Synthesis and the Crystal Structure of a New Chiral 1D Metal–Organic Coordination Polymer Based on L-Prolineamide-Substituted Diarylacetylenedicarboxylic Acid Derivative
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure
2.2. Morphology of the [Cu2(EDPB)•H2O]n Material
2.3. Investigation of [Cu2(EDPB)•H2O]n Thermal Stability
2.4. FTIR Studies of the [Cu2(EDPB)•H2O]n Polymer
2.5. Evaluation of the Catalytic Activity of [Cu2(EDPB)•H2O]n Polymer
3. Materials and Methods
3.1. Synthesis of Coordination Polymer [Cu2(EDPB)•H2O]n
3.2. Thermogravimetric Analysis
3.3. X-ray Powder Diffraction
3.4. Evaluation of the Catalytic Performance of [Cu2(EDPB)•H2O]n Material in a Henry Reaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Loukopoulos, E.; Kostakis, G.E. Review: Recent advances of one-dimensional coordination polymers as catalysts. J. Coord. Chem. 2018, 71, 371–410. [Google Scholar] [CrossRef] [Green Version]
- Isaeva, V.I.; Belyaeva, E.V.; Fitch, A.N.; Chernyshev, V.V.; Klyamkin, S.N.; Kustov, L.M. Synthesis and Structural Characterization of a Series of Novel Zn(II)-based MOFs with Pyridine-2,5-dicarboxylate Linkers. Cryst. Growth Des. 2013, 13, 5305–5315. [Google Scholar] [CrossRef]
- Masoomi, M.Y.; Morsali, A. Morphological study and potential applications of nano metal-organic coordination polymers. RSC Adv. 2013, 3, 19191–19218. [Google Scholar] [CrossRef]
- Lustig, W.P.; Li, J. Luminescent metal-organic frameworks and coordination polymers as alternative phosphors for energy efficient lighting devices. Coord. Chem. Rev. 2018, 373, 116–147. [Google Scholar] [CrossRef]
- Diercks, C.S.; Kalmutzki, M.J.; Diercks, N.J.; Yaghi, O.M. Conceptual Advances from Werner Complexes to Metal-Organic Frameworks. ACS Centr. Sci. 2018, 4, 1457. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.K.; Azhakar, R.; Kitagawa, S. Control of Structure Dimensionality and Functional Studies of Flexible CuII. Coord. Polym. Chem. Asian J. 2009, 4, 870–875. [Google Scholar] [CrossRef]
- Isaeva, V.; Chernyshev, V.; Afonina, E.; Tkachenko, O.; Klementiev, K.; Nissenbaum, V.; Grünert, W.; Kustov, L. Novel metal-organic 1-D coordination polymer based on pyrazine-2,5-dicarboxylate ligands: Synthesis and structure investigation. Inorg. Chim. Acta. 2011, 376, 367–37251. [Google Scholar] [CrossRef]
- Stoica, A.-C.; Damoc, M.; Zaltariov, M.-F.; Racles, C.; Cazacu, M. Two-dimensional coordination polymers containing permethylated motifs-promising candidates for 2D emerging materials. Structural, behavioral and functional particularities. React. Funct. Polym. 2021, 168, 105039. [Google Scholar] [CrossRef]
- Yang, X.; Ranford, J.D.; Vittal, J.J. Isomerism in 1D Coordination Polymers of Cu(II) Complexes of N-(2-Hydroxybenzyl)-L-valine: Influence of Solvent and Coordination Sphere on the Conformation. Cryst. Growth Des. 2004, 4, 781–788. [Google Scholar] [CrossRef]
- Isaeva, V.; Tkachenko, O.; Afonina, E.; Kozlova, L.M.; Grünert, W.; Solov’eva, S.E.; Antipin, I.S.; Kustov, L. 2-Butyne-l,4-diol hydrogenation over palladium supported on Zn2+-based MOF and host-guest MOF/calix[4]arene materials. Micropor. Mesopor. Mater. 2013, 166, 167–175. [Google Scholar] [CrossRef]
- Yu, Y.-H.; Ye, H.-T.; Hou, G.-F.; Ren, C.-Y.; Gao, J.-S.; Yan, P.-F. Synthesis, Structure, and Properties of a Series of Chiral Coordination Polymers Based on (R)4-(4-(1-Carboxyethoxy)phenoxy)-3-chlorobenzoic Acid. Cryst. Growth Des. 2016, 16, 5669–5677. [Google Scholar] [CrossRef]
- Gu, J.; Wen, M.; Liang, X.; Shi, Z.; Kirillova, M.V.; Kirillov, A.M. Multifunctional aromatic carboxylic acids as versatile building blocks for hydrothermal design of coordination polymers. Crystals 2018, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Veselovsky, V.V.; Lozanova, A.V.; Isaeva, V.I.; Chernyshev, V.V. Synthesis and the crystal structure of a new chiral metal-organic coordination polymer based on L-proline-substituted 2-aminobenzene-1,4-dicarboxylic acid derivative. Russ. Chem. Bull. 2021, 70, 874–879. [Google Scholar] [CrossRef]
- Tranchemontagne, D.J.; Park, K.S.; Furukawa, H.; Eckert, J.; Knobler, C.B.; Yaghi, O.M. Hydrogen Storage in New Metal-Organic Frameworks. J. Phys. Chem. C 2012, 116, 13143–13151. [Google Scholar] [CrossRef]
- Matemb Ma Ntep, T.J.; Gramm, V.K.; Ruschewitz, U.; Janiak, C. Acetylenedicarboxylate as a linker in the engineering of coordination polymers and metal-organic frameworks: Challenges and potential. Chem. Comm. 2022, 58, 8900–8933. [Google Scholar] [CrossRef]
- Jouaiti, A.; Grosshans, P.; Kyritsakas, N.; Ferlay, S.; Henry, M.; Hosseini, M.W. Crystal formation of 1D coordination polymers based on chiral, achiral and racemic 1,2-cyclohexane scaffolds. CrystEngComm 2020, 22, 1746–1753. [Google Scholar] [CrossRef]
- Veselovsky, V.V.; Lozanova, A.V.; Isaeva, V.I.; Lobova, A.A.; Chernyshev, V.V. New Chiral Hydrogen-Bonded Organic Framework Based on Substituted Diarylacetylene Dicarboxylic Acid. Cryst. Growth Des. 2020, 20, 3713–3721. [Google Scholar] [CrossRef]
- Koz, G.; Astley, D.; Astley, S.T. Enantioselective Henry reaction catalyzed by a novel L-(+)-aspartic acid-derived Schiff base ligand and Cu(II) ion. Turk. J. Chem. 2011, 35, 553–560. [Google Scholar] [CrossRef]
- Ni, B.; He, J. Highly asymmetric Henry reaction catalyzed by chiral copper(II) complexes. Tetrahedron Lett. 2013, 54, 462–465. [Google Scholar] [CrossRef]
- Veselovsky, V.V.; Stepanov, A.V. Novel catalysts for the enantioselective Henry reaction. Russ. Chem. Bull. 2014, 63, 422–425. [Google Scholar] [CrossRef]
- Isaeva, V.I.; Chernyshev, V.V.; Fomkin, A.A.; Shkolin, A.V.; Veselovsky, V.V.; Kapustin, G.I.; Sokolova, N.A.; Kustov, L.M. Preparation of novel hybrid catalyst with an hierarchical micro-/mesoporous structure by direct growth of the HKUST-1 nanoparticles inside mesoporous silica matrix (MMS). Micropor. Mesopor. Mater. 2020, 300, 110136. [Google Scholar] [CrossRef]
- Karmakar, A.; Rfflbio, D.M.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Synthesis of Metallomacrocycle and Coordination Polymers with Pyridine-Based Amidocarboxylate Ligands and Their Catalytic Activities towards the Henry and Knoevenagel Reactions. ChemistryOpen 2018, 7, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Groom, C.R.; Allen, F.H. The Cambridge Structural Database in Retrospect and Prospect. Angew. Chem. Int. Ed. 2014, 53, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Hadjiivanov, K.I.; Panayotov, D.A.; Mihaylov, M.Y.; Ivanova, E.Z.; Chakarova, K.K.; Andonova, S.M.; Drenchev, N.L. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem. Rev. 2021, 121, 1286–1424. [Google Scholar] [CrossRef]
- Chen, Z.-N.; Wang, K.; Cui, D.; Wu, A. The new chemical insight for understanding the mechanism of Henry reaction over Cu(II) catalyst. Chem. Phys. Lett. 2017, 673, 7–10. [Google Scholar] [CrossRef]
- Choudary, B.M.; Ranganath, K.V.S.; Pal, U.; Kantam, M.L.; Sreedhar, B. Nanocrystalline MgO for Asymmetric Henry and Michael Reactions. J. Am. Chem. Soc. 2005, 127, 13167–13171. [Google Scholar] [CrossRef]
- Kachala, V.V.; Khemchyan, L.L.; Kashin, A.S.; Orlov, N.V.; Grachev, A.A.; Zalesskiy, S.S.; Ananikov, V.P. Target-oriented analysis of gaseous, liquid and solid chemical systems by mass spectrometry, nuclear magnetic resonance spectroscopy and electron microscopy. Russ. Chem. Rev. 2013, 82, 648–685. [Google Scholar] [CrossRef]
- Kashin, A.S.; Ananikov, V.P. A SEM study of nanosized metal films and metal nanoparticles obtained by magnetron sputtering. Russ. Chem. Bull. 2011, 60, 2602–2607. [Google Scholar] [CrossRef]
- Harris, K.D.M.; Tremayne, M.; Kariuki, B.M. Contemporary advances in the use of powder X-ray diffraction for structure determination. Angew. Chem., Int. Ed. 2001, 40, 1626–1651. [Google Scholar] [CrossRef]
- Chernyshev, V.V. Structure determination from powder diffraction. Russ. Chem. Bull. 2001, 50, 2273–2292. [Google Scholar] [CrossRef]
- David, W.I.F.; Shankland, K. Structure determination from powder diffraction data. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, A64, 52–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, K.D.M. Powder diffraction crystallography of molecular solids. Top. Curr. Chem. 2012, 315, 133–177. [Google Scholar] [CrossRef] [PubMed]
- Cerny, R. Crystal Structures from Powder Diffraction: Principles, Difficulties and Progress. Crystals 2017, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- Pawley, G.S. Unit-cell refinement from powder diffraction scans. J. Appl. Crystallogr. 1981, 14, 357–361. [Google Scholar] [CrossRef]
- Zlokazov, V.B.; Chernyshev, V.V. MRIA-a program for a full profile analysis of powder multiphase neutron-diffraction time-of-flight (direct and Fourier) spectra. J. Appl. Crystallogr. 1992, 25, 447–451. [Google Scholar] [CrossRef] [Green Version]
- Zhukov, S.G.; Chernyshev, V.V.; Babaev, E.V.; Sonneveld, E.J.; Schenk, H. Application of simulated annealing approach for structure solution of molecular crystals from X-ray laboratory powder data. Z. Kristallogr-Cryst. Mater. 2001, 216, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Veselovsky, V.V.; Lozanova, A.V.; Isaeva, V.I.; Lobova, A.A.; Fitch, A.N.; Chernyshev, V.V. Optically active derivatives of terephthalic acid: Four crystal structures from two powder patterns. Acta Crystallogr., Sect. C Struct. Chem. 2018, C74, 248–255. [Google Scholar] [CrossRef]
- Veselovsky, V.V.; Isaeva, V.I.; Kustov, L.M.; Kapustin, G.I.; Nissenbaum, V.D.; Dejoie, C.; Fitch, A.N.; Chernyshev, V.V. Synthesis and crystal structure of a new chiral hydrogen-bonded organic framework ZIOC-2. Cryst. Growth Des. 2022, 22, 2547–2556. [Google Scholar] [CrossRef]
- Popa, N.C. The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement. J. Appl. Crystallogr. 1998, 31, 176–180. [Google Scholar] [CrossRef]
- Brandenburg, K.; Berndt, M. Diamond; Crystal impact Gb R: Bonn, Germany, 1999. [Google Scholar]
[Cu2(EDPB)•H2O]n | |
---|---|
CCDC number | 2204678 |
empirical formula | C26H24Cu2N4O7 |
Mr | 631.60 |
crystal system | Monoclinic |
space group | C2 |
unit cell dimensions | |
a, Å | 13.4022(17) |
b, Å | 8.6154(11) |
c, Å | 10.9367(15) |
β,o | 101.167(19) |
volume, Å3 | 1238.9(3) |
Z | 2 |
Dx (Mg m−3) | 1.693 |
μ, mm−1 | 2.601 |
2Θmin–2Θmax, ∆2Θ (o) | 6.004–70.009, 0.017 |
no. params/restraints | 95/86 |
Rp, Rwp, Rexp | 0.014, 0.021, 0.008 |
GooF | 2.686 |
D-H…A | D-H | H…A | D…A | D-H…A |
---|---|---|---|---|
N2–H2…O2 i | 0.91 | 2.14 | 2.784(8) | 127 |
O4–H4…O3 ii | 0.85 | 1.78 | 2.628(9) | 178 |
C11–H11A…O2 iii | 0.97 | 2.43 | 3.309(11) | 151 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veselovsky, V.V.; Isaeva, V.I.; Nissenbaum, V.D.; Kustov, L.M.; Chernyshev, V.V. Synthesis and the Crystal Structure of a New Chiral 1D Metal–Organic Coordination Polymer Based on L-Prolineamide-Substituted Diarylacetylenedicarboxylic Acid Derivative. Molecules 2022, 27, 8376. https://doi.org/10.3390/molecules27238376
Veselovsky VV, Isaeva VI, Nissenbaum VD, Kustov LM, Chernyshev VV. Synthesis and the Crystal Structure of a New Chiral 1D Metal–Organic Coordination Polymer Based on L-Prolineamide-Substituted Diarylacetylenedicarboxylic Acid Derivative. Molecules. 2022; 27(23):8376. https://doi.org/10.3390/molecules27238376
Chicago/Turabian StyleVeselovsky, Vladimir V., Vera I. Isaeva, Vera D. Nissenbaum, Leonid M. Kustov, and Vladimir V. Chernyshev. 2022. "Synthesis and the Crystal Structure of a New Chiral 1D Metal–Organic Coordination Polymer Based on L-Prolineamide-Substituted Diarylacetylenedicarboxylic Acid Derivative" Molecules 27, no. 23: 8376. https://doi.org/10.3390/molecules27238376
APA StyleVeselovsky, V. V., Isaeva, V. I., Nissenbaum, V. D., Kustov, L. M., & Chernyshev, V. V. (2022). Synthesis and the Crystal Structure of a New Chiral 1D Metal–Organic Coordination Polymer Based on L-Prolineamide-Substituted Diarylacetylenedicarboxylic Acid Derivative. Molecules, 27(23), 8376. https://doi.org/10.3390/molecules27238376