Glycan-Based Electrochemical Biosensors: Promising Tools for the Detection of Infectious Diseases and Cancer Biomarkers
Abstract
:1. Introduction
2. Structural Glycobiology
2.1. Biological Functions of Glycans
2.2. Principles of Glycan Recognition
2.3. Glycan-Based Biomarkers for Diagnosis of Diseases
2.3.1. Infectious Diseases
2.3.2. Cancer Biomarkers
3. Electrochemical Biosensors for Biomarker Detection
3.1. Definitions and Classification of Electrochemical Biosensors
3.2. Characterization of Electrochemical Glycobiosensors
3.3. Nanostructured Electrochemical Glycobiosensors
3.3.1. Synthesis of Nanomaterials and Surface Biofunctionalization
3.3.2. Operation Modes of Electrochemical Nanobiosensors
3.3.3. Glycans as Biorecognition Elements in Electrochemical Biosensors
4. Electrochemical Glycobiosensors for Infectious Disease Diagnosis and Cancer Biomarker Detection
4.1. Glycobiosensors for Infectious Disease Diagnosis
4.2. Glycobiosensors for Cancer Biomarker Detection
4.2.1. CEA and CA 19-9 Glycoproteins
4.2.2. Protein Glycosylation
STn Antigen and Anti-STn Antibodies
α2,3-Sialylated Glycans
α2,6-Sialylated Glycans
Glycosyltransferases
4.3. Ultrasensitive Impedimetric and Capacitive Biosensors for the Detection of Glycan-Based Biomarkers
Glycobiosensor Purpose | Sensing Platform Bioreceptor/Detection Technique | Target | Limit of Detection (LOD) | Linear Range | Ref. |
---|---|---|---|---|---|
Pathogens | SAM (MUA/MCH) Glycan-NH2/EIS | HAs | 8 aM | 8 aM–80 nM | [112] |
SAM (OEG/OEG-COOH) Glycan-NH2/EIS | H3N2 | 13 viral particles µL−1 | 10–1003 viral particles µL−1 | [113] | |
SAM (Peptide) Peptide/EIS | SARS-CoV-2 | 18 ng mL−1 | 0.05–1 µg mL−1 | [39] | |
SAM (PEG-SH/11Fc) Antibody/ECS | NS1 | 340 pg mL−1 | 1–5000 ng mL−1 | [125] | |
Microwires/SAM Envelope Protein E/capacitance | Antibodies anti-ZIKV E | 10 antibodies in 30 µL | 10–103 antibodies in 30 µL | [157] | |
SAM (MUA/MCH) Mannose/EIS | S. typhimurium | 50 CFU mL−1 | 50–103 CFU mL−1 | [129] | |
PTPh-quinone Mannose/SWV | E. coli | 25 cells mL−1 | 2 × 103–5 × 104 cells mL−1 | [128] | |
SAM (OEG/FcBA) Mannose/SWV | 6 × 102 cells mL−1 | 6 × 102–6 × 105 cells mL−1 | [115] | ||
Cancer | PATP/AuNPs Antibody/DPV | CEA | 0.015 fg mL−1 | 1 fg mL−1–10 ng mL−1 | [98] |
AuNPs/Cys Lectin/chronoamperometry | 0.01 ng mL−1 | 0.5–7 ng mL−1 | [130] | ||
PA/Au-Pt Antibody/SWV | CA-19-9 | 2 × 10−4 U mL−1 | 0.001–40 U mL−1 | [131] | |
PEI/CNTs Antibody/EIS | 0.35 U mL−1 | 0.05–60 U mL−1 | [132] | ||
SAM (MHDA) Lectin/EIS | STn | 20 ng | 20–70 ng | [134] | |
GSPE/HSA Tn antigen/DPV | Antibody anti-Tn | 10 aM | 10 aM–10 pM | [135] | |
PAMAM/c-MWCNTs/PDITC Lectin/DPV | α2,3-sialylated glycans | 3 fg mL−1 | 10 fg mL−1–50 ng mL−1 | [137] | |
n-C60-PdPt/4-MBPA/Au-PMB Lectin/DPV | 3 fg mL−1 | 10 fg mL−1–100 ng mL−1 | [139] | ||
GO-PrB-PTC-NH2/AuNPs Lectin/DPV | α2,6-sialylated glycans | 0.03 pg mL−1 | 0.1 pg mL−1–500 ng mL−1 | [141] | |
rGO-TEPA-BMIMPF6/AuPtNPs Lectin/amperometry | 3 fg mL−1 | 10 fg mL−1–1 µg mL−1 | [142] | ||
AuNRs-SA/c-SWCNHs/S-PtNC Lectin/amperometry | 0.69 fg mL−1 | 1 fg mL−1–100 ng mL−1 | [143] | ||
Ag/Fe-MOFs/M-APBA Lectin/DPV | 0.09 fg mL−1 | 1 fg mL−1–1 ng mL−1 | [144] | ||
g-C3N4/GlcNAc-BSA Lectin/ECL | β-1,4-GalT | 7 × 10−5 U mL−1 | 5 × 10−4–0.05 U mL−1 | [146] | |
GlcNAc-BSA Lectin/ECL | 9 × 10−4 U mL−1 | 0.001–0.1 U mL−1 | [147] | ||
SAM (SH-(CH2)11-NH2)/AuNPs) Lectin/EIS | Fetuin | 1 aM | 1 aM–10 pM | [152] | |
SAM (MUA/betaine) Lectin/EIS | 100 fM | 100 fM–100 nM | [153] | ||
SAM (MUA/MCH) Antibody/EIS | PSA | 4 aM | 3.4 aM–380 pM | [154] | |
SAM (MUA/MCH/carbo-free) Antibody/EIS | 100 ag mL−1 | 100 ag mL−1–1 µg mL−1 | [155] | ||
Zwitterionic hydrogel Antibody/EIS | HER2 | 5 pg mL−1 | 100 pg mL−1–10 ng mL−1 | [156] | |
GO/PrB Antibody/ECS | IL-6 | 5.6 ng mL−1 | 0.2 ng mL−1–20 µg mL−1 | [158] |
5. Concluding Remarks, Current Challenges and Opportunities
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hushegyi, A.; Tkac, J. Are Glycan Biosensors an Alternative to Glycan Microarrays? Anal. Methods 2016, 6, 6610–6620. [Google Scholar] [CrossRef]
- Campuzano, S.; Pedrero, M.; Yáñez-Sedeño, P.; Pingarrón, J.M. New Challenges in Point of Care Electrochemical Detection of Clinical Biomarkers. Sens. Actuators B Chem. 2021, 345, 130349. [Google Scholar] [CrossRef]
- Campuzano, S.; Barderas, R.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical Biosensing to Assist Multiomics Analysis in Precision Medicine. Curr. Opin. Electrochem. 2021, 28, 100703. [Google Scholar] [CrossRef]
- Varki, A.; Cummings, R.D.; Esko, J.D.; Stanley, P.; Hart, G.W.; Aebi, M.; Mohnen, D.; Kinoshita, T.; Packer, N.H.; Prestegard, J.H.; et al. Essentials of Glycobiology; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Defaus, S.; Gupta, P.; Andreu, D.; Gutiérrez-Gallego, R. Mammalian Protein Glycosylation—Structure versus Function. Analyst 2014, 139, 2944–2967. [Google Scholar] [CrossRef]
- Taron, C.; Rudd, P. Glycomics: A Rapidly Evolving Field with a Sweet Future. NEB Expr. 2016, 2–4. Available online: https://international.neb.com/tools-and-resources/feature-articles/glycomics-a-rapidly-evolving-field-with-a-sweet-future (accessed on 10 October 2022).
- Dwek, R.A. Glycobiology: “Towards Understanding the Function of Sugars. ” Biochem Soc Trans 1995, 23, 1–25. [Google Scholar] [CrossRef]
- Hu, M.; Lan, Y.; Lu, A.; Ma, X.; Zhang, L. Glycan-Based Biomarkers for Diagnosis of Cancers and Other Diseases: Past, Present, and Future, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; Volume 162, ISBN 9780128177389. [Google Scholar]
- Götze, S.; Azzouz, N.; Tsai, Y.H.; Groß, U.; Reinhardt, A.; Anish, C.; Seeberger, P.H.; Silva, D.V. Diagnosis of Toxoplasmosis Using a Synthetic Glycosylphosphatidyl-Inositol Glycan. Angew. Chem. Int. Ed. 2014, 53, 13701–13705. [Google Scholar] [CrossRef]
- Echeverri, D.; Garg, M.; Varón Silva, D.; Orozco, J. Phosphoglycan-Sensitized Platform for Specific Detection of Anti-Glycan IgG and IgM Antibodies in Serum. Talanta 2020, 217, 121117. [Google Scholar] [CrossRef]
- Thomsen, M.; Skovlund, E.; Sorbye, H.; Bolstad, N.; Nustad, K.J.; Glimelius, B.; Pfeiffer, P.; Kure, E.H.; Johansen, J.S.; Tveit, K.M.; et al. Prognostic Role of Carcinoembryonic Antigen and Carbohydrate Antigen 19-9 in Metastatic Colorectal Cancer: A BRAF-Mutant Subset with High CA 19-9 Level and Poor Outcome. Br. J. Cancer 2018, 118, 1609–1616. [Google Scholar] [CrossRef] [Green Version]
- Vukobrat-Bijedic, Z.; Husic-Selimovic, A.; Sofic, A.; Bijedic, N.; Bjelogrlic, I.; Gogov, B.; Mehmedovic, A. Cancer Antigens (CEA and CA 19-9) as Markers of Advanced Stage of Colorectal Carcinoma. Med. Arch. 2013, 67, 397. [Google Scholar] [CrossRef]
- Chatterjee, S.B.; Hou, J.; Ratnam Bandaru, V.V.; Pezhouh, M.K.; Syed Rifat Mannan, A.A.; Sharma, R. Lactosylceramide Synthase β-1,4-GalT-V: A Novel Target for the Diagnosis and Therapy of Human Colorectal Cancer. Biochem. Biophys Res. Commun. 2019, 508, 380–386. [Google Scholar] [CrossRef]
- Echeverri, D.; Cruz-Pacheco, A.F.; Orozco, J. Capacitive Nanobiosensing of β-1,4-Galactosyltransferase-V Colorectal Cancer Biomarker. Sens. Actuators B Chem. 2023, 374, 132784. [Google Scholar] [CrossRef]
- Echeverri, D.; Orozco, J. β-1,4-Galactosyltransferase-V Colorectal Cancer Biomarker Immunosensor with Label-Free Electrochemical Detection. Talanta 2022, 243, 123337. [Google Scholar] [CrossRef]
- Wellinghausen, N.; Abele-Horn, M.; Mantke, O.D.; Enders, M.; Fingerle, V.; Gärtner, B.; Hagedorn, J.; Rabenau, H.F.; Reiter-Owona, I.; Tintelnot, K.; et al. Immunological Methods for the Detection of Infectious Diseases. Available online: https://www.instand-ev.de/fileadmin/uploads/Wissenschaftliche_Aktivitaeten/INSTAND_Schriftenreihe_Band_I_MiQ_Serologie_2018_en.pdf (accessed on 15 September 2019).
- Fitzgerald, S.; O’Reilly, J.A.; Wilson, E.; Joyce, A.; Farrell, R.; Kenny, D.; Kay, E.W.; Fitzgerald, J.; Byrne, B.; Kijanka, G.S.; et al. Measurement of the IgM and IgG Autoantibody Immune Responses in Human Serum Has High Predictive Value for the Presence of Colorectal Cancer. Clin. Colorectal. Cancer 2019, 18, e53–e60. [Google Scholar] [CrossRef]
- Moss, C.W. Chromatographic Analysis for Identification of Microorganisms and Diagnosis of Infection: An Introduction. In Rapid Methods and Automation in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 1985; p. 231. [Google Scholar] [CrossRef]
- Pan, S.; Chen, R.; Aebersold, R.; Brentnall, T.A. Mass Spectrometry Based Glycoproteomics—From a Proteomics Perspective. Mol. Cell. Proteom. 2011, 10, R110.003251. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.; Vázquez-Villegas, P.; Rito-Palomares, M.; Martinez-Chapa, S.O. Advantages, Disadvantages and Modifications of Conventional ELISA. In Enzyme-Linked Immunosorbent Assay (ELISA); SpringerBriefs in Applied Sciences and Technology: Singapore, 2018; pp. 67–115. ISBN 9789811067662. [Google Scholar]
- Kinoshita, Y.; Uo, T.; Jayadev, S.; Garden, G.A.; Conrads, T.P.; Veenstra, T.D.; Morrison, R.S. Potential Applications and Limitations of Proteomics in the Study of Neurological Disease. Arch. Neurol 2006, 63, 1692–1696. [Google Scholar] [CrossRef] [Green Version]
- Lopes, L.C.; Santos, A.; Bueno, P.R. An Outlook on Electrochemical Approaches for Molecular Diagnostics Assays and Discussions on the Limitations of Miniaturized Technologies for Point-of-Care Devices. Sens. Actuators Rep. 2022, 4, 100087. [Google Scholar] [CrossRef]
- Da Silva, E.T.S.G.; Souto, D.E.P.; Barragan, J.T.C.; de, F. Giarola, J.; de Moraes, A.C.M.; Kubota, L.T. Electrochemical Biosensors in Point-of-Care Devices: Recent Advances and Future Trends. ChemElectroChem 2017, 4, 778–794. [Google Scholar] [CrossRef]
- Varki, A.; Cummings, R.; Esko, J.; Stanley, P.; Hart, G.; Aebi, M.; Darvill, A.; Kinoshita, T.; Packer, N.; Prestegard, J.; et al. Essentials in Glycobiology, 3rd ed.; Varki, A., Ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2017; ISBN 9781621821328. [Google Scholar]
- Koffas, M.A.G.; Linhardt, R.J. Metabolic Bioengineering: Glycans and Glycoconjugates. Emerg. Top Life Sci. 2018, 2, 333–335. [Google Scholar] [CrossRef]
- Barb, A.W.; Borgert, A.J.; Liu, M.; Barany, G.; Live, D. Intramolecular Glycan-Protein Interactions in Glycoproteins, 1st ed.; Elsevier Inc: Amsterdam, The Netherlands, 2010; Volume 478. [Google Scholar]
- Saha, S.; Anilkumar, A.A.; Mayor, S. GPI-Anchored Protein Organization and Dynamics at the Cell Surface. J. Lipid. Res. 2016, 57, 159–175. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.H.; Liu, X.; Seeberger, P.H. Chemical Biology of Glycosylphosphatidylinositol Anchors. Angew. Chem. Int. Ed. 2012, 51, 11438–11456. [Google Scholar] [CrossRef]
- Theocharis, A.D.; Skandalis, S.S.; Tzanakakis, G.N.; Karamanos, N.K. Proteoglycans in Health and Disease: Novel Roles for Proteoglycans in Malignancy and Their Pharmacological Targeting. FEBS J. 2010, 277, 3904–3923. [Google Scholar] [CrossRef]
- Michaelson, L.V.; Napier, J.A.; Molino, D.; Faure, J.D. Plant Sphingolipids: Their Importance in Cellular Organization and Adaption. Biochim. Biophys Acta Mol. Cell Biol. Lipids 2016, 1861, 1329–1335. [Google Scholar] [CrossRef]
- Poole, A.R. Proteoglycans in Health and Disease: Structures and Functions. Biochem. J. 1986, 236, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hannun, Y.A.; Obeid, L.M. Sphingolipids and Their Metabolism in Physiology and Disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 175–191. [Google Scholar] [CrossRef]
- Posse de Chaves, E.; Sipione, S. Sphingolipids and Gangliosides of the Nervous System in Membrane Function and Dysfunction. FEBS Lett. 2010, 584, 1748–1759. [Google Scholar] [CrossRef] [Green Version]
- Kusumoto, M.; Ueno-Noto, K.; Takano, K. Systematic Interaction Analysis of Anti-Human Immunodeficiency Virus Type-1 Neutralizing Antibodies with High Mannose Glycans Using Fragment Molecular Orbital and Molecular Dynamics Methods. J. Comput. Chem. 2020, 41, 31–42. [Google Scholar] [CrossRef]
- Gómez-Pinto, I.; Vengut-Climent, E.; Lucas, R.; Aviñó, A.; Eritja, R.; González, C.; Morales, J.C. Carbohydrate–DNA Interactions at G-Quadruplexes: Folding and Stability Changes by Attaching Sugars at the 5′-End. Chem. A Eur. J. 2013, 19, 1920–1927. [Google Scholar] [CrossRef] [Green Version]
- WHO International Programme on Chemical Safety. Biomarkers in Risk Assessment: Validity and Validation. Available online: http://www.inchem.org/documents/ehc/ehc/ehc222.htm (accessed on 10 October 2022).
- Banerjee, N.; Mukhopadhyay, S. Viral Glycoproteins: Biological Role and Application in Diagnosis. Virusdisease 2016, 27, 1. [Google Scholar] [CrossRef]
- Vásquez, V.; Navas, M.C.; Jaimes, J.A.; Orozco, J. SARS-CoV-2 Electrochemical Immunosensor Based on the Spike-ACE2 Complex. Anal. Chim. Acta 2022, 1205, 339718. [Google Scholar] [CrossRef]
- Soto, D.; Orozco, J. Peptide-Based Simple Detection of SARS-CoV-2 with Electrochemical Readout. Anal. Chim. Acta 2022, 1205, 339739. [Google Scholar] [CrossRef]
- Tra, V.N.; Dube, D.H. Glycans in Pathogenic Bacteria—Potential for Targeted Covalent Therapeutics and Imaging Agents. Chem. Commun. (Camb) 2014, 50, 4659. [Google Scholar] [CrossRef] [Green Version]
- Masuoka, J. Surface Glycans of Candida Albicans and Other Pathogenic Fungi: Physiological Roles, Clinical Uses, and Experimental Challenges. Clin. Microbiol. Rev. 2004, 17, 281–310. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Heimburg-Molinaro, J.; Smith, D.F.; Cummings, R.D. Glycan Microarrays. In Chemical Genomics and Proteomics. Methods in Molecular Biology (Methods and Protocols); Zanders, E., Ed.; Humana Press: Totowa, NJ, USA, 2012; Volume 800, pp. 173–186. ISBN 978-1-61779-348-6. [Google Scholar]
- Geissner, A.; Reinhardt, A.; Rademacher, C.; Johannssen, T.; Monteiro, J.; Lepenies, B.; Thépaut, M.; Fieschi, F.; Mrázková, J.; Wimmerova, M.; et al. Microbe-Focused Glycan Array Screening Platform. Proc. Natl. Acad. Sci. USA 2019, 116, 1958–1967. [Google Scholar] [CrossRef] [Green Version]
- Geissner, A.; Anish, C.; Seeberger, P.H. Glycan Arrays as Tools for Infectious Disease Research. Curr. Opin. Chem. Biol. 2014, 18, 38–45. [Google Scholar] [CrossRef]
- Pinho, S.S.; Reis, C.A. Glycosylation in Cancer: Mechanisms and Clinical Implications. Nat. Rev. Cancer 2015, 15, 540–555. [Google Scholar] [CrossRef]
- Tang, Y.; Cui, Y.; Zhang, S.; Zhang, L. The Sensitivity and Specificity of Serum Glycan-Based Biomarkers for Cancer Detection, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; Volume 162, ISBN 9780128177389. [Google Scholar]
- Zhai, H.; Huang, J.; Yang, C.; Fu, Y.; Yang, B. Serum CEA and CA19-9 Levels Are Associated with the Presence and Severity of Colorectal Neoplasia. Clin. Lab. 2018, 64, 351–356. [Google Scholar] [CrossRef]
- Svarovsky, S.A.; Joshi, L. Cancer Glycan Biomarkers and Their Detection-Past, Present and Future. Anal. Methods 2014, 6, 3918–3936. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, A.; Wahed, A. Tumor Markers. In Clinical Chemistry, Immunology and Laboratory Quality Control; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 229–246. ISBN 9780124078215. [Google Scholar]
- Scarà, S.; Bottoni, P.; Scatena, R. CA 19-9: Biochemical and Clinical Aspects. In Advances in Cancer Biomarkers—From Biochemistry to Clinic for a Critical Revision; Scatena, R., Ed.; Springer Netherlands: Rome, Italy, 2015; pp. 247–260. ISBN 9789401772150. [Google Scholar]
- Pearce, O.M.T.; Läubli, H. Sialic Acids in Cancer Biology and Immunity. Glycobiology 2016, 26, 111–128. [Google Scholar] [CrossRef]
- Julien, S.; Delannoy, P. Sialic Acid and Cancer. In Glycoscience: Biology and Medicine; Spinger: Berlin/Heidelberg, Germany, 2015; pp. 1419–1424. [Google Scholar] [CrossRef]
- Dobie, C.; Skropeta, D. Insights into the Role of Sialylation in Cancer Progression and Metastasis. Br. J. Cancer 2020, 124, 76–90. [Google Scholar] [CrossRef]
- Qasba, P.; Ramakrishnan, B.; Boeggeman, E. Structure and Function of β-1,4-Galactosyltransferase. Curr. Drug Targets 2008, 9, 292–309. [Google Scholar] [CrossRef]
- Lairson, L.L.; Henrissat, B.; Davies, G.J.; Withers, S.G. Glycosyltransferases: Structures, Functions, and Mechanisms. Annu. Rev. Biochem. 2008, 77, 521–555. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.A.; Magalhães, A.; Gomes, J.; Peixoto, A.; Gaiteiro, C.; Fernandes, E.; Santos, L.L.; Reis, C.A. Protein Glycosylation in Gastric and Colorectal Cancers: Toward Cancer Detection and Targeted Therapeutics. Cancer Lett. 2017, 387, 32–45. [Google Scholar] [CrossRef]
- García-Barros, M.; Coant, N.; Truman, J.P.; Snider, A.J.; Hannun, Y.A. Sphingolipids in Colon Cancer. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2014, 1841, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Shirane, K.; Sato, T.; Segawa, K.; Furukawa, K. Involvement of β-1,4-Galactosyltransferase V in Malignant Transformation-Associated Changes in Glycosylation. Biochem. Biophys Res. Commun. 1999, 265, 434–438. [Google Scholar] [CrossRef]
- Sánchez-Pomales, G.; Zangmeister, R.A. Recent Advances in Electrochemical Glycobiosensing. Int. J. Electrochem. 2011, 2011, 825790. [Google Scholar] [CrossRef] [Green Version]
- Dziąbowska, K.; Czaczyk, E.; Nidzworski, D. Application of Electrochemical Methods in Biosensing Technologies. A Prospective Way for Rapid Analysis. In Biosensing Technologies for the Detection of Pathogens; Rinken, T., Ed.; InTechOpen: London, UK, 2018; ISBN 978-953-51-4087-0. [Google Scholar]
- Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A.J. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chem. Rev. 2019, 119, 120–194. [Google Scholar] [CrossRef]
- Blsakova, A.; Kveton, F.; Tkac, J. Glycan-Modified Interfaces in Biosensing: An Electrochemical Approach. Curr. Opin. Electrochem. 2019, 14, 60–65. [Google Scholar] [CrossRef]
- IUPAC. Compendium of Chemical Terminology, 2nd ed.; (the “Gold, Book”); McNaught, A.D., Wilkinson, A., Eds.; Blackwell Scientific Publications: Oxford, UK, 1997; ISBN 0-9678550-9-8. [Google Scholar] [CrossRef]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to Biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Mutharasan, R. Biosensors. In Sensor Technology Handbook; Wilson, J.S., Ed.; Newnes, Elsevier: Amsterdam, The Netherlands, 2005; pp. 161–180. ISBN 978-0-7506-7729-5. [Google Scholar]
- Karunakaran, C.; Bhargava, K.; Benjamin, R. Introduction to Biosensors. In Biosensors and Bioelectronics; Elsevier: Amsterdam, The Netherlands, 2015; pp. 2–66. ISBN 9780128031018. [Google Scholar]
- Belicky, T.; Katrlik, J.; Tkac, J. Glycan and Lectin Biosensors. Essays Biochem. 2016, 60, 37–47. [Google Scholar] [CrossRef]
- Thevenot, D.; Toth, K.; Durst, R.; Wilson, G.; Thevenot, D.; Toth, K.; Durst, R.; Wilson, G. Electrochemical Biosensors: Recommended Definitions and Classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahato, K.; Kumar, A.; Maurya, P.K.; Chandra, P. Shifting Paradigm of Cancer Diagnoses in Clinically Relevant Samples Based on Miniaturized Electrochemical Nanobiosensors and Microfluidic Devices. Biosens. Bioelectron. 2018, 100, 411–428. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A. Biosensing, Characterization of Biosensors, and Improved Drug Delivery Approaches Using Atomic Force Microscopy: A Review. Front. Nanotechnol. 2022, 3, 102. [Google Scholar] [CrossRef]
- Akhtar, K.; Khan, S.A.; Khan, S.B.; Asiri, A.M. Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization. In Handbook of Materials Characterization; Springer: Cham, Switzerland, 2018; pp. 113–145. [Google Scholar] [CrossRef]
- Prasek, J.; Trnkova, L.; Gablech, I.; Businova, P.; Drbohlavova, J.; Chomoucka, J.; Adam, V.; Kizek, R.; Hubalek, J. Optimization of Planar Three-Electrode Systems for Redox System Detection. Int. J. Electrochem. Sci 2012, 7, 1785–1801. [Google Scholar]
- Abdulbari, H.A.; Basheer, E.A.M. Electrochemical Biosensors: Electrode Development, Materials, Design, and Fabrication. ChemBioEng Rev. 2017, 4, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Loganathan, S.; Valapa, R.B.; Mishra, R.K.; Pugazhenthi, G.; Thomas, S. Thermogravimetric Analysis for Characterization of Nanomaterials. Therm. Rheol. Meas. Tech. Nanomater. Charact. 2017, 3, 67–108. [Google Scholar] [CrossRef]
- Abraham, J.; Mohammed, A.P.; Kumar, M.P.A.; George, S.C.; Thomas, S. Thermoanalytical Techniques of Nanomaterials. In Characterization of Nanomaterials: Advances and Key Technologies; Elsevier: Amsterdam, The Netherlands, 2018; pp. 213–236. [Google Scholar] [CrossRef]
- Nair, A.K.; Mayeen, A.; Shaji, L.K.; Kala, M.S.; Thomas, S.; Kalarikkal, N. Optical Characterization of Nanomaterials. In Characterization of Nanomaterials: Advances and Key Technologies; Elsevier: Amsterdam, The Netherlands, 2018; pp. 269–299. [Google Scholar] [CrossRef]
- Wang, J. Analytical Electrochemistry, 3rd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2006; ISBN 9780471678793. [Google Scholar]
- Bueno, P.R.; Mizzon, G.; Davis, J.J. Capacitance Spectroscopy: A Versatile Approach to Resolving the Redox Density of States and Kinetics in Redox-Active Self-Assembled Monolayers. J. Phys. Chem. B 2012, 116, 8822–8829. [Google Scholar] [CrossRef]
- Suenaga, E.; Mizuno, H.; Penmetcha, K.K.R. Monitoring Influenza Hemagglutinin and Glycan Interactions Using Surface Plasmon Resonance. Biosens. Bioelectron. 2012, 32, 195–201. [Google Scholar] [CrossRef]
- Hashimoto, S. Principles of BIACORE. In Real-Time Analysis of Biomolecular Interactions; Springer: Tokyo, Japan, 2000; pp. 23–30. [Google Scholar] [CrossRef]
- Shandilya, R.; Bhargava, A.; Bunkar, N.; Tiwari, R.; Goryacheva, I.Y.; Mishra, P.K. Nanobiosensors: Point-of-Care Approaches for Cancer Diagnostics. Biosens. Bioelectron. 2019, 130, 147–165. [Google Scholar] [CrossRef]
- Thakur, P.S.; Sankar, M. Nanobiosensors for Biomedical, Environmental, and Food Monitoring Applications. Mater. Lett. 2022, 311, 131540. [Google Scholar] [CrossRef]
- Quinchia, J.; Echeverri, D.; Cruz-Pacheco, A.F.; Maldonado, M.E.; Orozco, J.A. Electrochemical Biosensors for Determination of Colorectal Tumor Biomarkers. Micromachines 2020, 11, 411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curreli, M.; Zhang, R.; Ishikawa, F.N.; Chang, H.K.; Cote, R.J.; Zhou, C.; Thompson, M.E. Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs. IEEE Trans. Nanotechnol. 2008, 7, 651–667. [Google Scholar] [CrossRef]
- Delbianco, M.; Davis, B.G.; Seeberger, P.H. Glycans in Nanotechnology. In Essentials of Glycobiology; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lee, H.; Nam, J.M. Lipid-Nanostructure Hybrids and Their Applications in Nanobiotechnology. NPG Asia Mater. 2013, 5, e48. [Google Scholar] [CrossRef]
- Walcarius, A.; Minteer, S.D.; Wang, J.; Lin, Y.; Merkoçi, A. Nanomaterials for Bio-Functionalized Electrodes: Recent Trends. J. Mater. Chem. B 2013, 1, 4878–4908. [Google Scholar] [CrossRef]
- Khan, F.A. Synthesis of Nanomaterials: Methods & Technology. In Applications of Nanomaterials in Human Health; Springer: Singapore, 2020; pp. 15–21. [Google Scholar] [CrossRef]
- Arduini, F.; Micheli, L.; Moscone, D.; Palleschi, G.; Piermarini, S.; Ricci, F.; Volpe, G. Electrochemical Biosensors Based on Nanomodified Screen-Printed Electrodes: Recent Applications in Clinical Analysis. TrAC Trends Anal. Chem. 2016, 79, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Putzbach, W.; Ronkainen, N.J. Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review. Sensors 2013, 13, 4811–4840. [Google Scholar] [CrossRef]
- Holzinger, M.; Goff, A.; Cosnier, S. Nanomaterials for Biosensing Applications: A Review. Front. Chem. 2014, 2, 63. [Google Scholar] [CrossRef] [Green Version]
- Martinkova, P.; Kostelnik, A.; Valek, T.; Pohanka, M. Main Streams in the Construction of Biosensors and Their Applications. Int. J. Electrochem. Sci. 2017, 12, 7386–7403. [Google Scholar] [CrossRef]
- Steen Redeker, E.; Ta, D.T.; Cortens, D.; Billen, B.; Guedens, W.; Adriaensens, P. Protein Engineering for Directed Immobilization. Bioconjug. Chem. 2013, 24, 1761–1777. [Google Scholar] [CrossRef]
- O’Neil, C.L.; Stine, K.J.; Demchenko, A.V. Immobilization of Glycans on Solid Surfaces for Application in Glycomics. J. Carbohydr. Chem. 2018, 37, 225–249. [Google Scholar] [CrossRef]
- Bhattarai, J.K.; Neupane, D.; Mikhaylov, V.; Demchenko, A.V.; Stine, K.J. Self-Assembled Monolayers of Carbohydrate Derivatives on Gold Surfaces. In Carbohydrate; InTechOpen: London, UK, 2017; pp. 63–97. [Google Scholar]
- Zeng, X.; Qu, K.; Rehman, A. Glycosylated Conductive Polymer: A Multimodal Biointerface for Studying Carbohydrate-Protein Interactions. Acc. Chem. Res. 2016, 49, 1624–1633. [Google Scholar] [CrossRef]
- Sharma, S.; Byrne, H.; O’Kennedy, R.J. Antibodies and Antibody-Derived Analytical Biosensors. Essays Biochem. 2016, 60, 9–18. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, Z. Fabrication of an Ultrasensitive Electrochemical Immunosensor for CEA Based on Conducting Long-Chain Polythiols. Biosens. Bioelectron. 2013, 46, 1–7. [Google Scholar] [CrossRef]
- Hermanson, G.T. (Strept)avidin–Biotin Systems. In Bioconjugate Techniques, 3rd ed.; Audet, J., Preap, M., Eds.; Elsevier: Whaltam, MA, USA, 2013; p. 56. [Google Scholar]
- Mahato, K.; Maurya, P.K.; Chandra, P. Fundamentals and Commercial Aspects of Nanobiosensors in Point-of-Care Clinical Diagnostics. 3 Biotech. 2018, 8, 149. [Google Scholar] [CrossRef]
- Pihíková, D.; Kasák, P.; Tkac, J. Glycoprofiling of Cancer Biomarkers: Label-Free Electrochemical Lectin-Based Biosensors. Open Chem. 2015, 13, 636–655. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.; Krauss, T.F. Label-Free Affinity Biosensor Arrays: Novel Technology for Molecular Diagnostics. Expert Rev. Med. Devices 2017, 14, 177–179. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal. Chem. 2014, 87, 230–249. [Google Scholar] [CrossRef]
- Morales, M.A.; Halpern, J.M. Guide to Selecting a Biorecognition Element for Biosensors. Bioconjug. Chem. 2018, 29, 3231–3239. [Google Scholar] [CrossRef]
- Xiao, X.; Kuang, Z.; Slocik, J.M.; Tadepalli, S.; Brothers, M.; Kim, S.; Mirau, P.A.; Butkus, C.; Farmer, B.L.; Singamaneni, S.; et al. Advancing Peptide-Based Biorecognition Elements for Biosensors Using in-Silico Evolution. ACS Sens. 2018, 3, 1024–1031. [Google Scholar] [CrossRef]
- Karunakaran, R.; Keskin, M. Biosensors: Components, Mechanisms, and Applications. In Analytical Techniques in Biosciences; Academic Press: Cambridge, MA, USA, 2022; pp. 179–190. [Google Scholar] [CrossRef]
- Klukova, L.; Filip, J.; Tkac, J. Graphene-Based Lectin Biosensor for Ultrasensitive Detection of Glycan Structures Applicable in Early Diagnostics. In Proceedings of the 2015 9th International Conference on Sensing Technology (ICST), Auckland, New Zealand, 8–10 December 2015; pp. 40–45. [Google Scholar]
- Cunningham, S.; Gerlach, J.Q.; Kane, M.; Joshi, L. Glyco-Biosensors: Recent Advances and Applications for the Detection of Free and Bound Carbohydrates. Analyst 2010, 135, 2471–2480. [Google Scholar] [CrossRef]
- Taylor, M.E.; Drickamer, K.; Schnaar, R.L.; Etzler, M.E.; Varki, A. Discovery and Classification of Glycan-Binding Proteins. In Essentials of Glycobiology; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Paleček, E.; Tkáč, J.; Bartošík, M.; Bertók, T.; Ostatná, V.; Paleček, J. Electrochemistry of Nonconjugated Proteins and Glycoproteins. Toward Sensors for Biomedicine and Glycomics. Chem. Rev. 2015, 115, 2045–2108. [Google Scholar] [CrossRef] [PubMed]
- Pihikova, D.; Pakanova, Z.; Nemcovic, M.; Barath, P.; Belicky, S.; Bertok, T.; Kasak, P.; Mucha, J.; Tkac, J. Sweet Characterisation of Prostate Specific Antigen Using Electrochemical Lectin-Based Immunosensor Assay and MALDI TOF/TOF Analysis: Focus on Sialic Acid. Proteomics 2016, 16, 3085–3095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hushegyi, A.; Bertok, T.; Damborsky, P.; Katrlik, J.; Tkac, J. An Ultrasensitive Impedimetric Glycan Biosensor with Controlled Glycan Density for Detection of Lectins and Influenza Hemagglutinins. Chem. Commun. 2015, 51, 7474–7477. [Google Scholar] [CrossRef] [Green Version]
- Hushegyi, A.; Pihíková, D.; Bertok, T.; Adam, V.; Kizek, R.; Tkac, J. Ultrasensitive Detection of Influenza Viruses with a Glycan-Based Impedimetric Biosensor. Biosens. Bioelectron. 2016, 79, 644–649. [Google Scholar] [CrossRef] [Green Version]
- Cui, F.; Xu, Y.; Wang, R.; Liu, H.; Chen, L.; Zhang, Q.; Mu, X. Label-Free Impedimetric Glycan Biosensor for Quantitative Evaluation Interactions between Pathogenic Bacteria and Mannose. Biosens. Bioelectron. 2018, 103, 94–98. [Google Scholar] [CrossRef]
- Kveton, F.; Blšáková, A.; Hushegyi, A.; Damborsky, P.; Blixt, O.; Jansson, B.; Tkac, J. Optimization of the Small Glycan Presentation for Binding a Tumor-Associated Antibody: Application to the Construction of an Ultrasensitive Glycan Biosensor. Langmuir 2017, 33, 2709–2716. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.W.; Cai, L.; He, X.P.; Chen, G.R.; Long, Y.T. Anthraquinonyl Glycoside Facilitates the Standardization of Graphene Electrodes for the Impedance Detection of Lectins. Chem. Cent. J. 2014, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Xie, D.; Feng, X.Q.; Hu, X.L.; Liu, L.; Ye, Z.; Cao, J.; Chen, G.R.; He, X.P.; Long, Y.T. Probing Mannose-Binding Proteins That Express on Live Cells and Pathogens with a Diffusion-to-Surface Ratiometric Graphene Electrosensor. ACS Appl. Mater. Interfaces 2016, 8, 25137–25141. [Google Scholar] [CrossRef]
- He, X.P.; Zhu, B.W.; Zang, Y.; Li, J.; Chen, G.R.; Tian, H.; Long, Y.T. Dynamic Tracking of Pathogenic Receptor Expression of Live Cells Using Pyrenyl Glycoanthraquinone-Decorated Graphene Electrodes. Chem. Sci. 2015, 6, 1996–2001. [Google Scholar] [CrossRef] [Green Version]
- Cleaves, H.J. Affinity Constant. In Encyclopedia of Astrobiology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 23–24. [Google Scholar] [CrossRef]
- Nagae, M.; Yamaguchi, Y. Biophysical Analyses for Probing Glycan-Protein Interactions. Adv. Exp. Med. Biol. 2018, 1104, 119–147. [Google Scholar] [CrossRef]
- Ardá, A.; Jiménez-Barbero, J. The Recognition of Glycans by Protein Receptors. Insights from NMR Spectroscopy. Chem. Commun. 2018, 54, 4761–4769. [Google Scholar] [CrossRef] [PubMed]
- Patrick Walton, S.; Stephanopoulos, G.N.; Yarmush, M.L.; Roth, C.M. Thermodynamic and Kinetic Characterization of Antisense Oligodeoxynucleotide Binding to a Structured MRNA. Biophys. J. 2002, 82, 366–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landry, J.P.; Ke, Y.; Yu, G.L.; Zhu, X.D. Measuring Affinity Constants of 1450 Monoclonal Antibodies to Peptide Targets with a Microarray-Based Label-Free Assay Platform. J. Immunol. Methods 2015, 417, 86–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, S.-J.; Gibson, M.I. Toward Glycomaterials with Selectivity as Well as Affinity. JACS Au 2021, 1, 2089–2099. [Google Scholar] [CrossRef]
- Santos, A.; Bueno, P.R.; Davis, J.J. A Dual Marker Label Free Electrochemical Assay for Flavivirus Dengue Diagnosis. Biosens. Bioelectron. 2018, 100, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Åberg, V.; Fällman, E.; Axner, O.; Uhlin, B.E.; Hultgren, S.J.; Almqvist, F. Pilicides Regulate Pili Expression in E. Coli without Affecting the Functional Properties of the Pilus Rod. Mol. Biosyst. 2007, 3, 214–218. [Google Scholar] [CrossRef]
- Schultz, K.M.; Klug, C.S. Characterization of and Lipopolysaccharide Binding to the E. Coli LptC Protein Dimer. Protein Sci. 2018, 27, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Rehman, A.; Liu, H.; Zhang, J.; Zhu, S.; Zeng, X. Glycosylation of Quinone-Fused Polythiophene for Reagentless and Label-Free Detection of E. Coli. Anal. Chem. 2015, 87, 1560–1568. [Google Scholar] [CrossRef]
- Dechtrirat, D.; Gajovic-Eichelmann, N.; Wojcik, F.; Hartmann, L.; Bier, F.F.; Scheller, F.W. Electrochemical Displacement Sensor Based on Ferrocene Boronic Acid Tracer and Immobilized Glycan for Saccharide Binding Proteins and E. Coli. Biosens. Bioelectron. 2014, 58, 1–8. [Google Scholar] [CrossRef]
- Zhao, L.; Li, C.; Qi, H.; Gao, Q.; Zhang, C. Electrochemical Lectin-Based Biosensor Array for Detection and Discrimination of Carcinoembryonic Antigen Using Dual Amplification of Gold Nanoparticles and Horseradish Peroxidase. Sens. Actuators B Chem. 2016, 235, 575–582. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Shan, J.; Feng, F.; Ma, Z. Novel Redox Species Polyaniline Derivative-Au/Pt as Sensing Platform for Label-Free Electrochemical Immunoassay of Carbohydrate Antigen 199. Anal. Chim. Acta 2016, 911, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Thapa, A.; Soares, A.C.; Soares, J.C.; Awan, I.T.; Volpati, D.; Melendez, M.E.; Fregnani, J.H.T.G.; Carvalho, A.L.; Oliveira, O.N. Carbon Nanotube Matrix for Highly Sensitive Biosensors to Detect Pancreatic Cancer Biomarker CA19-9. ACS Appl. Mater. Interfaces 2017, 9, 25878–25886. [Google Scholar] [CrossRef] [PubMed]
- Sletmoen, M.; Gerken, T.A.; Stokke, B.T.; Burchell, J.; Brewer, C.F. Tn and STn Are Members of a Family of Carbohydrate Tumor Antigens That Possess Carbohydrate–Carbohydrate Interactions. Glycobiology 2018, 28, 437–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.L.S.; Gutiérrez, E.; Rodríguez, J.A.; Gomes, C.; David, L. Construction and Validation of a Sambucus Nigra Biosensor for Cancer-Associated STn Antigen. Biosens. Bioelectron. 2014, 57, 254–261. [Google Scholar] [CrossRef]
- Kveton, F.; Blsakova, A.; Lorencova, L.; Jerigova, M.; Velic, D.; Blixt, O.; Jansson, B.; Kasak, P.; Tkac, J. A Graphene-Based Glycan Biosensor for Electrochemical Label-Free Detection of a Tumor-Associated Antibody. Sensors 2019, 19, 5409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, S.A.; Bshara, W.; Morrison, C.; Chandrasekaran, E.V.; Matta, K.L.; Neelamegham, S. Overexpression of α2,3sialyl T-Antigen in Breast Cancer Determined by Miniaturized Glycosyltransferase Assays and Confirmed Using Tissue Microarray Immunohistochemical Analysis. Glycoconj. J. 2014, 31, 509–521. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; He, J.; Li, Y.; Zhao, Y.; Xia, C.; Yuan, G.; Zhang, L.; Zhang, Y.; Yu, C. Multi-Purpose Electrochemical Biosensor Based on a “Green” Homobifunctional Cross-Linker Coupled with PAMAM Dendrimer Grafted p-MWCNTs as a Platform: Application to Detect α2,3-Sialylated Glycans and α2,6-Sialylated Glycans in Human Serum. RSC Adv. 2016, 6, 44865–44872. [Google Scholar] [CrossRef]
- Niu, Y.; He, J.; Li, Y.; Zhao, Y.; Xia, C.; Yuan, G.; Zhang, L.; Zhang, Y.; Yu, C. Determination of α2,3-Sialylated Glycans in Human Serum Using a Glassy Carbon Electrode Modified with Carboxylated Multiwalled Carbon Nanotubes, a Polyamidoamine Dendrimer, and a Glycan-Recognizing Lectin from Maackia Amurensis. Microchim. Acta 2016, 183, 2337–2344. [Google Scholar] [CrossRef]
- Yuan, Q.; He, J.; Niu, Y.; Chen, J.; Zhao, Y.; Zhang, Y.; Yu, C. Sandwich-Type Biosensor for the Detection of α2,3-Sialylated Glycans Based on Fullerene-Palladium-Platinum Alloy and 4-Mercaptophenylboronic Acid Nanoparticle Hybrids Coupled with Au-Methylene Blue-MAL Signal Amplification. Biosens. Bioelectron. 2018, 102, 321–327. [Google Scholar] [CrossRef]
- Dall’olio, F.; Chiricolo, M.; Ceccarelli, C.; Minni, F.; Marrano, D.; Santini, D. β-Galactoside α2,6 Sialyltransferase in Human Colon Cancer: Contribution of Multiple Transcripts to Regulation of Enzyme Activity and Reactivity with Sambucus Nigra Agglutinin. J. Cancer 2000, 88, 58–65. [Google Scholar] [CrossRef]
- Gao, L.; He, J.; Xu, W.; Zhang, J.; Hui, J.; Guo, Y.; Li, W.; Yu, C. Ultrasensitive Electrochemical Biosensor Based on Graphite Oxide, Prussian Blue, and PTC-NH2 for the Detection of α2,6-Sialylated Glycans in Human Serum. Biosens. Bioelectron. 2014, 62, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; He, J.; Niu, Y.; Yu, C. Ultrasensitive Electrochemical Biosensor Based on Reduced Graphene Oxide-Tetraethylene Pentamine-BMIMPF6 Hybrids for the Detection of α2,6-Sialylated Glycans in Human Serum. Biosens. Bioelectron. 2015, 74, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; He, J.; Zhang, C.; Chen, J.; Mao, W.; Yu, C. Dual-Type Responsive Electrochemical Biosensor for the Detection of α2,6-Sialylated Glycans Based on AuNRs-SA Coupled with c-SWCNHs/S-PtNC Nanocomposites Signal Amplification. Biosens. Bioelectron. 2019, 130, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, J.; Zhong, H.; Zhang, C.; Zhou, Y.; Mao, W.; Yu, C. Functionalized Ag/Fe-MOFs Nanocomposite as a Novel Endogenous Redox Mediator for Determination of α2,6-Sialylated Glycans in Serum. Microchim. Acta 2020, 187, 649. [Google Scholar] [CrossRef]
- Stowell, S.R.; Ju, T.; Cummings, R.D. Protein Glycosylation in Cancer. Annu. Rev. Pathol. Mech. Dis. 2015, 10, 473–510. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Wang, F.; Wu, Z.; Joshi, L.; Liu, Y. A Sensitive Electrogenerated Chemiluminescence Biosensor for Galactosyltransferase Activity Analysis Based on a Graphitic Carbon Nitride Nanosheet Interface and Polystyrene Microsphere-Enhanced Responses. RSC Adv. 2016, 6, 32804–32810. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, L.; Liu, Y.; Li, J. Highly Sensitive Electrogenerated Chemiluminescence Biosensor for Galactosyltransferase Activity and Inhibition Detection Using Gold Nanorod and Enzymatic Dual Signal Amplification. J. Electroanal. Chem. 2016, 781, 83–89. [Google Scholar] [CrossRef]
- Bertok, T.; Lorencova, L.; Chocholova, E.; Jane, E.; Vikartovska, A.; Kasak, P.; Tkac, J. Electrochemical Impedance Spectroscopy Based Biosensors: Mechanistic Principles, Analytical Examples and Challenges towards Commercialization for Assays of Protein Cancer Biomarkers. ChemElectroChem 2019, 6, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Garrote, B.L.; Santos, A.; Bueno, P.R. Label-Free Capacitive Assaying of Biomarkers for Molecular Diagnostics. Nat. Protoc. 2020, 15, 3879–3893. [Google Scholar] [CrossRef]
- Kanyong, P.; Patil, A.V.; Davis, J.J. Annual Review of Analytical Chemistry Functional Molecular Interfaces for Impedance-Based Diagnostics. Annu. Rev. Anal. Chem. 2020 2020, 13, 183–200. [Google Scholar] [CrossRef]
- Loyprasert, S.; Hedström, M.; Thavarungkul, P.; Kanatharana, P.; Mattiasson, B. Sub-Attomolar Detection of Cholera Toxin Using a Label-Free Capacitive Immunosensor. Biosens. Bioelectron. 2010, 25, 1977–1983. [Google Scholar] [CrossRef]
- Bertok, T.; Sediva, A.; Katrlik, J.; Gemeiner, P.; Mikula, M.; Nosko, M.; Tkac, J. Label-Free Detection of Glycoproteins by the Lectin Biosensor down to Attomolar Level Using Gold Nanoparticles. Talanta 2013, 108, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Bertok, T.; Klukova, L.; Sediva, A.; Kasák, P.; Semak, V.; Micusik, M.; Omastova, M.; Chovanová, L.; Vlček, M.; Imrich, R.; et al. Ultrasensitive Impedimetric Lectin Biosensors with Efficient Antifouling Properties Applied in Glycoprofiling of Human Serum Samples. Anal. Chem. 2013, 85, 7324–7332. [Google Scholar] [CrossRef] [PubMed]
- Pihíková, D.; Belicky, Š.; Kasák, P.; Bertok, T.; Tkac, J. Sensitive Detection and Glycoprofiling of a Prostate Specific Antigen Using Impedimetric Assays. Analyst 2016, 141, 1044–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pihikova, D.; Kasak, P.; Kubanikova, P.; Sokol, R.; Tkac, J. Aberrant Sialylation of a Prostate-Specific Antigen: Electrochemical Label-Free Glycoprofiling in Prostate Cancer Serum Samples. Anal. Chim. Acta 2016, 934, 72–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chocholova, E.; Bertok, T.; Lorencova, L.; Holazova, A.; Farkas, P.; Vikartovska, A.; Bella, V.; Velicova, D.; Kasak, P.; Eckstein, A.A.; et al. Advanced Antifouling Zwitterionic Layer Based Impedimetric HER2 Biosensing in Human Serum: Glycoprofiling as a Novel Approach for Breast Cancer Diagnostics. Sens. Actuators B Chem. 2018, 272, 626–633. [Google Scholar] [CrossRef]
- Wang, L.; Filer, J.E.; Lorenz, M.M.; Henry, C.S.; Dandy, D.S.; Geiss, B.J. An Ultra-Sensitive Capacitive Microwire Sensor for Pathogen-Specific Serum Antibody Responses. Biosens. Bioelectron. 2019, 131, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.M.B.; Fernandes, F.C.B.; Bueno, P.R. Pseudocapacitance Phenomena and Applications in Biosensing Devices. Electrochim. Acta 2019, 306, 175–184. [Google Scholar] [CrossRef]
- Land, K.J.; Boeras, D.I.; Chen, X.S.; Ramsay, A.R.; Peeling, R.W. REASSURED Diagnostics to Inform Disease Control Strategies, Strengthen Health Systems and Improve Patient Outcomes. Nat. Microbiol. 2018, 4, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Scholz, F. Voltammetric Techniques of Analysis: The Essentials. ChemTexts 2015, 1, 17. [Google Scholar] [CrossRef] [Green Version]
- Tkac, J.; Davis, J.J. An Optimised Electrode Pre-Treatment for SAM Formation on Polycrystalline Gold. J. Electroanal. Chem. 2008, 621, 117–120. [Google Scholar] [CrossRef]
- Cruz-Pacheco, A.F.; Quinchia, J.; Orozco, J. Cerium Oxide–Doped PEDOT Nanocomposite for Label-Free Electrochemical Immunosensing of Anti-P53 Autoantibodies. Microchim. Acta 2022, 189, 1–13. [Google Scholar] [CrossRef]
Electrochemical Technique | Sensing Principle | The Typical Range of the Limit of Detection (LOD) | Reference |
---|---|---|---|
CV | Application of a time-dependent potential to an electrochemical cell and measuring the resultant current as a function of the applied potential | 10−6–10−15 M | [69] |
DPV | |||
SWV | |||
Amperometry | |||
Potentiometry | Perturbation of the potential of the electrochemical cell | 10−3–10−6 M | [59] |
Conductometry | Quantification of the conductance change in the electrochemical cell | ||
EIS | Application of a small sinusoidal voltage perturbation in a range of frequencies while monitoring the resulting current | 10−9–10−18 M | [22] |
ECS |
Characterization Technique | Properties | Technique Principle | References |
---|---|---|---|
AFM | Morphology | Measurement of intermolecular forces and “seeing” atoms by using probe surfaces. | [70] |
SEM/EDX | Morphology Composition | Application of kinetic energy to produce signals from the interaction of the electrons (secondary, backscattered, and diffracted backscattered). Secondary and backscattered electrons are used to visualize the morphology, and backscattered are related to composition. | [71,72] |
FT-IR | Surface chemical composition | Measurement of the vibrations of atoms, and from this, functional groups are determined. | [73] |
XPS | Surface chemical composition | The sample is irradiated with an X-ray, and some electrons become excited enough to escape from the atoms. The photo-ejected electrons are collected by an electron analyzer that measures their kinetic energy, allowing the element to be identified. | [73] |
TGA, DSC | Sorption Composition | The sample is heated or cooled under controlled conditions and changes in some physical properties are measured. | [74,75] |
UV-vis, PL | Optical | Light absorption and scattering by a sample. | [76] |
CV, DPV, EIS, ECS | Electron transfer kinetics | Perturbation of the electrode by applying an electric potential and recording the resulting current. | [77,78] |
Biacore | Bioreceptors affinity | The change in SPR response is measured after association/dissociation of a bioreceptor and ligand, respectively, with the sample flow in a microfluidic channel. | [80] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Echeverri, D.; Orozco, J. Glycan-Based Electrochemical Biosensors: Promising Tools for the Detection of Infectious Diseases and Cancer Biomarkers. Molecules 2022, 27, 8533. https://doi.org/10.3390/molecules27238533
Echeverri D, Orozco J. Glycan-Based Electrochemical Biosensors: Promising Tools for the Detection of Infectious Diseases and Cancer Biomarkers. Molecules. 2022; 27(23):8533. https://doi.org/10.3390/molecules27238533
Chicago/Turabian StyleEcheverri, Danilo, and Jahir Orozco. 2022. "Glycan-Based Electrochemical Biosensors: Promising Tools for the Detection of Infectious Diseases and Cancer Biomarkers" Molecules 27, no. 23: 8533. https://doi.org/10.3390/molecules27238533
APA StyleEcheverri, D., & Orozco, J. (2022). Glycan-Based Electrochemical Biosensors: Promising Tools for the Detection of Infectious Diseases and Cancer Biomarkers. Molecules, 27(23), 8533. https://doi.org/10.3390/molecules27238533