Kinetic Analysis of Prostate-Specific Antigen Interaction with Monoclonal Antibodies for Development of a Magnetic Immunoassay Based on Nontransparent Fiber Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surface Modification of Microscope Cover Slips and Antibody Immobilization
2.2. Label-Free Registration of Association/Dissociation of Antibody-Antigen Complexes
2.3. Magnetic Immunoassay
2.4. Data Processing
3. Results and Discussion
3.1. Kinetic Characterization of Unlabeled Anti-fPSA Antibodies Covalently Immobilized on Epoxylated Sensor Chips
3.2. Kinetic Characterization of Biotinylated Antibodies
3.3. Development of Highly-Sensitive Immunoassay for fPSA Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Naji, L.; Randhawa, H.; Sohani, Z.; Dennis, B.; Lautenbach, D.; Kavanagh, O.; Bawor, M.; Banfield, L.; Profetto, J. Digital Rectal Examination for Prostate Cancer Screening in Primary Care: A Systematic Review and Meta-Analysis. Ann. Fam. Med. 2018, 16, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Oki, R.; Sekine, Y.; Arai, S.; Miyazawa, Y.; Shibata, Y.; Suzuki, K.; Kurosawa, I. Screening for Prostate Cancer: History, Evidence, Controversies and Future Perspectives toward Individualized Screening. Int. J. Urol. 2019, 26, 956–970. [Google Scholar] [CrossRef] [Green Version]
- Hara, M.; Koyanagi, Y.; Inoue, T.; Fukuyama, T. Some Physico-Chemical Characteristics of “-Seminoprotein”, an Antigenic Component Specific for Human Seminal Plasma. Forensic Immunological Study of Body Fluids and Secretion. VII. Jpn. J. Leg. Med. 1971, 25, 322–324. [Google Scholar]
- Nadler, R.B.; Humphrey, P.A.; Smith, D.S.; Catalona, W.J.; Ratliff, T.L. Effect of Inflammation and Benign Prostatic Hyperplasia on Elevated Serum Prostate Specific Antigen Levels. J. Urol. 1995, 154, 407–413. [Google Scholar] [CrossRef]
- Wang, M.C.; Valenzuela, L.A.; Murphy, G.P.; Chu, T.M. Purification of a Human Prostate Specific Antigen. Investig. Urol. 1979, 17, 159–163. [Google Scholar] [CrossRef]
- Inoguchi, N.; Matsumura, Y.; Kanazawa, N.; Morita, K.; Tachibana, T.; Sakurai, T.; Utani, A.; Miyachi, Y. Expression of Prostate-Specific Antigen and Androgen Receptor in Extramammary Paget’s Disease and Carcinoma. Clin. Exp. Dermatol. 2007, 32, 91–94. [Google Scholar] [CrossRef]
- Black, M.H.; Diamandis, E.P. The Diagnostic and Prognostic Utility of Prostate-Specific Antigen for Diseases of the Breast. Breast Cancer Res. Treat. 2000, 59, 1–14. [Google Scholar] [CrossRef]
- Zhang, K.; Bangma, C.H.; Roobol, M.J. Prostate Cancer Screening in Europe and Asia. Asian J. Urol. 2017, 4, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Moyer, V.A. Screening for Prostate Cancer: U.S. Preventive Services Task Force Recommendation Statement. Ann. Intern. Med. 2012, 157, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Cornford, P.; Bellmunt, J.; Bolla, M.; Briers, E.; De Santis, M.; Gross, T.; Henry, A.M.; Joniau, S.; Lam, T.B.; Mason, M.D.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part II: Treatment of Relapsing, Metastatic, and Castration-Resistant Prostate Cancer. Eur. Urol. 2017, 71, 630–642. [Google Scholar] [CrossRef] [PubMed]
- Cookson, M.S.; Aus, G.; Burnett, A.L.; Canby-Hagino, E.D.; D’Amico, A.V.; Dmochowski, R.R.; Eton, D.T.; Forman, J.D.; Goldenberg, S.L.; Hernandez, J.; et al. Variation in the Definition of Biochemical Recurrence in Patients Treated for Localized Prostate Cancer: The American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel Report and Recommendations for a Standard in the Reporting of Surgical Outcomes. J. Urol. 2007, 177, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Spain, E.; Gilgunn, S.; Sharma, S.; Adamson, K.; Carthy, E.; O’Kennedy, R.; Forster, R.J. Detection of Prostate Specific Antigen Based on Electrocatalytic Platinum Nanoparticles Conjugated to a Recombinant ScFv Antibody. Biosens. Bioelectron. 2016, 77, 759–766. [Google Scholar] [CrossRef]
- Loeb, S.; Catalona, W.J. Prostate-Specific Antigen in Clinical Practice. Cancer Lett. 2007, 249, 30–39. [Google Scholar] [CrossRef]
- Özyurt, C.; Uludağ, İ.; İnce, B.; Sezgintürk, M.K. Biosensing Strategies for Diagnosis of Prostate Specific Antigen. J. Pharm. Biomed. Anal. 2022, 209, 114535. [Google Scholar] [CrossRef]
- Zhao, R.; Zhao, L.; Feng, H.; Chen, X.; Zhang, H.; Bai, Y.; Feng, F.; Shuang, S. A Label-Free Fluorescent Aptasensor Based on HCR and G-Quadruplex DNAzymes for the Detection of Prostate-Specific Antigen. Analyst 2021, 146, 1340–1345. [Google Scholar] [CrossRef]
- Yao, H.; Wang, L.; Guo, J.; Liu, W.; Li, J.; Wang, Y.; Deng, L.; Ouyang, M. Genetically Encoded FRET Biosensor Detects the Enzymatic Activity of Prostate-Specific Antigen. MCB Mol. Cell. Biomech. 2020, 17, 101–111. [Google Scholar] [CrossRef]
- Yin, Z.; Zhu, L.; Lv, Z.; Li, M.; Tang, D. Persistent Luminescence Nanorods-Based Autofluorescence-Free Biosensor for Prostate-Specific Antigen Detection. Talanta 2021, 233, 122563. [Google Scholar] [CrossRef]
- Mahani, M.; Alimohamadi, F.; Torkzadeh-Mahani, M.; Hassani, Z.; Khakbaz, F.; Divsar, F.; Yoosefian, M. LSPR Biosensing for the Early-Stage Prostate Cancer Detection Using Hydrogen Bonds between PSA and Antibody: Molecular Dynamic and Experimental Study. J. Mol. Liq. 2021, 324, 114736. [Google Scholar] [CrossRef]
- Kim, H.M.; Uh, M.; Jeong, D.H.; Lee, H.Y.; Park, J.H.; Lee, S.K. Localized Surface Plasmon Resonance Biosensor Using Nanopatterned Gold Particles on the Surface of an Optical Fiber. Sens. Actuators B Chem. 2019, 280, 183–191. [Google Scholar] [CrossRef]
- Cao, J.T.; Zhang, W.S.; Wang, H.; Ma, S.H.; Liu, Y.M. A Novel Fluorescence Immunosensor Based on Förster Resonance Energy Transfer between Nitrogen and Sulfur Co-Doped Carbon Dot Functionalized Silica Nanospheres and Au@Ag NPs. New J. Chem. 2019, 43, 1424–1430. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Liang, A.; Ding, H.; Gai, H. Plasmonic Resonance Energy Transfer from a Au Nanosphere to Quantum Dots at a Single Particle Level and Its Homogenous Immunoassay. Chem. Commun. 2019, 55, 11442–11445. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Huo, W.; Zhang, L.; Lian, J.; Tao, W.; Song, C.; Tang, J.; Shi, S.; Gao, Y. Multiplex Measurement of Twelve Tumor Markers Using a GMR Multi-Biomarker Immunoassay Biosensor. Biosens. Bioelectron. 2019, 123, 204–210. [Google Scholar] [CrossRef]
- Hwang, H.; Choi, E.; Han, S.; Lee, Y.; Choi, T.; Kim, M.; Shin, H.; Kim, J.; Choi, J. MESIA: Magnetic Force-Assisted Electrochemical Sandwich Immunoassays for Quantification of Prostate-Specific Antigen in Human Serum. Anal. Chim. Acta 2019, 1061, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Visapää, H.; Hotakainen, K.; Lundin, J.; Ala-Opas, M.; Stenman, U.H. The Proportion of Free PSA and Upgrading of Biopsy Gleason Score after Radical Prostatectomy. Urol. Int. 2010, 84, 378–381. [Google Scholar] [CrossRef]
- Soltermann, F.; Struwe, W.B.; Kukura, P. Label-Free Methods for Optical in Vitro Characterization of Protein—Protein Interactions. Phys. Chem. Chem. Phys. 2021, 23, 16488–16500. [Google Scholar] [CrossRef]
- Stein, J.A.C.; Ianeselli, A.; Braun, D. Kinetic Microscale Thermophoresis for Simultaneous Measurement of Binding Affinity and Kinetics. Angew. Chem.-Int. Ed. 2021, 133, 14107–14114. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, G.; Moitessier, N.; Mittermaier, A.K. Enzyme Kinetics by Isothermal Titration Calorimetry: Allostery, Inhibition, and Dynamics. Front. Mol. Biosci. 2020, 7, 583826. [Google Scholar] [CrossRef]
- Wang, D.; Loo, J.F.C.; Chen, J.; Yam, Y.; Chen, S.-C.; He, H.; Kong, S.K.; Ho, H.P. Recent Advances in Surface Plasmon Resonance Imaging Sensors. Sensors 2019, 19, 1266. [Google Scholar] [CrossRef] [Green Version]
- Saftics, A.; Kurunczi, S.; Peter, B.; Szekacs, I.; Ramsden, J.J.; Horvath, R. Data Evaluation for Surface-Sensitive Label-Free Methods to Obtain Real-Time Kinetic and Structural Information of Thin Films: A Practical Review with Related Software Packages. Adv. Colloid. Interface Sci. 2021, 294, 102431. [Google Scholar] [CrossRef] [PubMed]
- Orlov, A.V.; Pushkarev, A.V.; Znoyko, S.L.; Novichikhin, D.O.; Bragina, V.A.; Gorshkov, B.G.; Nikitin, P.I. Multiplex Label-Free Biosensor for Detection of Autoantibodies in Human Serum: Tool for New Kinetics-Based Diagnostics of Autoimmune Diseases. Biosens. Bioelectron. 2020, 159, 112187. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, P.I.; Gorshkov, B.G.; Nikitin, E.P.; Ksenevich, T.I. Picoscope, a New Label-Free Biosensor. Sens. Actuators B Chem. 2005, 111, 500–504. [Google Scholar] [CrossRef]
- Hermanson, G.T. Chapter 2—Functional Targets for Bioconjugation. In Bioconjugate Techniques; Hermanson, G.T., Ed.; Academic Press: Boston, MA, USA, 2013. [Google Scholar]
- Ivanov, A.E.; Pushkarev, A.V.; Orlov, A.V.; Nikitin, M.P.; Nikitin, P.I. Interferometric Detection of Chloramphenicol via Its Immunochemical Recognition at Polymer-Coated Nano-Corrugated Surfaces. Sens. Actuators B Chem. 2019, 282, 984–991. [Google Scholar] [CrossRef]
- Orlov, A.V.; Malkerov, J.A.; Novichikhin, D.O.; Znoyko, S.L.; Nikitin, P.I. Multiplex Label-Free Kinetic Characterization of Antibodies for Rapid Sensitive Cardiac Troponin I Detection Based on Functionalized Magnetic Nanotags. Int. J. Mol. Sci. 2022, 23, 4474. [Google Scholar] [CrossRef]
- Nikitin, P.I.; Vetoshko, P.M.; Ksenevich, T.I. New Type of Biosensor Based on Magnetic Nanoparticle Detection. J. Magn. Magn. Mater. 2007, 311, 445–449. [Google Scholar] [CrossRef]
- Nikitin, M.P.; Shipunova, V.O.; Deyev, S.M.; Nikitin, P.I. Biocomputing Based on Particle Disassembly. Nat. Nanotechnol. 2014, 9, 716–722. [Google Scholar] [CrossRef]
- Orlov, A.V.; Malkerov, J.A.; Novichikhin, D.O.; Znoyko, S.L.; Nikitin, P.I. Express High-Sensitive Detection of Ochratoxin A in Food by a Lateral Flow Immunoassay Based on Magnetic Biolabels. Food Chem. 2022, 383, 132427. [Google Scholar] [CrossRef]
- Pushkarev, A.V.; Orlov, A.V.; Znoyko, S.L.; Bragina, V.A.; Nikitin, P.I. Rapid and Easy-to-use Method for Accurate Characterization of Target Binding and Kinetics of Magnetic Particle Bioconjugates for Biosensing. Sensors 2021, 21, 2802. [Google Scholar] [CrossRef]
- Nekrasov, N.; Yakunina, N.; Pushkarev, A.V.; Orlov, A.V.; Gadjanski, I.; Pesquera, A.; Centeno, A.; Zurutuza, A.; Nikitin, P.I.; Bobrinetskiy, I. Spectral-Phase Interferometry Detection of Ochratoxin a via Aptamer-Functionalized Graphene Coated Glass. Nanomaterials 2021, 11, 226. [Google Scholar] [CrossRef]
- ICH; European Medicines Agency. ICH Q2 (R1) Validation of Analytical Procedures: Text and Methodology. Available online: https://www.ema.europa.eu/en/ich-q2-r1-validation-analytical-procedures-text-methodology (accessed on 12 October 2022).
- Katsamba, P.S.; Navratilova, I.; Calderon-Cacia, M.; Fan, L.; Thornton, K.; Zhu, M.; Bos, T.V.; Forte, C.; Friend, D.; Laird-Offringa, I.; et al. Kinetic Analysis of a High-Affinity Antibody/Antigen Interaction Performed by Multiple Biacore Users. Anal. Biochem. 2006, 352, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Hamming, P.H.E.; Huskens, J. Streptavidin Coverage on Biotinylated Surfaces. ACS Appl. Mater. Interfaces 2021, 13, 58114–58123. [Google Scholar] [CrossRef] [PubMed]
- Dubacheva, G.V.; Araya-Callis, C.; Volbeda, A.G.; Fairhead, M.; Codée, J.; Howarth, M.; Richter, R.P. Controlling Multivalent Binding through Surface Chemistry: Model Study on Streptavidin. J. Am. Chem. Soc. 2017, 139, 4157–4167. [Google Scholar] [CrossRef] [Green Version]
- Høyer-Hansen, G.; Hamers, M.J.A.G.; Pedersen, A.N.; Nielsen, H.J.; Brünner, N.; Danø, K.; Stephens, R.W. Loss of ELISA Specificity Due to Biotinylation of Monoclonal Antibodies. J. Immunol. Methods 2000, 235, 91–99. [Google Scholar] [CrossRef]
- Cho, I.H.; Paek, E.H.; Lee, H.; Kang, J.Y.; Kim, T.S.; Paek, S.H. Site-Directed Biotinylation of Antibodies for Controlled Immobilization on Solid Surfaces. Anal. Biochem. 2007, 365, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Prantner, A.M.; Nguyen, C.V.; Scholler, N. Facile Immunotargeting of Nanoparticles against Tumor Antigens Using Site-Specific Biotinylated Antibody Fragments. J. Biomed. Nanotechnol. 2013, 9, 1686–1697. [Google Scholar] [CrossRef]
- Orlov, A.V.; Khodakova, J.A.; Nikitin, M.P.; Shepelyakovskaya, A.O.; Brovko, F.A.; Laman, A.G.; Grishin, E.V.; Nikitin, P.I. Magnetic Immunoassay for Detection of Staphylococcal Toxins in Complex Media. Anal. Chem. 2013, 85, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Flores-Fraile, M.-C.; Padilla-Fernández, B.Y.; Valverde-Martínez, S.; Marquez-Sanchez, M.; García-Cenador, M.-B.; Lorenzo-Gómez, M.-F.; Flores-Fraile, J. The Association between Prostate-Specific Antigen Velocity (PSAV), Value and Acceleration, and of the Free PSA/Total PSA Index or Ratio, with Prostate Conditions. J. Clin. Med. 2020, 9, 3400. [Google Scholar] [CrossRef]
- Tosoian, J.J.; Druskin, S.C.; Andreas, D.; Mullane, P.; Chappidi, M.; Joo, S.; Ghabili, K.; Mamawala, M.; Agostino, J.; Carter, H.B.; et al. Prostate Health Index Density Improves Detection of Clinically Significant Prostate Cancer. BJU Int. 2017, 120, 793–798. [Google Scholar] [CrossRef] [Green Version]
- Kearns, J.T.; Lin, D.W. Improving the Specificity of PSA Screening with Serum and Urine Markers. Curr. Urol. Rep. 2018, 19, 80. [Google Scholar] [CrossRef]
- Liu, A.; Zhao, F.; Zhao, Y.; Shangguan, L.; Liu, S. A Portable Chemiluminescence Imaging Immunoassay for Simultaneous Detection of Different Isoforms of Prostate Specific Antigen in Serum. Biosens. Bioelectron. 2016, 81, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.C.; Cai, B.; Jiang, Q.; Zhang, Y.; Sha, J.; Xie, S. MXene-Assisted Organic Electrochemical Transistor Biosensor with Multiple Spiral Interdigitated Electrodes for Sensitive Quantification of FPSA/TPSA. J. Nanobiotechnol. 2021, 19, 386. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Wang, D.; Yan, L.; Petrenko, V.A.; Liu, A. Specific Phages-Based Electrochemical Impedimetric Immunosensors for Label-Free and Ultrasensitive Detection of Dual Prostate-Specific Antigens. Sens. Actuators B Chem. 2019, 297, 126727. [Google Scholar] [CrossRef]
- Łupicka-Słowik, A.; Grzywa, R.; Leporowska, E.; Procyk, D.; Oleksyszyn, J.; Sieńczyk, M. Development and Evaluation of an Immunoglobulin Y-Based ELISA for Measuring Prostate Specific Antigen in Human Serum. Ann. Lab. Med. 2019, 39, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Jolly, P.; Damborsky, P.; Madaboosi, N.; Soares, R.R.G.; Chu, V.; Conde, J.P.; Katrlik, J.; Estrela, P. DNA Aptamer-Based Sandwich Microfluidic Assays for Dual Quantification and Multi-Glycan Profiling of Cancer Biomarkers. Biosens. Bioelectron. 2016, 79, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Zapatero-Rodríguez, J.; Liébana, S.; Sharma, S.; Gilgunn, S.; Drago, G.A.; O’Kennedy, R. Detection of Free Prostate-Specific Antigen Using a Novel Single-Chain Antibody (ScAb)-Based Magneto-Immunosensor. Bionanoscience 2018, 8, 680–689. [Google Scholar] [CrossRef]
- Bragina, V.A.; Orlov, A.V.; Znoyko, S.L.; Pushkarev, A.V.; Novichikhin, D.O.; Guteneva, N.V.; Nikitin, M.P.; Gorshkov, B.G.; Nikitin, P.I. Nanobiosensing Based on Optically Selected Antibodies and Superparamagnetic Labels for Rapid and Highly Sensitive Quantification of Polyvalent Hepatitis B Surface Antigen. Anal. Methods 2021, 13, 2424–2433. [Google Scholar] [CrossRef]
- Bragina, V.A.; Khomyakova, E.; Orlov, A.V.; Znoyko, S.L.; Mochalova, E.N.; Paniushkina, L.; Shender, V.O.; Erbes, T.; Evtushenko, E.G.; Bagrov, D.V.; et al. Highly Sensitive Nanomagnetic Quantification of Extracellular Vesicles by Immunochromatographic Strips: A Tool for Liquid Biopsy. Nanomaterials 2022, 12, 1579. [Google Scholar] [CrossRef]
Antibody Clone | kon, M−1s−1 | koff, s−1 | Ka, M−1 | Kd, M |
---|---|---|---|---|
3F8 | 6.94 × 106 | 2.75 × 10−2 | 2.52 × 108 | 3.96 × 10−9 |
2/2C2 | 5.29 × 106 | 7.50 × 10−3 | 7.05 × 108 | 1.42 × 10−9 |
M612166 | 4.56 × 106 | 3.24 × 10−3 | 1.41 × 109 | 7.11 × 10−10 |
M612165 | 6.49 × 106 | 1.51 × 10−3 | 4.29 × 109 | 2.33 × 10−10 |
ICO204 | 1.70 × 106 | 3.40 × 10−3 | 4.99 × 109 | 2.00 × 10−10 |
ICO168 | 2.13 × 107 | 1.35 × 10−3 | 1.58 × 1010 | 6.32 × 10−11 |
4H3 | 5.10 × 107 | 9.95 × 10−3 | 5.13 × 1010 | 1.95 × 10−11 |
Antibody Clone | kon, M−1s−1 | koff, s−1 | Ka, M−1 | Kd, M |
---|---|---|---|---|
3F8 | 5.06 × 106 | 3.16 × 10−2 | 1.60 × 108 | 6.24 × 10−9 |
2/2C2 | 1.16 × 105 | 5.90 × 10−2 | 1.96 × 106 | 5.09 × 10−7 |
M612166 | 4.13 × 106 | 3.69 × 10−3 | 1.12 × 109 | 8.95 × 10−10 |
M612165 | 4.95 × 106 | 1.40 × 10−3 | 3.53 × 109 | 2.83 × 10−10 |
ICO204 | 1.22 × 106 | 3.15 × 10−3 | 3.88 × 108 | 2.58 × 10−9 |
ICO168 | 2.04 × 107 | 1.38 × 10−3 | 1.48 × 1010 | 6.76 × 10−11 |
4H3 | 1.46 × 107 | 1.12 × 10−3 | 1.30 × 1010 | 7.67 × 10−11 |
Detection Method | Dynamic Range | Assay Time | LOD | Ref. |
---|---|---|---|---|
Electrochemical | 1–30 | 1 h | 1 ng/mL | [14] |
Fluorescence | 3.4–34 | >8 h | 1.7 ng/mL | [17] |
Fluorescence | 1–400 | 1.5 h | 25 ng/mL | [18] |
Localized surface plasmon resonance | 0.2–1 | N/A | 0.2 ng/mL | [20] |
Fluorescence resonance energy transfer | 0.005–10 | 4 h | 0.95 pg/mL | [22] |
Magnetic particle quantification | 0.03–100 | 25 min | 19 pg/mL | This work |
Giant magnetoresistance | 0.1–50 | 15 min | 70 pg/mL | [24] |
Electrochemical (magnetic force-assisted) | 5 min | pg/mL | [25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orlov, A.V.; Burenin, A.G.; Skirda, A.M.; Nikitin, P.I. Kinetic Analysis of Prostate-Specific Antigen Interaction with Monoclonal Antibodies for Development of a Magnetic Immunoassay Based on Nontransparent Fiber Structures. Molecules 2022, 27, 8077. https://doi.org/10.3390/molecules27228077
Orlov AV, Burenin AG, Skirda AM, Nikitin PI. Kinetic Analysis of Prostate-Specific Antigen Interaction with Monoclonal Antibodies for Development of a Magnetic Immunoassay Based on Nontransparent Fiber Structures. Molecules. 2022; 27(22):8077. https://doi.org/10.3390/molecules27228077
Chicago/Turabian StyleOrlov, Alexey V., Alexandr G. Burenin, Artemiy M. Skirda, and Petr I. Nikitin. 2022. "Kinetic Analysis of Prostate-Specific Antigen Interaction with Monoclonal Antibodies for Development of a Magnetic Immunoassay Based on Nontransparent Fiber Structures" Molecules 27, no. 22: 8077. https://doi.org/10.3390/molecules27228077
APA StyleOrlov, A. V., Burenin, A. G., Skirda, A. M., & Nikitin, P. I. (2022). Kinetic Analysis of Prostate-Specific Antigen Interaction with Monoclonal Antibodies for Development of a Magnetic Immunoassay Based on Nontransparent Fiber Structures. Molecules, 27(22), 8077. https://doi.org/10.3390/molecules27228077