Myotoxin-3 from the Pacific Rattlesnake Crotalus oreganus oreganus Venom Is a New Microtubule-Targeting Agent
Abstract
:1. Introduction
2. Results
2.1. Purification of Bioactive Peptides from Venoms
2.2. Mass Spectrometry Characterization
2.3. Amino Acid Sequence Determination
2.4. Chemical Synthesis of Myotoxin-3
2.5. Electron Microscopy of Microtubules
2.6. Intracellular Uptake of Myotoxin-3
2.7. Myotoxin-3 Decreases Microtubule Dynamics in Living Cells
2.8. Myotoxin-3 Affects Microtubule Network of U87 Cells and Induces Cytotoxicity
2.9. Myotoxin-3 Binds to Microtubules and Tubulin
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Purification of Bioactive Peptides from C. o. oreganus Venom
4.3. In Vitro Tubulin Polymerization Assay
4.4. Electron Microscopy of Microtubules
4.5. Molecular Mass Determination by MALDI-MS
4.6. Amino Acid Sequence Determination
4.7. Chemical Synthesis of Myotoxin-3
4.8. Intracellular Uptake of Myotoxin-3
4.9. Time-Lapse Microscopy and Analysis of Microtubule Dynamics
4.10. Microtubules Labeling
4.11. Cytotoxicity Assay
4.12. Co-Sedimentation Microtubules/Myotoxin-3
4.13. Sedimentation Velocity
4.14. Isothermal Titration Calorimetry
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brouhard, G.J.; Rice, L.M. Microtubule Dynamics: An Interplay of Biochemistry and Mechanics. Nat. Rev. Mol. Cell Biol. 2018, 19, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Barbier, P.; Tsvetkov, P.O.; Breuzard, G.; Devred, F. Deciphering the Molecular Mechanisms of Anti-Tubulin Plant Derived Drugs. Phytochem. Rev. 2014, 13, 157–169. [Google Scholar] [CrossRef]
- Dumontet, C.; Jordan, M.A. Microtubule-Binding Agents: A Dynamic Field of Cancer Therapeutics. Nat. Rev. Drug Discov. 2010, 9, 790–803. [Google Scholar] [CrossRef] [Green Version]
- Wordeman, L.; Vicente, J.J. Microtubule Targeting Agents in Disease: Classic Drugs, Novel Roles. Cancers 2021, 13, 5650. [Google Scholar] [CrossRef]
- Graham, W.; Roberts, J.B. Intravenous Colchicine in the Management of Gouty Arthritis. Ann. Rheum. Dis. 1953, 12, 16–19. [Google Scholar] [CrossRef] [Green Version]
- Saez, N.J.; Senff, S.; Jensen, J.E.; Er, S.Y.; Herzig, V.; Rash, L.D.; King, G.F. Spider-Venom Peptides as Therapeutics. Toxins 2010, 2, 2851–2871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed Abd El-Aziz; Garcia Soares; Stockand Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins 2019, 11, 564. [CrossRef] [Green Version]
- Miljanich, G.P. Ziconotide: Neuronal Calcium Channel Blocker for Treating Severe Chronic Pain. CMC 2004, 11, 3029–3040. [Google Scholar] [CrossRef]
- Furman, B.L. The Development of Byetta (Exenatide) from the Venom of the Gila Monster as an Anti-Diabetic Agent. Toxicon 2012, 59, 464–471. [Google Scholar] [CrossRef]
- Cushman, D.W.; Ondetti, M.A. Design of Angiotensin Converting Enzyme Inhibitors. Nat. Med. 1999, 5, 1110–1112. [Google Scholar] [CrossRef]
- Impact-II Investigators. Randomised Placebo-Controlled Trial of Effect of Eptifibatide on Complications of Percutaneous Coronary Intervention: IMPACT-II. Integrilin to Minimise Platelet Aggregation and Coronary Thrombosis-II. Lancet 1997, 349, 1422–1428. [Google Scholar] [CrossRef]
- Kereiakes, J.; Kleiman, N.S.; Ambrose, J.; Cohen, M.; Rodriguez, S.; Palabrica, T.; Herrmann, H.C.; Sutton, J.M.; Weaver, W.D.; McKee, D.B.; et al. Randomized, Double-Blind, Placebo-Controlled Dose-Ranging Study of Tirofiban (MK-383) Platelet IIb/IIIa Blockade in High Risk Patients Undergoing Coronary Angioplasty. J. Am. Coll. Cardiol. 1996, 27, 536–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, A.L.; Viegas, M.F.; da Silva, S.L.; Soares, A.M.; Ramos, M.J.; Fernandes, P.A. The Chemistry of Snake Venom and Its Medicinal Potential. Nat. Rev. Chem. 2022, 6, 451–469. [Google Scholar] [CrossRef]
- Griffin, P.R.; Aird, S.D. A New Small Myotoxin from the Venom of the Prairie Rattlesnake (Crotalus Viridis Viridis). FEBS Lett. 1990, 274, 43–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salazar, E.; Rodriguez-Acosta, A.; Lucena, S.; Gonzalez, R.; McLarty, M.C.; Sanchez, O.; Suntravat, M.; Garcia, E.; Finol, H.J.; Giron, M.E.; et al. Biological Activities of a New Crotamine-like Peptide from Crotalus Oreganus Helleri on C2C12 and CHO Cell Lines, and Ultrastructural Changes on Motor Endplate and Striated Muscle. Toxicon 2020, 188, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Marinovic, M.P.; Dal Mas, C.; Monte, G.G.; Felix, D.; Campeiro, J.D.; Hayashi, M.A.F. Crotamine: Function Diversity and Potential Applications. In Snake Venoms; Gopalakrishnakone, P., Inagaki, H., Mukherjee, A.K., Rahmy, T.R., Vogel, C.-W., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 1–30. ISBN 978-94-007-6648-8. [Google Scholar]
- Nicastro, G.; Franzoni, L.; de Chiara, C.; Mancin, A.C.; Giglio, J.R.; Spisni, A. Solution Structure of Crotamine, a Na+ Channel Affecting Toxin from Crotalus Durissus Terrificus Venom. Eur. J. Biochem. 2003, 270, 1969–1979. [Google Scholar] [CrossRef]
- Yamane, E.S.; Bizerra, F.C.; Oliveira, E.B.; Moreira, J.T.; Rajabi, M.; Nunes, G.L.C.; de Souza, A.O.; da Silva, I.D.C.G.; Yamane, T.; Karpel, R.L.; et al. Unraveling the Antifungal Activity of a South American Rattlesnake Toxin Crotamine. Biochimie 2013, 95, 231–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oguiura, N.; Boni-Mitake, M.; Affonso, R.; Zhang, G. In Vitro Antibacterial and Hemolytic Activities of Crotamine, a Small Basic Myotoxin from Rattlesnake Crotalus Durissus. J. Antibiot. 2011, 64, 327–331. [Google Scholar] [CrossRef] [Green Version]
- Calligaris, D.; Verdier-Pinard, P.; Devred, F.; Villard, C.; Braguer, D.; Lafitte, D. Microtubule Targeting Agents: From Biophysics to Proteomics. Cell. Mol. Life Sci. 2010, 67, 1089–1104. [Google Scholar] [CrossRef]
- Morjen, M.; Abdelkafi-Koubaa, Z.; Jebali, J.; Messadi, E.; Srairi-Abid, N.; Luis, J.; Marrakchi, N. Snake Venom Proteins Isolated from Tunisian Vipers: Pharmacological and Therapeutic Overview. VAT 2021, 1, 6–14. [Google Scholar] [CrossRef]
- Verdoni, M.; Roudaut, H.; De Pomyers, H.; Gigmes, D.; Bertin, D.; Luis, J.; Bengeloune, A.H.; Mabrouk, K. ArgTX-636, a Polyamine Isolated from Spider Venom: A Novel Class of Melanogenesis Inhibitors. Bioorg. Med. Chem. 2016, 24, 5685–5692. [Google Scholar] [CrossRef]
- Maeda, N.; Tamiya, N.; Pattabhiraman, T.R.; Russell, F.E. Some Chemical Properties of the Venom of the Rattlesnake, Crotalus Viridis Helleri. Toxicon 1978, 16, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Kerkis, A.; Kerkis, I.; Rádis-Baptista, G.; Oliveira, E.B.; Vianna-Morgante, A.M.; Pereira, L.V.; Yamane, T. Crotamine Is a Novel Cell-penetrating Protein from the Venom of Rattlesnake Crotalus Durissus Terrificus. FASEB J. 2004, 18, 1407–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, A.; Surolia, A.; Panda, D. An Antitubulin Agent BCFMT Inhibits Proliferation of Cancer Cells and Induces Cell Death by Inhibiting Microtubule Dynamics. PLoS ONE 2012, 7, e44311. [Google Scholar] [CrossRef] [Green Version]
- Noiges, R.; Eichinger, R.; Kutschera, W.; Fischer, I.; Németh, Z.; Wiche, G.; Propst, F. Microtubule-Associated Protein 1A (MAP1A) and MAP1B: Light Chains Determine Distinct Functional Properties. J. Neurosci. 2002, 22, 2106–2114. [Google Scholar] [CrossRef] [Green Version]
- Faller, E.M.; Villeneuve, T.S.; Brown, D.L. MAP1a Associated Light Chain 3 Increases Microtubule Stability by Suppressing Microtubule Dynamics. Mol. Cell. Neurosci. 2009, 41, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, C.; Pietsch, N.; Ramirez Rios, S.; Peris, L.; Carrier, L.; Moutin, M.-J. The Detyrosination/Re-Tyrosination Cycle of Tubulin and Its Role and Dysfunction in Neurons and Cardiomyocytes. Semin. Cell Dev. Biol. 2021, in press. [CrossRef] [PubMed]
- Janke, C.; Magiera, M.M. The Tubulin Code and Its Role in Controlling Microtubule Properties and Functions. Nat. Rev. Mol. Cell Biol. 2020, 21, 307–326. [Google Scholar] [CrossRef] [PubMed]
- Groth-Pedersen, L.; Ostenfeld, M.S.; Høyer-Hansen, M.; Nylandsted, J.; Jäättelä, M. Vincristine Induces Dramatic Lysosomal Changes and Sensitizes Cancer Cells to Lysosome-Destabilizing Siramesine. Cancer Res. 2007, 67, 2217–2225. [Google Scholar] [CrossRef] [Green Version]
- Abbassi, R.H.; Recasens, A.; Indurthi, D.C.; Johns, T.G.; Stringer, B.W.; Day, B.W.; Munoz, L. Lower Tubulin Expression in Glioblastoma Stem Cells Attenuates Efficacy of Microtubule-Targeting Agents. ACS Pharmacol. Transl. Sci. 2019, 2, 402–413. [Google Scholar] [CrossRef]
- Feizabadi, M.S.; Rosario, B. MCF7 Microtubules: Cancer Microtubules with Relatively Slow and Stable Dynamic in Vitro. Biochem. Biophys. Res. Commun. 2017, 484, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Abdelfatah, S.; Lu, X.; Schmeda-Hirschmann, G.; Efferth, T. Cytotoxicity and Antimitotic Activity of Rhinella Schneideri and Rhinella Marina Venoms. J. Ethnopharmacol. 2019, 242, 112049. [Google Scholar] [CrossRef] [PubMed]
- Berges, R.; Denicolai, E.; Tchoghandjian, A.; Baeza-Kallee, N.; Honore, S.; Figarella-Branger, D.; Braguer, D. Proscillaridin A Exerts Anti-Tumor Effects through GSK3β Activation and Alteration of Microtubule Dynamics in Glioblastoma. Cell Death Dis. 2018, 9, 984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazaa, A.; Pasquier, E.; Defilles, C.; Limam, I.; Kessentini-Zouari, R.; Kallech-Ziri, O.; Battari, A.E.; Braguer, D.; Ayeb, M.E.; Marrakchi, N.; et al. MVL-PLA2, a Snake Venom Phospholipase A2, Inhibits Angiogenesis through an Increase in Microtubule Dynamics and Disorganization of Focal Adhesions. PLoS ONE 2010, 5, e10124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morjen, M.; Honoré, S.; Bazaa, A.; Abdelkafi-Koubaa, Z.; Ellafi, A.; Mabrouk, K.; Kovacic, H.; El Ayeb, M.; Marrakchi, N.; Luis, J. PIVL, a Snake Venom Kunitz-Type Serine Protease Inhibitor, Inhibits in Vitro and in Vivo Angiogenesis. Microvasc. Res. 2014, 95, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Lefèvre, J.; Chernov, K.G.; Joshi, V.; Delga, S.; Toma, F.; Pastré, D.; Curmi, P.A.; Savarin, P. The C Terminus of Tubulin, a Versatile Partner for Cationic Molecules. J. Biol. Chem. 2011, 286, 3065–3078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, S.; Verma, P.J.; Panda, D. C-Terminal Region of MAP7 Domain Containing Protein 3 (MAP7D3) Promotes Microtubule Polymerization by Binding at the C-Terminal Tail of Tubulin. PLoS ONE 2014, 9, e99539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.H.; Field, J.J.; Kanakkanthara, A.; Owen, J.G.; Singh, A.J.; Northcote, P.T. Marine Invertebrate Natural Products That Target Microtubules. J. Nat. Prod. 2018, 81, 691–702. [Google Scholar] [CrossRef]
- Andreu, J.M.; Gorbunopff, M.J.; Lee, J.C.; Timasheff, S.N. Interaction of Tubulin with Bifunctional Colchicine Analogs: An Equilibrium Study. Biochemistry 1984, 23, 1742–1752. [Google Scholar] [CrossRef]
- Devred, F.; Barbier, P.; Douillard, S.; Monasterio, O.; Andreu, J.M.; Peyrot, V. Tau Induces Ring and Microtubule Formation from Aβ-Tubulin Dimers under Nonassembly Conditions. Biochemistry 2004, 43, 10520–10531. [Google Scholar] [CrossRef]
- Muller, J.-M.; Battari, A.; Ah-Kye, E.; Luis, J.; Ducret, F.; Pichon, J.; Marvaldi, J. Internalization of the Vasoactive Intestinal Peptide (VIP) in a Human Adenocarcinoma Cell Line (HT29). Eur. J. Biochem. 1985, 152, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Laue, T.M.; Shah, B.D.; Ridgeway, T.M.; Pelletier, S.L. Computer-Aided Interpretation of Sedimentation Data for Proteins. In Analytical Ultracentrifugation in Biochemistry and Polymer Science; Harding, S.E., Rowe, A.J., Horton, J.C., Eds.; Royal Society of Chemistry: Cambridge, UK, 1992; pp. 90–125. ISBN 978-0-85186-345-0. [Google Scholar]
- Schuck, P.; Rossmanith, P. Determination of the Sedimentation Coefficient Distribution by Least-Squares Boundary Modeling. Biopolymers 2000, 54, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Tsvetkov, P.O.; La Rocca, R.; Malesinski, S.; Devred, F. Characterization of Microtubule-Associated Proteins (MAPs) and Tubulin Interactions by Isothermal Titration Calorimetry (ITC). Methods Mol. Biol. 2019, 1964, 151–165. [Google Scholar] [CrossRef] [PubMed]
45-Residue Myotoxin 3 | |||||
---|---|---|---|---|---|
Variables | CONTROL | 1 µM | 5 µM | 25 µM | |
Rate (µm/min) | G S | 25.9 ± 1.8 31.1 ± 2.6 | 26.7 ± 1.2 32.7 ± 2.0 | 26.9 ± 1.3 31.4 ± 1.9 | 20.3 ± 0.7 B 24.5 ± 1.3 B |
Length changes (µm) | G S | 1.87 ± 0.16 1.59 ± 0.08 | 1.50 ± 0.06 C 1.71 ± 0.07 | 1.47 ± 0.06 C 1.52 ± 0.05 | 1.12 ± 0.04 A 1.19 ± 0.04 A |
% time spent | G S P | 28.7 ± 2.1 17.3 ± 1.4 53.6 ± 2.7 | 29.2 ± 1.7 22.9 ± 1.6 B 47.9 ± 2.8 | 24.2 ± 1.5 20.0 ± 1.2 55.8 ± 2.2 | 20.5 ± 1.4 A 17.7 ± 1.0 61.9 ± 2.0 B |
Transition frequency (events/min) | C R | 4.65 ± 0.42 18.91 ± 0.89 | 6.49 ± 0.52 B 20.08 ± 0.71 | 5.01 ± 0.27 20.43 ± 0.55 | 4.81 ± 0.31 20.24 ± 0.59 |
Transition frequency (events/µm) | C R | 0.75 ± 0.08 0.93 ± 0.13 | 0.63 ± 0.04 0.74 ± 0.07 | 0.77 ± 0.10 0.95 ± 0.15 | 1.07 ± 0.11 C 1.58 ± 0.19 B |
Dynamicity (µm/min) | 14.4 ± 1.73 | 16.01 ± 1.37 | 12.66 ± 0.86 | 8.65 ± 0.68 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González García, M.C.; Radix, C.; Villard, C.; Breuzard, G.; Mansuelle, P.; Barbier, P.; Tsvetkov, P.O.; De Pomyers, H.; Gigmes, D.; Devred, F.; et al. Myotoxin-3 from the Pacific Rattlesnake Crotalus oreganus oreganus Venom Is a New Microtubule-Targeting Agent. Molecules 2022, 27, 8241. https://doi.org/10.3390/molecules27238241
González García MC, Radix C, Villard C, Breuzard G, Mansuelle P, Barbier P, Tsvetkov PO, De Pomyers H, Gigmes D, Devred F, et al. Myotoxin-3 from the Pacific Rattlesnake Crotalus oreganus oreganus Venom Is a New Microtubule-Targeting Agent. Molecules. 2022; 27(23):8241. https://doi.org/10.3390/molecules27238241
Chicago/Turabian StyleGonzález García, María Cecilia, Caroline Radix, Claude Villard, Gilles Breuzard, Pascal Mansuelle, Pascale Barbier, Philipp O. Tsvetkov, Harold De Pomyers, Didier Gigmes, François Devred, and et al. 2022. "Myotoxin-3 from the Pacific Rattlesnake Crotalus oreganus oreganus Venom Is a New Microtubule-Targeting Agent" Molecules 27, no. 23: 8241. https://doi.org/10.3390/molecules27238241
APA StyleGonzález García, M. C., Radix, C., Villard, C., Breuzard, G., Mansuelle, P., Barbier, P., Tsvetkov, P. O., De Pomyers, H., Gigmes, D., Devred, F., Kovacic, H., Mabrouk, K., & Luis, J. (2022). Myotoxin-3 from the Pacific Rattlesnake Crotalus oreganus oreganus Venom Is a New Microtubule-Targeting Agent. Molecules, 27(23), 8241. https://doi.org/10.3390/molecules27238241