-Ramírez, J. Effects of Binders on the Performance of Shaped Hierarchical MFI Zeolites in Methanol-to-Hydrocarbons. ACS Catal. 2014, 4, 2409–2417. [Google Scholar] [CrossRef]
- Nishu; Liu, R.; Rahman, M.M.; Sarker, M.; Chai, M.; Li, C.; Cai, J. A Review on the Catalytic Pyrolysis of Biomass for the Bio-Oil Production with ZSM-5: Focus on Structure. Fuel Process. Technol. 2020, 199, 106301. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Z.; Wu, Y.; Liu, X.; Li, X.; Zhang, Y.; Xia, H.; Wang, F. Catalytic Cracking of Fatty Acid Methyl Esters for the Production of Green Aromatics Using Zn-Modified HZSM-5 Catalysts. Energy Fuels 2022, 36, 6922–6938. [Google Scholar] [CrossRef]
- Liu, C.; Wang, H.; Karim, A.M.; Sun, J.; Wang, Y. Catalytic Fast Pyrolysis of Lignocellulosic Biomass. Chem. Soc. Rev. 2014, 43, 7594–7623. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shao, S.; Xiao, R.; Shen, D.; Zeng, J. Characterization of Coke Deposition in the Catalytic Fast Pyrolysis of Biomass Derivates. Energy Fuels 2013, 28, 52–57. [Google Scholar] [CrossRef]
- Lok, C.M.; van Doorn, J.; Aranda Almansa, G. Promoted ZSM-5 Catalysts for the Production of Bio-Aromatics, a Review. Renew. Sustain. Energy Rev. 2019, 113, 109248. [Google Scholar] [CrossRef]
- Yung, M.M.; Starace, A.K.; Mukarakate, C.; Crow, A.M.; Leshnov, M.A.; Magrini, K.A. Biomass Catalytic Pyrolysis on Ni/ZSM-5: Effects of Nickel Pretreatment and Loading. Energy Fuels 2016, 30, 5259–5268. [Google Scholar] [CrossRef]
- Vitolo, S.; Bresci, B.; Seggiani, M.; Gallo, M.G. Catalytic Upgrading of Pyrolytic Oils over HZSM-5 Zeolite: Behaviour of the Catalyst When Used in Repeated Upgrading–Regenerating Cycles. Fuel 2001, 80, 17–26. [Google Scholar] [CrossRef]
- Verboekend, D.; Pérez-Ramírez, J. Design of Hierarchical Zeolite Catalysts by Desilication. Catal. Sci. Technol. 2011, 1, 879–890. [Google Scholar] [CrossRef] [Green Version]
- Serrano, D.P.; García, R.A.; Vicente, G.; Linares, M.; Procházková, D.; Čejka, J. Acidic and Catalytic Properties of Hierarchical Zeolites and Hybrid Ordered Mesoporous Materials Assembled from MFI Protozeolitic Units. J. Catal. 2011, 279, 366–380. [Google Scholar] [CrossRef]
- Ikhlaq, A.; Fatima, R.; Qazi, U.Y.; Javaid, R.; Akram, A.; Shamsah, S.; Qi, F. Combined iron-loaded zeolites and ozone-based process for the purification of drinking water in a novel hybrid reactor: Removal of faecal coliforms and arsenic. Catalysts 2021, 11, 373. [Google Scholar] [CrossRef]
- Hernández-Giménez, A.M.; Heracleous, E.; Pachatouridou, E.; Horvat, A.; Hernando, H.; Serrano, D.P.; Lappas, A.A.; Bruijnincx, P.C.A.; Weckhuysen, B.M. Effect of Mesoporosity, Acidity and Crystal Size of Zeolite ZSM-5 on Catalytic Performance during the Ex-Situ Catalytic Fast Pyrolysis of Biomass. ChemCatChem 2021, 13, 1207–1219. [Google Scholar] [CrossRef]
- Sklenak, S.; Dědeček, J.; Li, C.; Wichterlová, B.; Gábová, V.; Sierka, M.; Sauer, J. Aluminium Siting in the ZSM-5 Framework by Combination of High Resolution 27Al NMR and DFT/MM Calculations. Phys. Chem. Chem. Phys. 2009, 11, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
- Gounder, R.; Iglesia, E. Catalytic Consequences of Spatial Constraints and Acid Site Location for Monomolecular Alkane Activation on Zeolites. J. Am. Chem. Soc. 2009, 131, 1958–1971. [Google Scholar] [CrossRef] [PubMed]
- Janda, A.; Bell, A.T. Effects of Si/Al Ratio on the Distribution of Framework Al and on the Rates of Alkane Monomolecular Cracking and Dehydrogenation in H-MFI. J. Am. Chem. Soc. 2013, 135, 19193–19207. [Google Scholar] [CrossRef] [Green Version]
- Grifoni, E.; Piccini, G.M.; Lercher, J.A.; Glezakou, V.A.; Rousseau, R.; Parrinello, M. Confinement Effects and Acid Strength in Zeolites. Nat. Commun. 2021, 12, 2630. [Google Scholar] [CrossRef]
- Fu, D.; van der Heijden, O.; Stanciakova, K.; Schmidt, J.E.; Weckhuysen, B.M.; Fu, D.; van der Heijden, O.; Stanciakova, K.; Schmidt, J.E.; Weckhuysen, B.M. Disentangling Reaction Processes of Zeolites within Single-Oriented Channels. Angew. Chem. 2020, 59, 15502–15506. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Kim, D.W.; Rangnekar, N.; Xu, H.; Fetisov, E.O.; Ghosh, S.; Zhang, H.; Xiao, Q.; Shete, M.; Siepmann, J.I.; et al. One-Dimensional Intergrowths in Two-Dimensional Zeolite Nanosheets and Their Effect on Ultra-Selective Transport. Nat. Mater. 2020, 19, 443–449. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, H.; Wu, S.; Xiao, R. Molecular Shape Selectivity of HZSM-5 in Catalytic Conversion of Biomass Pyrolysis Vapors: The Effective Pore Size. Energy Convers. Manag. 2020, 210, 112678. [Google Scholar] [CrossRef]
- Xin, S.; Wang, Q.; Xu, J.; Chu, Y.; Wang, P.; Feng, N.; Qi, G.; Trébosc, J.; Lafon, O.; Fan, W.; et al. The Acidic Nature of “NMR-Invisible” Tri-Coordinated Framework Aluminum Species in Zeolites. Chem. Sci. 2019, 10, 10159–10169. [Google Scholar] [CrossRef] [Green Version]
- Guefrachi, Y.; Sharma, G.; Xu, D.; Kumar, G.; Vinter, K.P.; Abdelrahman, O.A.; Li, X.; Alhassan, S.; Dauenhauer, P.J.; Navrotsky, A.; et al. Berichtigung: Steam-Induced Coarsening of Single-Unit-Cell MFI Zeolite Nanosheets and Its Effect on External Surface Brønsted Acid Catalysis. Angew. Chem. 2021, 133, 2767. [Google Scholar] [CrossRef]
- Qazi, U.Y.; Ikhlaq, A.; Akram, A.; Rizvi, O.S.; Javed, F.; Hasan, I.; Alazmi, A.; Shamsah, S.M.; Javaid, R. Novel vertical flow wetland filtration combined with Co-zeotype material based catalytic ozonation process for the treatment of municipal wastewater. Water. 2022, 14, 3361. [Google Scholar] [CrossRef]
- Peng, P.; Stosic, D.; Aitblal, A.; Vimont, A.; Bazin, P.; Liu, X.M.; Yan, Z.F.; Mintova, S.; Travert, A. Unraveling the Diffusion Properties of Zeolite-Based Multicomponent Catalyst by Combined Gravimetric Analysis and IR Spectroscopy (AGIR). ACS Catal. 2020, 10, 6822–6830. [Google Scholar] [CrossRef]
- Shamzhy, M.; Opanasenko, M.; Concepción, P.; Martínez, A. New Trends in Tailoring Active Sites in Zeolite-Based Catalysts. Chem. Soc. Rev. 2019, 48, 1095–1149. [Google Scholar] [CrossRef] [PubMed]
- Yeh, J.Y.; Li, S.C.; Chen, C.H.; Wu, K.C.W.; Li, Y.P. Quantum Mechanical Calculations for Biomass Valorization over Metal-Organic Frameworks (MOFs). Chem. Asian J. 2021, 16, 1049–1056. [Google Scholar] [CrossRef]
- Li, Y.P.; Gomes, J.; Sharada, S.M.; Bell, A.T.; Head-Gordon, M. Improved Force-Field Parameters for QM/MM Simulations of the Energies of Adsorption for Molecules in Zeolites and a Free Rotor Correction to the Rigid Rotor Harmonic Oscillator Model for Adsorption Enthalpies. J. Phys. Chem. C 2015, 119, 1840–1850. [Google Scholar] [CrossRef]
- Li, Y.P.; Bell, A.T.; Head-Gordon, M. Thermodynamics of Anharmonic Systems: Uncoupled Mode Approximations for Molecules. J. Chem. Theory Comput. 2016, 12, 2861–2870. [Google Scholar] [CrossRef] [Green Version]
- Ghysels, A.; van Neck, D.; van Speybroeck, V.; Verstraelen, T.; Waroquier, M. Vibrational Modes in Partially Optimised Molecular Systems. J. Chem. Phys. 2007, 126, 224102. [Google Scholar] [CrossRef]
- Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. Chem.-Eur. J. 2012, 18, 9955–9964. [Google Scholar] [CrossRef]
- Janda, A.; Vlaisavljevich, B.; Lin, L.C.; Mallikarjun Sharada, S.; Smit, B.; Head-Gordon, M.; Bell, A.T. Adsorption Thermodynamics and Intrinsic Activation Parameters for Monomolecular Cracking of N-Alkanes on Brønsted Acid Sites in Zeolites. J. Phys. Chem. C 2015, 119, 10427–10438. [Google Scholar] [CrossRef]
- Dusselier, M.; Mascal, M.; Sels, B.F. Top Chemical Opportunities from Carbohydrate Biomass: A Chemist’s View of the Biorefinery. In Selective Catalysis for Renewable Feedstocks and Chemicals; Topics in Current Chemistry; Springer: Cham, Switzerland, 2014; Volume 353, pp. 1–40. [Google Scholar] [CrossRef]
- Rhodes, C.J. Properties and Applications of Zeolites. Sci. Prog. 2010, 93, 223–284. [Google Scholar] [CrossRef]
- Bahri, S.; Sunarno; Muhdarina; Anugra, R.D. Catalytic Pyrolysis Using Catalyst Nickel-Natural Zeolite (Ni/NZA) on Conversion of Biomass to Bio-Oil. In Proceedings of the 2011 International Conference and Utility Exhibition on Power and Energy Systems: Issues and Prospects for Asia, ICUE 2011, Pattaya, Thailand, 28–30 September 2011. [Google Scholar] [CrossRef]
- Goshima, T.; Ikeda, K.; Fukudome, K.; Mizuta, K.; Mitsuyoshi, S.; Tsutsui, T. Conversion of Biomass-Derived Oxygen-Containing Intermediates into Chemical Raw Materials with Zeolite. Appl. Mech. Mater. 2014, 625, 298–305. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, Y.T.; Vispute, T.P.; Xiao, R.; Huber, G.W. Catalytic Conversion of Biomass-Derived Feedstocks into Olefins and Aromatics with ZSM-5: The Hydrogen to Carbon Effective Ratio. Energy Environ. Sci. 2011, 4, 2297–2307. [Google Scholar] [CrossRef] [Green Version]
- Stefanidis, S.; Patel, A.; Bridgwater, A.V. Synthesis of Tailored Hierarchical ZSM-5 Zeolites and Aggregates for the Catalytic Pyrolysis of Biomass. In Proceedings of the Pyroliq 2019: Pyrolysis and Liquefaction of Biomass and Wastes, Cork, Ireland, 16–20 June 2019. [Google Scholar]
- Jae, J.; Tompsett, G.A.; Foster, A.J.; Hammond, K.D.; Auerbach, S.M.; Lobo, R.F.; Huber, G.W. Investigation into the Shape Selectivity of Zeolite Catalysts for Biomass Conversion. J. Catal. 2011, 279, 257–268. [Google Scholar] [CrossRef]
- Gamliel, D.P.; Cho, H.J.; Fan, W.; Valla, J.A. On the Effectiveness of Tailored Mesoporous MFI Zeolites for Biomass Catalytic Fast Pyrolysis. Appl. Catal. A Gen. 2016, 522, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Shao, S.S.; Zhang, H.Y.; Shen, D.K.; Xiao, R. Enhancement of Hydrocarbon Production and Catalyst Stability during Catalytic Conversion of Biomass Pyrolysis-Derived Compounds over Hierarchical HZSM-5. RSC Adv. 2016, 6, 44313–44320. [Google Scholar] [CrossRef]
- Ding, K.; Zhong, Z.; Wang, J.; Zhang, B.; Addy, M.; Ruan, R. Effects of Alkali-Treated Hierarchical HZSM-5 Zeolites on the Production of Aromatic Hydrocarbons from Catalytic Fast Pyrolysis of Waste Cardboard. J. Anal. Appl. Pyrolysis 2017, 125, 153–161. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Shao, S.; Dong, L.; Zhang, J.; Hu, C.; Cai, Y. Catalytic Upgrading of Pyrolysis Vapor from Rape Straw in a Vacuum Pyrolysis System over La/HZSM-5 with Hierarchical Structure. Bioresour. Technol. 2018, 259, 191–197. [Google Scholar] [CrossRef]
- Ikhlaq, A.; Javaid, R.; Akram, A.; Qazi, U.Y.; Erfan, J.; Madkour, M.; Abdelbagi, M.E.M.; Shamsah, S.M.; Qi, F. Application of attapulgite clay-based Fe-zeolite 5A in UV-assisted catalytic ozonation for the removal of ciprofloxacin. J. Chem. 2022, 2022, 2846453. [Google Scholar] [CrossRef]
- Deng, S.M.; Fan, M.H.; Wang, T.J.; Li, Q.X. Transformation of Biomass into Aromatics with Zeolite Catalysts. Chin. J. Chem. Phys. 2014, 27, 361. [Google Scholar] [CrossRef]
- Kim, Y.M.; Jae, J.; Kim, B.S.; Hong, Y.; Jung, S.C.; Park, Y.K. Catalytic Co-Pyrolysis of Torrefied Yellow Poplar and High-Density Polyethylene Using Microporous HZSM-5 and Mesoporous Al-MCM-41 Catalysts. Energy Convers. Manag. 2017, 149, 966–973. [Google Scholar] [CrossRef]
- Jia, L.Y.; Raad, M.; Hamieh, S.; Toufaily, J.; Hamieh, T.; Bettahar, M.M.; Mauviel, G.; Tarrighi, M.; Pinard, L.; Dufour, A. Catalytic Fast Pyrolysis of Biomass: Superior Selectivity of Hierarchical Zeolites to Aromatics. Green Chem. 2017, 19, 5442–5459. [Google Scholar] [CrossRef]
- Liao, Y.; Koelewijn, S.F.; van den Bossche, G.; van Aelst, J.; van den Bosch, S.; Renders, T.; Navare, K.; Nicolaï, T.; van Aelst, K.; Maesen, M.; et al. A Sustainable Wood Biorefinery for Low-Carbon Footprint Chemicals Production. Science 2020, 367, 1385–1390. [Google Scholar] [CrossRef] [PubMed]
- Uslamin, E.A.; Kosinov, N.; Filonenko, G.A.; Mezari, B.; Pidko, E.; Hensen, E.J.M. Co-Aromatization of Furan and Methanol over ZSM-5—A Pathway to Bio-Aromatics. ACS Catal. 2019, 9, 8547–8554. [Google Scholar] [CrossRef] [Green Version]
- Gou, J.; Wang, Z.; Li, C.; Qi, X.; Vattipalli, V.; Cheng, Y.T.; Huber, G.; Conner, W.C.; Dauenhauer, P.J.; Mountziaris, T.J.; et al. The Effects of ZSM-5 Mesoporosity and Morphology on the Catalytic Fast Pyrolysis of Furan. Green Chem. 2017, 19, 3549–3557. [Google Scholar] [CrossRef]
- Li, Z.; Zhong, Z.; Zhang, B.; Wang, W.; Seufitelli, G.V.S.; Resende, F.L.P. Effect of Alkali-Treated HZSM-5 Zeolite on the Production of Aromatic Hydrocarbons from Microwave Assisted Catalytic Fast Pyrolysis (MACFP) of Rice Husk. Sci. Total Environ. 2020, 703, 134605. [Google Scholar] [CrossRef]
- Narula, C.K.; Li, Z.; Casbeer, E.M.; Geiger, R.A.; Moses-Debusk, M.; Keller, M.; Buchanan, M.V.; Davison, B.H. Heterobimetallic Zeolite, InV-ZSM-5, Enables Efficient Conversion of Biomass Derived Ethanol to Renewable Hydrocarbons. Sci. Rep. 2015, 5, 16039. [Google Scholar] [CrossRef] [Green Version]
- Hasan, N.H.; Jazie, A.A. Hydrothermal Liquefaction Conversion of Lignocelluloses and Waste Biomass Using Zeolite Catalyst. IOP Conf. Ser. Earth Environ. Sci. 2021, 790, 012036. [Google Scholar] [CrossRef]
- Grande, L.; Pedroarena, I.; Korili, S.A.; Gil, A. Hydrothermal Liquefaction of Biomass as One of the Most Promising Alternatives for the Synthesis of Advanced Liquid Biofuels: A Review. Materials 2021, 14, 5286. [Google Scholar] [CrossRef]
- Ghavami, N.; Özdenkçi, K.; Salierno, G.; Björklund-Sänkiaho, M.; de Blasio, C. Analysis of Operational Issues in Hydrothermal Liquefaction and Supercritical Water Gasification Processes: A Review. Biomass. Convers. Biorefinery 2021, 1, 1–28. [Google Scholar] [CrossRef]
- Yang, J.; Hong, C.; Xing, Y.; Zheng, Z.; Li, Z.; Zhao, X.; Qi, C. Research Progress and Hot Spots of Hydrothermal Liquefaction for Bio-Oil Production Based on Bibliometric Analysis. Environ. Sci. Pollut. Res. 2021, 28, 7621–7635. [Google Scholar] [CrossRef]
- Masoumi, S.; Borugadda, V.B.; Dalai, A.K.; Masoumi, S.; Borugadda, V.B.; Dalai, A.K. Biocrude Oil Production via Hydrothermal Liquefaction of Algae and Upgradation Techniques to Liquid Transportation Fuels. In Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals; Springer: Singapore, 2020; pp. 249–270. [Google Scholar] [CrossRef]
- Shah, A.A.; Sharma, K.; Haider, M.S.; Toor, S.S.; Rosendahl, L.A.; Pedersen, T.H.; Castello, D. The Role of Catalysts in Biomass Hydrothermal Liquefaction and Biocrude Upgrading. Processes 2022, 10, 207. [Google Scholar] [CrossRef]
- Volli, V.; Gollakota, A.R.K.; Shu, C.-M.; Purkait, M.K.; Volli, V.; Ravi, A.; Gollakota, K.; Purkait, K.; Shu, C.-M. Conversion of Waste Biomass to Bio-Oils and Upgradation by Hydrothermal Liquefaction, Gasification, and Hydrodeoxygenation. In Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals; Springer: Berlin/Heidelberg, Germany, 2020; pp. 285–315. [Google Scholar] [CrossRef]
- Beims, R.F.; Hu, Y.; Shui, H.; Xu, C. Hydrothermal Liquefaction of Biomass to Fuels and Value-Added Chemicals: Products Applications and Challenges to Develop Large-Scale Operations. Biomass Bioenergy 2020, 135, 105510. [Google Scholar] [CrossRef]
- Soltanian, S.; Lee, C.L.; Lam, S.S. A Review on the Role of Hierarchical Zeolites in the Production of Transportation Fuels through Catalytic Fast Pyrolysis of Biomass. Biofuel Res. J. 2020, 7, 1217–1234. [Google Scholar] [CrossRef]
- Jia, X.; Khan, W.; Wu, Z.; Choi, J.; Yip, A.C.K. Modern Synthesis Strategies for Hierarchical Zeolites: Bottom-up versus Top-down Strategies. Adv. Powder Technol. 2019, 30, 467–484. [Google Scholar] [CrossRef]
- Zones, S.I.; Davis, M.E. Zeolite Materials: Recent Discoveries and Future Prospects. Curr. Opin. Solid State Mater. Sci. 1996, 1, 107–117. [Google Scholar] [CrossRef]
- Rabo, J.A. Future Opportunities in Zeolite Science and Technology. Appl. Catal. A Gen. 2002, 229, 7–10. [Google Scholar] [CrossRef]
- Luo, J.; Fang, Z.; Smith, R.L. Ultrasound-Enhanced Conversion of Biomass to Biofuels. Prog. Energy Combust. Sci. 2014, 41, 56–93. [Google Scholar] [CrossRef]
- Palizdar, A.; Sadrameli, S.M. Catalytic Upgrading of Biomass Pyrolysis Oil over Tailored Hierarchical MFI Zeolite: Effect of Porosity Enhancement and Porosity-Acidity Interaction on Deoxygenation Reactions. Renew. Energy 2020, 148, 674–688. [Google Scholar] [CrossRef]
Modification | Advantages | Drawbacks |
---|---|---|
Top-down approach | Micropores count and volume must be increased. | The zeolite structure is destroyed. |
Bottom-up approach | Boost the zeolite’s mesoporosity and mass transfer efficiency | Hard to pick a template. |
Metal doping | Introduces Lewis acid sites for adjusting the acid ratio | The surface area and pore volume of the BET are reduced. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qazi, U.Y.; Javaid, R.; Ikhlaq, A.; Khoja, A.H.; Saleem, F. A Comprehensive Review on Zeolite Chemistry for Catalytic Conversion of Biomass/Waste into Green Fuels. Molecules 2022, 27, 8578. https://doi.org/10.3390/molecules27238578
Qazi UY, Javaid R, Ikhlaq A, Khoja AH, Saleem F. A Comprehensive Review on Zeolite Chemistry for Catalytic Conversion of Biomass/Waste into Green Fuels. Molecules. 2022; 27(23):8578. https://doi.org/10.3390/molecules27238578
Chicago/Turabian StyleQazi, Umair Yaqub, Rahat Javaid, Amir Ikhlaq, Asif Hussain Khoja, and Faisal Saleem. 2022. "A Comprehensive Review on Zeolite Chemistry for Catalytic Conversion of Biomass/Waste into Green Fuels" Molecules 27, no. 23: 8578. https://doi.org/10.3390/molecules27238578
APA StyleQazi, U. Y., Javaid, R., Ikhlaq, A., Khoja, A. H., & Saleem, F. (2022). A Comprehensive Review on Zeolite Chemistry for Catalytic Conversion of Biomass/Waste into Green Fuels. Molecules, 27(23), 8578. https://doi.org/10.3390/molecules27238578