Recovery of Gallium-68 and Zinc from HNO3-Based Solution by Liquid–Liquid Extraction with Arylamino Phosphonates
Abstract
:1. Introduction
2. Results
2.1. System Design
2.2. Chemistry
2.3. LLE of 68Ga Using Extractants 1–9 in Batch
2.4. Estimation of pKa Using COSMO-RS
2.5. Batch LLE Optimization Studies
2.6. LLE of 68Ga using Extractants 8 and 9 in Continuous Flow
2.7. Zinc Nitrate Quantification Using Raman Spectra
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Instrumentation and Methods
4.3. Batch LLE Extractions
4.4. Continuous Membrane-Based LLE
4.5. NMR Studies
4.5.1. General Comments
4.5.2. Determination of the Aqueous Solubility of Extractants 1–9
4.6. Multivariate Analysis
4.7. Computational Methods
4.8. General Procedure for the Synthesis of Arylaminophosphonic Acids 1–9
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lepareur, N. Cold Kit Labeling: The Future of 68Ga Radiopharmaceuticals? Front. Med. 2022, 9, 812050. [Google Scholar] [CrossRef] [PubMed]
- Kratochwil, C.; Flechsig, P.; Lindner, T.; Abderrahim, L.; Altmann, A.; Mier, W.; Adeberg, S.; Rathke, H.; Röhrich, M.; Winter, H.; et al. 68Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. J. Nucl. Med. 2019, 60, 801–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naik, H.; Suryanarayana, S.V.; Murali, M.S.; Kapote Noy, R. Excitation Function of 68Zn(p,n)68Ga Reaction for the Production of 68Ga. J. Radioanal. Nucl. Chem. 2020, 324, 285–289. [Google Scholar] [CrossRef]
- Lin, M.; Waligorski, G.J.; Lepera, C.G. Production of Curie Quantities of 68Ga with a Medical Cyclotron via the 68Zn(p,n)68Ga Reaction. Appl. Radiat. Isot. 2018, 133, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.J.B.; Wilson, J.; Richter, S.; Duke, M.J.M.; Wuest, M.; Wuest, F. Taking Cyclotron 68Ga Production to the next Level: Expeditious Solid Target Production of 68Ga for Preparation of Radiotracers. Nucl. Med. Biol. 2020, 80–81, 24–31. [Google Scholar] [CrossRef]
- Zeisler, S.; Limoges, A.; Kumlin, J.; Siikanen, J.; Hoehr, C. Fused Zinc Target for the Production of Gallium Radioisotopes. Instruments 2019, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Thisgaard, H.; Kumlin, J.; Langkjær, N.; Chua, J.; Hook, B.; Jensen, M.; Kassaian, A.; Zeisler, S.; Borjian, S.; Cross, M.; et al. Multi-Curie Production of Gallium-68 on a Biomedical Cyclotron and Automated Radiolabelling of PSMA-11 and DOTATATE. EJNMMI Radiopharm. Chem. 2021, 6, 1. [Google Scholar] [CrossRef]
- Sciacca, G.; Martini, P.; Cisternino, S.; Mou, L.; Amico, J.; Esposito, J.; Gorgoni, G.; Cazzola, E. A Universal Cassette-Based System for the Dissolution of Solid Targets. Molecules 2021, 26, 6255. [Google Scholar] [CrossRef]
- Jensen, M.; Clark, J. Direct Production of Ga-68 from Proton Bombardment of Concentrated Aqueous Solutions of [Zn-68] Zinc Chloride. In Proceedings of the 13th International Workshop on Targetry and Target Chemistry, Roskilde, Denmark, 26–28 July 2010; Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi: Copenhagen, Denmark, 2011; pp. 288–292. [Google Scholar]
- Pandey, M.K.; Engelbrecht, H.P.; Byrne, J.F.; Packard, A.B.; DeGrado, T.R. Production of 89Zr via the 89Y(p,n)89Zr Reaction in Aqueous Solution: Effect of Solution Composition on in-Target Chemistry. Nucl. Med. Biol. 2014, 41, 309–316. [Google Scholar] [CrossRef]
- Pandey, M.K.; DeGrado, T.R. Cyclotron Production of PET Radiometals in Liquid Targets: Aspects and Prospects. Curr. Radiopharm. 2021, 14, 325–339. [Google Scholar] [CrossRef]
- Pandey, M.K.; Byrne, J.F.; Schlasner, K.N.; Schmit, N.R.; DeGrado, T.R. Cyclotron Production of 68Ga in a Liquid Target: Effects of Solution Composition and Irradiation Parameters. Nucl. Med. Biol. 2019, 74–75, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Pandey, M.K.; Byrne, J.F.; Jiang, H.; Packard, A.B.; DeGrado, T.R. Cyclotron Production of 68Ga via the 68Zn(p,n)68Ga Reaction in Aqueous Solution. Am. J. Nucl. Med. Mol. Imaging 2014, 4, 303–310. [Google Scholar] [PubMed]
- Alves, F.; Alves, V.H.P.; Do Carmo, S.J.C.; Neves, A.C.B.; Silva, M.; Abrunhosa, A.J. Production of Copper-64 and Gallium-68 with a Medical Cyclotron Using Liquid Targets. Mod. Phys. Lett. A 2017, 32, 1740013. [Google Scholar] [CrossRef]
- Alves, V.; do Carmo, S.; Alves, F.; Abrunhosa, A. Automated Purification of Radiometals Produced by Liquid Targets. Instruments 2018, 2, 17. [Google Scholar] [CrossRef] [Green Version]
- do Carmo, S.J.C.; Scott, P.J.H.; Alves, F. Production of Radiometals in Liquid Targets. EJNMMI Radiopharm. Chem. 2020, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Nair, M.; Happel, S.; Eriksson, T.; Pandey, M.K.; DeGrado, T.R.; Gagnon, K. Cyclotron Production and Automated New 2-Column Processing of [Ga-68] GaCl3. Eur. J. Nuclear Med. Mol. Imaging 2017, 44, S275. [Google Scholar]
- Riga, S.; Cicoria, G.; Pancaldi, D.; Zagni, F.; Vichi, S.; Dassenno, M.; Mora, L.; Lodi, F.; Morigi, M.P.; Marengo, M. Production of Ga-68 with a General Electric PETtrace Cyclotron by Liquid Target. Phys. Med. 2018, 55, 116–126. [Google Scholar] [CrossRef]
- European Pharmacopoeia Commission, European Directorate for the Quality of Medicines and Healthcare. European Pharmacopoeia 10 Council of Europe; Council of Europe: Strasbourg, France, 2020. [Google Scholar]
- Rodnick, M.E.; Sollert, C.; Stark, D.; Clark, M.; Katsifis, A.; Hockley, B.G.; Parr, D.C.; Frigell, J.; Henderson, B.D.; Bruton, L.; et al. Synthesis of 68Ga-Radiopharmaceuticals Using Both Generator-Derived and Cyclotron-Produced 68Ga as Exemplified by [68Ga]Ga-PSMA-11 for Prostate Cancer PET Imaging. Nat. Protoc. 2022, 17, 980–1003. [Google Scholar] [CrossRef]
- Pedersen, K.S.; Nielsen, K.M.; Fonslet, J.; Jensen, M.; Zhuravlev, F. Separation of Radiogallium from Zinc Using Membrane-Based Liquid-Liquid Extraction in Flow: Experimental and COSMO-RS Studies. Solvent Extr. Ion Exch. 2019, 37, 376–391. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, K.S.; Imbrogno, J.; Fonslet, J.; Lusardi, M.; Jensen, K.F.; Zhuravlev, F. Liquid–Liquid Extraction in Flow of the Radioisotope Titanium-45 for Positron Emission Tomography Applications. React. Chem. Eng. 2018, 3, 898–904. [Google Scholar] [CrossRef] [Green Version]
- Søborg Pedersen, K.; Baun, C.; Michaelsen Nielsen, K.; Thisgaard, H.; Ingemann Jensen, A.; Zhuravlev, F. Design, Synthesis, Computational, and Preclinical Evaluation of NatTi/45Ti-Labeled Urea-Based Glutamate PSMA Ligand. Molecules 2020, 25, 1104. [Google Scholar] [CrossRef]
- Gupta, B.; Mudhar, N.; Begum, Z.; Singh, I. Extraction and Recovery of Ga(III) from Waste Material Using Cyanex 923. Hydrometallurgy 2007, 87, 18–26. [Google Scholar] [CrossRef]
- Iyer, J.N.; Dhadke, P.M. Liquid-Liquid Extraction and Separation of Gallium (III), Indium (III), and Thallium (III) by Cyanex-925. Sep. Sci. Technol. 2001, 36, 2773–2784. [Google Scholar] [CrossRef]
- Inoue, K.; Baba, Y.; Yoshizuka, K. Solvent Extraction Equilibria of Gallium (III) with Acidic Organophosphorus Compounds from Aqueous Nitrate Media. Solvent Extr. Ion Exch. 1988, 6, 381–392. [Google Scholar] [CrossRef]
- Gupta, B.; Mudhar, N.; Tandon, S.N. Extraction and Separation of Gallium Using Cyanex 301: Its Recovery from Bayer’s Liquor. Ind. Eng. Chem. Res. 2005, 44, 1922–1927. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Gallium-68 Cyclotron Production; TECDOC Series; International Atomic Energy Agency: Vienna, Austria, 2019; ISBN 978-92-0-100819-0. [Google Scholar]
- DeGrado, T.R.; Pandey, M.K.; Byrne, J.F.; Engelbrecht, H.P.; Jiang, H.; Packard, A.B.; Thomas, K.A.; Jacobson, M.S.; Curran, G.L.; Lowe, V.J. Preparation and Preliminary Evaluation of 63Zn-Zinc Citrate as a Novel PET Imaging Biomarker for Zinc. J. Nucl. Med. 2014, 55, 1348–1354. [Google Scholar] [CrossRef] [Green Version]
- Jagodić, V.; Grdenić, D. Aminophosphonic Acid Mono-Esters as Reagents for Solvent Extraction of Metals. J. Inorg. Nucl. Chem. 1964, 26, 1103–1109. [Google Scholar] [CrossRef]
- Keglevich, G.; Bálint, E. The Kabachnik–Fields Reaction: Mechanism and Synthetic Use. Molecules 2012, 17, 12821–12835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klamt, A. The COSMO and COSMO-RS Solvation Models. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 699–709. [Google Scholar] [CrossRef]
- Klamt, A.; Eckert, F.; Diedenhofen, M.; Beck, M.E. First Principles Calculations of Aqueous PKa Values for Organic and Inorganic Acids Using COSMO−RS Reveal an Inconsistency in the Slope of the PKa Scale. J. Phys. Chem. A 2003, 107, 9380–9386. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Wikström, C.; Wold, S. Design of Experiments: Principles and Applications, 3rd ed.; Umetrics Academy: Malmo, Sweden, 2008; ISBN 91-973730-4-4. [Google Scholar]
- Sasaki, Y.; Oshima, T.; Baba, Y. Mutual Separation of Indium(III), Gallium(III) and Zinc(II) with Alkylated Aminophosphonic Acids with Different Basicities of Amine Moiety. Sep. Purif. Technol. 2017, 173, 37–43. [Google Scholar] [CrossRef]
- Rudolph, W.W.; Pye, C.C. Zinc(II) Hydration in Aqueous Solution. A Raman Spectroscopic Investigation and an Ab-Initio Molecular Orbital Study. Phys. Chem. Chem. Phys. 1999, 1, 4583–4593. [Google Scholar] [CrossRef]
- Ikushima, Y.; Saito, N.; Arai, M. Raman Spectral Studies of Aqueous Zinc Nitrate Solution at High Temperatures and at a High Pressure of 30 MPa. J. Phys. Chem. B 1998, 102, 3029–3035. [Google Scholar] [CrossRef]
- Jagodić, V. Synthesis and Physical Properties of a Novel Aminophosphonic Acid as an Extracting Agent for Metals. J. Inorg. Nucl. Chem. 1970, 32, 1323. [Google Scholar] [CrossRef]
- TURBOMOLE V7.5.1 2020, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, Since 2007. Available online: http://www.Turbomole.Com (accessed on 29 November 2022).
- Eckert, F.; Klamt, A. Fast Solvent Screening via Quantum Chemistry: COSMO-RS Approach. AIChE J. 2002, 48, 369–385. [Google Scholar] [CrossRef]
Entry Extractant | Solvent | T, °C | 68Ga EE (%) | pKaCalc | Aqueous Solubility, mM |
---|---|---|---|---|---|
1 | Heptane | RT | 30.6 ± 2.0 | 1.5 | 0.22 |
2 | Anisole | RT | 8.3 ± 3.1 | 1.4 | 0.10 |
50 °C | 32.9 ± 2.3 | ||||
3 | CHCl3/Heptane 3/1 (v/v) | RT | 20.8 ± 2.0 | 1.4 | 0.25 |
4 | Bu2O | RT | 8.1 ± 2.4 | 1.2 | 0.08 |
5 | Bu2O | RT | 34.1 ± 2.0 | 1.2 | 0.04 |
6 | Heptane/TFT1:1 (v/v) | RT | 49.7 ± 2.6 | 0.7 | 2.60 |
Bu2O | RT | 24.8 ± 1.9 | |||
7 | Heptane | RT | 16.4 ± 2.0 | 0.9 | 0.08 |
50 °C | 37.7 ± 2.3 | ||||
8 | Bu2O | RT | 41.3 ± 2.5 | 0.7 | 1.60 |
50 °C | 80.1 ± 3.0 | ||||
TFT | RT | 60.5 ± 1.9 | |||
9 | TFT | 50 °C | 88.2 ± 2.3 | ||
RT | 69.1 ± 3.0 | 0.4 | 1.73 | ||
50 °C | 89.6 ± 3.5 |
Exp. No. | Concentration, mM | T, °C | EE (%) |
---|---|---|---|
1 | 10 | 25 | 69 |
2 | 30 | 25 | 71 |
3 | 10 | 50 | 83 |
4 | 30 | 50 | 91 |
5 | 10 | 37.5 | 75 |
6 | 30 | 37.5 | 78 |
7 | 20 | 25 | 71 |
8 | 20 | 50 | 90 |
9 | 20 | 37.5 | 83 |
10 | 20 | 37.5 | 88 |
11 | 20 | 37.5 | 91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuravlev, F.; Gulzar, A.; Falborg, L. Recovery of Gallium-68 and Zinc from HNO3-Based Solution by Liquid–Liquid Extraction with Arylamino Phosphonates. Molecules 2022, 27, 8377. https://doi.org/10.3390/molecules27238377
Zhuravlev F, Gulzar A, Falborg L. Recovery of Gallium-68 and Zinc from HNO3-Based Solution by Liquid–Liquid Extraction with Arylamino Phosphonates. Molecules. 2022; 27(23):8377. https://doi.org/10.3390/molecules27238377
Chicago/Turabian StyleZhuravlev, Fedor, Arif Gulzar, and Lise Falborg. 2022. "Recovery of Gallium-68 and Zinc from HNO3-Based Solution by Liquid–Liquid Extraction with Arylamino Phosphonates" Molecules 27, no. 23: 8377. https://doi.org/10.3390/molecules27238377
APA StyleZhuravlev, F., Gulzar, A., & Falborg, L. (2022). Recovery of Gallium-68 and Zinc from HNO3-Based Solution by Liquid–Liquid Extraction with Arylamino Phosphonates. Molecules, 27(23), 8377. https://doi.org/10.3390/molecules27238377