Medicinal Properties of Anchusa strigosa and Its Active Compounds
Abstract
:1. Introduction
2. Results
2.1. Identification of Active Compounds
2.2. Pro-Wound Healing (WH) Properties
2.3. Estimation of Anti-Microbial Properties
3. Discussion
4. Materials and Methods
4.1. Preparation of Plant Material
4.2. Identification of Plant Compounds
4.3. Materials and Bacterial Strains
4.4. Biofilm Formation Estimation
4.5. Anti-Bacterial Activity
4.6. In Vitro Wound Healing Assay
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Russell, A.; Russell, P. The Natural History of Aleppo: Containing a Description of the City, and the Principal Natural Productions in Its Neighbourhood: Together with an Account of the Climate, Inhabitants, and Diseases, Particularly of the Plague, 2nd ed.; Gregg International Publishers Limited, Westmead: London, UK, 1794; p. 1. Available online: https://www.biodiversitylibrary.org/item/133807#page/9/mode/1up (accessed on 20 September 2022).
- Budovsky, A.; Fraifeld, V.E. Medicinal plants growing in the Judea region: Network approach for searching potential therapeutic targets. Netw. Biol. 2012, 2, 84–94. [Google Scholar] [CrossRef]
- Lev, E.; Amar, Z. Ethnopharmacological survey of traditional drugs sold in Israel at the end of the 20th century. J. Ethnopharmacol. 2000, 72, 191–205. [Google Scholar] [CrossRef]
- Gorelick, J.; Kitron, A.; Pen, S.; Rosenzweig, T.; Madar, Z. Anti-diabetic activity of Chiliadenus iphionoides. J. Ethnopharmacol. 2011, 137, 1245–1249. [Google Scholar] [CrossRef] [PubMed]
- Tamir, H.; Satovic, Z.; Gorelick, J.; Danin, A.; Fischer, R.; Chaimovitsh, D.; Dudai, N. Intraspecific variation of Chiliadenus iphionoides essential oil in Israel. Chem. Biodivers. 2011, 8, 1065–1082. [Google Scholar] [CrossRef]
- Yarmolinsky, L.; Budovsky, A.; Ben-Shabat, S.; Khalfin, B.; Gorelick, J.; Bishitz, Y.; Miloslavski, R.; Yarmolinsky, L. Recent Updates on the Phytochemistry and Pharmacological Properties of Phlomis viscosa Poiret. Rejuvenation Res. 2019, 22, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Agyare, C.; Boakye, Y.D.; Bekoe, E.O.; Hensel, A.; Dapaah, S.O.; Appiah, T. Review: African medicinal plants with wound healing properties. J. Ethnopharmacol. 2016, 177, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Budovsky, A.; Shteinberg, A.; Maor, H.; Duman, O.; Yanai, H.; Wolfson, M.; Fraifeld, V.E. Uncovering the geroprotective potential of medicinal plants from the Judea region of Israel. Rejuvenation Res. 2014, 17, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Yarmolinsky, L.L.; Budovsky, A.; Yarmolinsky, L.L.; Khalfin, B.; Glukhman, V.; Ben-Shabat, S. Effect of bioactive phytochemicals from phlomis viscosa poiret on wound healing. Plants 2019, 8, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Disi, A.M.; Tamimi, S.O.; Abuereish, G.M. Effects of Anchusa strigosa root aqueous extract on gastric ethanol-induced ulcer in laboratory animals. J. Ethnopharmacol. 1998, 60, 189–198. [Google Scholar] [CrossRef]
- Aburjai, T.; Hudaib, M.; Tayyem, R.; Yousef, M.; Qishawi, M. Ethnopharmacological survey of medicinal herbs in Jordan, the Ajloun Heights region. J. Ethnopharmacol. 2007, 110, 294–304. [Google Scholar] [CrossRef]
- Al-Khateeb, E.H.; Al-Assi, G.A.; Shakya, A.K.; Al-Rawi, N.S.N. Antioxidant Potential of Pistacia Vera L. Fruit Hull, Anchusa Strigosa Flowers and Ilex Paraguariensis A. St.-Hil. leaves Extracte. Orient. J. Chem. 2019, 35, 982. [Google Scholar]
- Al-Snafi, A.E. The pharmacology of Anchusa Italica and Anchusa strigosa. A review. Int. J. Pharm. Pharm. Sci. 2014, 64, 7–10. [Google Scholar]
- Budovsky, A.; Yarmolinsky, L.; Ben-Shabat, S. Effect of medicinal plants on wound healing. Wound Repair Regen. 2015, 23, 171–183. [Google Scholar] [CrossRef]
- Ferguson, M.W.J.; O’Kane, S. Scar-free healing: From embryonic mechanisms to adult therapeutic intervention. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2004, 359, 839–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhett, J.M.; Ghatnekar, G.S.; Palatinus, J.A.; O’Quinn, M.; Yost, M.J.; Gourdie, R.G. Novel therapies for scar reduction and regenerative healing of skin wounds. Trends Biotechnol. 2008, 26, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef]
- Valentine, K.P.; Viacheslav, K.M. Bacterial flora of combat wounds from eastern Ukraine and time-specified changes of bacterial recovery during treatment in Ukrainian military hospital. BMC Res. Notes 2017, 10, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, K.; Mohr, C.; Lügger, K.; Heller, C.; Siemens, J.; Mulder, I. Widespread occurrence of quaternary alkylammonium disinfectants in soils of Hesse, Germany. Sci. Total Environ. 2022, 857, 159228. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Chattopadhyay, M.K.; Grossart, H.-P. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front. Microbiol. 2013, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J.-L.; Sakr, Y.; Singer, M.; Martin-Loeches, I.; Machado, F.R.; Marshall, J.C.; Finfer, S.; Pelosi, P.; Brazzi, L.; Aditianingsih, D.; et al. Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017. JAMA 2020, 323, 1478–1487. [Google Scholar] [CrossRef]
- Yarmolinsky, L.; Bronstein, M.; Gorelick, J. Review: Inhibition of bacterial quorum sensing by plant extracts. Isr. J. Plant Sci. 2015, 62, 294–297. [Google Scholar] [CrossRef]
- Wagh, M.S.; Osborne, W.J.; Sivarajan, S. Volatile Organic Compounds for Enhancement of Plant Growth through Plant Growth Promoting Rhizobacteria; Kumar, A., Singh, J., Samuel, J., Eds.; Academic Press: Warsaw, Poland, 2021; Chaper 16; pp. 325–347. ISBN 978-0-12-824523-1. [Google Scholar] [CrossRef]
- O’Toole, G.A. Microtiter dish biofilm formation assay. J. Vis. Exp. 2011, 47, e2437. [Google Scholar] [CrossRef] [PubMed]
- Karaman, S.; ComlekcIog, N. Essential Oil Composition of Nepeta cilicia Boiss. Apud Bentham and Phlomis viscosa Poiret from Turke. Int. J. Bot. 2006, 3, 122–124. [Google Scholar] [CrossRef]
- Reed, J.D.; Krueger, C.G.; Vestling, M.M. MALDI-TOF mass spectrometry of oligomeric food polyphenols. Phytochemistry 2005, 66, 2248–2263. [Google Scholar] [CrossRef]
- Qaâdan, F.; Nahrstedt, A.; Schmidt, M.; Mansoor, K. Polyphenols from Ginkgo biloba. Sci. Pharm. 2010, 78, 897–907. [Google Scholar] [CrossRef] [Green Version]
- Siciliano, T.; De Leo, M.; Bader, A.; De Tommasi, N.; Vrieling, K.; Braca, A.; Morelli, I. Pyrrolizidine alkaloids from Anchusa strigosa and their antifeedant activity. Phytochemistry 2005, 66, 1593–1600. [Google Scholar] [CrossRef]
- Rasoanaivo, P.; Wright, C.W.; Willcox, M.L.; Gilbert, B. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions. Malar. J. 2011, 10 (Suppl. S1), S4. [Google Scholar] [CrossRef] [Green Version]
- Özay, Y.; Güzel, S.; Yumrutaş, Ö.; Pehlivanoğlu, B.; Erdoğdu, İ.H.; Yildirim, Z.; Türk, B.A.; Darcan, S. Wound Healing Effect of Kaempferol in Diabetic and Nondiabetic Rats. J. Surg. Res. 2019, 233, 284–296. [Google Scholar] [CrossRef]
- Saleem, U.; Khalid, S.; Zaib, S.; Anwar, F.; Ahmad, B.; Ullah, I.; Zeb, A.; Ayaz, M. Phytochemical analysis and wound healing studies on ethnomedicinally important plant Malva neglecta Wallr. J. Ethnopharmacol. 2020, 249, 112401. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.; Panichayupakaranant, P.; Kaewnopparat, N.; Nitiruangjaras, A.; Reanmongkol, W. Wound healing activities of standardized pomegranate rind extract and its major antioxidant ellagic acid in rat dermal wounds. J. Nat. Med. 2014, 68, 377–386. [Google Scholar] [CrossRef]
- Mouzié, C.M.; Guefack, M.-G.F.; Kianfé, B.Y.; Serondo, H.U.; Ponou, B.K.; Siwe-Noundou, X.; Teponno, R.B.; Krause, R.W.M.; Kuete, V.; Tapondjou, L.A. A New Chalcone and Antimicrobial Chemical Constituents of Dracaena stedneuri. Pharmaceuticals (Basel) 2022, 15, 725. [Google Scholar] [CrossRef] [PubMed]
- Hochma, E.; Yarmolinsky, L.; Khalfin, B.; Nisnevitch, M.; Ben-Shabat, S.; Nakonechny, F. Antimicrobial Effect of Phytochemicals from Edible Plants. Process 2021, 9, 2089. [Google Scholar] [CrossRef]
- Yarmolinsky, L.; Huleihel, M.; Zaccai, M.; Ben-Shabat, S. Potent antiviral flavone glycosides from Ficus benjamina leaves. Fitoterapia 2012, 83, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, R.; Chaudhary, S.K.; Sharma, A.; Yadav, K.K.; Nema, N.K.; Sekhoacha, M.; Karmakar, S.; Braga, F.C.; Matsabisa, M.G.; Mukherjee, P.K.; et al. Anti-biofilm activity of Marula-a study with the standardized bark extract. J. Ethnopharmacol. 2014, 154, 170–175. [Google Scholar] [CrossRef]
- Joo, K.-M.; Kim, S.; Koo, Y.J.; Lee, M.; Lee, S.-H.; Choi, D.; Lim, K.-M. Development and validation of UPLC method for WST-1 cell viability assay and its application to MCTT HCETM eye irritation test for colorful substances. Toxicol. Vitr. Int. J. Public Assoc. BIBRA 2019, 60, 412–419. [Google Scholar] [CrossRef] [PubMed]
Compound | Analytical Methods | Concentration, mg/kg | Probability of Compound Identification (%) |
---|---|---|---|
Isovaleraldehyde | GC/MS | 11.9 | 87.8 |
Cubebene | GC/MS | 0.9 | 89.6 |
2-methylfuran | GC/MS | 1.2 | 93.6 |
3-methylbutanal | GC/MS | 11.9 | 90.5 |
Oxirane | GC/MS | 2.4 | 89.7 |
Octanal | GC/MS | 1.6 | 92.1 |
Quercetin 3-O-rutinoside | HPLC, LC-ESI-MS, MALDI-TOF-MS | 5.9 | 98.7 |
Kaempferol | HPLC, LC-ESI-MS, MALDI-TOF-MS | 1.5 | 93.8 |
Ellagic acid | HPLC, LC-ESI-MS, MALDI-TOF-MS | 1.8 | 90.8 |
Kaempferol 3-O-β-rhamnopyranosyl(1→6)-β-glucopyranoside | HPLC, LC-ESI-MS, MALDI-TOF-MS | 1.1 | 87.9 |
Kaempferol 3-O-α-rhamnopyranosyl(1→6)-β-galactopyranoside | HPLC, LC-ESI-MS, MALDI-TOF-MS | 1.2 | 91.7 |
pyrrolizidine alkaloid | HPLC, LC-ESI-MS, MALDI-TOF-MS | 2.3 | 90.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yarmolinsky, L.; Budovsky, A.; Khalfin, B.; Yarmolinsky, L.; Ben-Shabat, S. Medicinal Properties of Anchusa strigosa and Its Active Compounds. Molecules 2022, 27, 8239. https://doi.org/10.3390/molecules27238239
Yarmolinsky L, Budovsky A, Khalfin B, Yarmolinsky L, Ben-Shabat S. Medicinal Properties of Anchusa strigosa and Its Active Compounds. Molecules. 2022; 27(23):8239. https://doi.org/10.3390/molecules27238239
Chicago/Turabian StyleYarmolinsky, Ludmila, Arie Budovsky, Boris Khalfin, Leonid Yarmolinsky, and Shimon Ben-Shabat. 2022. "Medicinal Properties of Anchusa strigosa and Its Active Compounds" Molecules 27, no. 23: 8239. https://doi.org/10.3390/molecules27238239
APA StyleYarmolinsky, L., Budovsky, A., Khalfin, B., Yarmolinsky, L., & Ben-Shabat, S. (2022). Medicinal Properties of Anchusa strigosa and Its Active Compounds. Molecules, 27(23), 8239. https://doi.org/10.3390/molecules27238239