Determination of Glyphosate in White and Brown Rice with HPLC-ICP-MS/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Linearity and Matrix Effect
2.2. LOD and LOQ
3. Material and Methods
3.1. Chemical and Reagents
3.2. Chromatographic and Mass Spectrometry Conditions
3.3. Sample Preparations
3.4. Method Validation
3.5. Accuracy and Precision
3.6. LOD and LOQ
3.7. Calibration Curve and Linearity
3.8. Matrix Effects
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- European Commission. Regulation (EC) No. 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC. Off. J. Eur. Union 2009, 52, L 309. [Google Scholar]
- Kudsk, P.; Mathiassen, S.K. Pesticide Regulation in the European Union and the Glyphosate Controversy. Weed Sci. 2020, 68, 214–222. [Google Scholar] [CrossRef]
- Bresnahan, G.A.; Manthey, F.A.; Howatt, K.A.; Chakraborty, M. Glyphosate Applied Preharvest Induces Shikimic Acid Accumulation in Hard Red Spring Wheat (Triticum aestivum). J. Agric. Food Chem. 2003, 51, 4004–4007. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Implementing Regulation (EU) 2017/2324 of 12 December 2017 Renewing the Approval of the Active Substance Glyphosate in Accordance with Regulation (EC) No. 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending the Annex to Commission Implementing Regulation (EU) No. 540/2011. Off. J. Eur. Union 2017, 60, L 333. [Google Scholar]
- Council of the European Union. Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. Off. J. Eur. Union 1998, 41, L 330. [Google Scholar]
- EPA. National Primary Drinking Water Regulations; EPA: Washington, DC, USA, 2020. [Google Scholar]
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; Mesnage, R.; et al. Concerns Over use of Glyphosate-Based Herbicides and Risks Associated with Exposures: A Consensus Statement. Environ. Health 2016, 15, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Commission Regulation (EU) No. 293/2013 of 20 March 2013 Amending Annexes II and III to Regulation (EC) No. 396/2005 of the European Parliament and of the Council as Regards Maximum Residue Levels for Emamectin Benzoate, Etofenprox, Etoxazole, Flutriafol, Glyphosate, Phosmet, Pyraclostrobin, Spinosad and Spirotetramat in Or on Certain Products Text with EEA Relevance. Off. J. Eur. Union 2013, 56, L 96. [Google Scholar]
- Awika, J.M.; Rose, D.J.; Simsek, S. Complementary Effects of Cereal and Pulse Polyphenols and Dietary Fiber on Chronic Inflammation and Gut Health. Food Funct. 2018, 9, 1389–1409. [Google Scholar] [CrossRef]
- Qian, K.; Tang, T.; Shi, T.; Li, P.; Li, J.; Cao, Y. Solid-Phase Extraction and Residue Determination of Glyphosate in Apple by Ion-Pairing Reverse-Phase Liquid Chromatography with Pre-Column Derivatization. J. Sep. Sci. 2009, 32, 2394–2400. [Google Scholar] [CrossRef]
- Kruve, A.; Auling, R.; Herodes, K.; Leito, I. Study of Liquid Chromatography/Electrospray Ionization Mass Spectrometry Matrix Effect on the Example of Glyphosate Analysis from Cereals. Rapid Commun. Mass Spectrom. 2011, 25, 3252–3258. [Google Scholar] [CrossRef]
- Martins-Júnior, H.A.; Lebre, D.T.; Wang, A.Y.; Pires, M.A.F.; Bustillos, O.V. An Alternative and Fast Method for Determination of Glyphosate and Aminomethylphosphonic Acid (AMPA) Residues in Soybean using Liquid Chromatography Coupled with Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- Ehling, S.; Reddy, T.M. Analysis of Glyphosate and Aminomethylphosphonic Acid in Nutritional Ingredients and Milk by Derivatization with Fluorenylmethyloxycarbonyl Chloride and Liquid Chromatography–Mass Spectrometry. J. Agric. Food Chem. 2015, 63, 10562–10568. [Google Scholar] [CrossRef] [PubMed]
- Popp, M.; Hann, S.; Mentler, A.; Fuerhacker, M.; Stingeder, G.; Koellensperger, G. Determination of Glyphosate and AMPA in Surface and Waste Water using High-Performance Ion Chromatography Coupled to Inductively Coupled Plasma Dynamic Reaction Cell Mass Spectrometry (HPIC–ICP–DRC–MS). Anal. Bioanal. Chem. 2008, 391, 695–699. [Google Scholar] [CrossRef]
- Ibáñez, M.; Pozo, Ó.J.; Sancho, J.V.; López, F.J.; Hernández, F. Re-Evaluation of Glyphosate Determination in Water by Liquid Chromatography Coupled to Electrospray Tandem Mass Spectrometry. J. Chromatogr. A 2006, 1134, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Steinborn, A.; Alder, L.; Michalski, B.; Zomer, P.; Bendig, P.; Martinez, S.A.; Mol, H.G.J.; Class, T.J.; Costa Pinheiro, N. Determination of Glyphosate Levels in Breast Milk Samples from Germany by LC-MS/MS and GC-MS/MS. J. Agric. Food Chem. 2016, 64, 1414–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motojyuku, M.; Saito, T.; Akieda, K.; Otsuka, H.; Yamamoto, I.; Inokuchi, S. Determination of Glyphosate, Glyphosate Metabolites, and Glufosinate in Human Serum by Gas Chromatography–mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 875, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Ridlen, J.S.; Klopf, G.J.; Nieman, T.A. Determination of Glyphosate and Related Compounds using HPLC with Tris(2,2′-Bipyridyl)Ruthenium(II) Electrogenerated Chemiluminescence Detection. Anal. Chim. Acta 1997, 341, 195–204. [Google Scholar] [CrossRef]
- Hanke, I.; Singer, H.; Hollender, J. Ultratrace-Level Determination of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Natural Waters by Solid-Phase Extraction Followed by Liquid Chromatography-Tandem Mass Spectrometry: Performance Tuning of Derivatization, Enrichment and Detection. Anal. Bioanal. Chem. 2008, 391, 2265–2276. [Google Scholar] [CrossRef] [Green Version]
- Jensen, P.K.; Wujcik, C.E.; McGuire, M.K.; McGuire, M.A. Validation of Reliable and Selective Methods for Direct Determination of Glyphosate and Aminomethylphosphonic Acid in Milk and Urine using LC-MS/MS. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2016, 51, 254–259. [Google Scholar] [CrossRef] [Green Version]
- Coutinho, C.F.B.; Coutinho, L.F.M.; Mazo, L.H.; Nixdorf, S.L.; Camara, C.A.P.; Lanças, F.M. Direct Determination of Glyphosate using Hydrophilic Interaction Chromatography with Coulometric Detection at Copper Microelectrode. Anal. Chim. Acta 2007, 592, 30–35. [Google Scholar] [CrossRef]
- Pinto, E.; Soares, A.G.; Ferreira, I.M.P.L.V.O. Quantitative Analysis of Glyphosate, Glufosinate and AMPA in Irrigation Water by in Situ Derivatization–dispersive Liquid–liquid Microextraction Combined with UPLC-MS/MS. Anal. Methods 2018, 10, 554–561. [Google Scholar] [CrossRef]
- Gotti, R.; Fiori, J.; Bosi, S.; Dinelli, G. Field-Amplified Sample Injection and Sweeping Micellar Electrokinetic Chromatography in Analysis of Glyphosate and Aminomethylphosphonic Acid in Wheat. J. Chromatogr. A 2019, 1601, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Ciasca, B.; Pecorelli, I.; Lepore, L.; Paoloni, A.; Catucci, L.; Pascale, M.; Lattanzio, V.M.T. Rapid and Reliable Detection of Glyphosate in Pome Fruits, Berries, Pulses and Cereals by Flow Injection–Mass Spectrometry. Food Chem. 2020, 310, 125813. [Google Scholar] [CrossRef] [PubMed]
- Mol, J.G.J.; van Dam, R.C.J. Rapid Detection of Pesticides Not Amenable to Multi-Residue Methods by Flow Injection-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2014, 406, 6817–6825. [Google Scholar] [CrossRef] [PubMed]
- Botero-Coy, A.M.; Ibáñez, M.; Sancho, J.V.; Hernández, F. Improvements in the Analytical Methodology for the Residue Determination of the Herbicide Glyphosate in Soils by Liquid Chromatography Coupled to Mass Spectrometry. J. Chromatogr. A 2013, 1292, 132–141. [Google Scholar] [CrossRef]
- Nagatomi, Y.; Yoshioka, T.; Yanagisawa, M.; Uyama, A.; Mochizuki, N. Simultaneous LC-MS/MS Analysis of Glyphosate, Glufosinate, and their Metabolic Products in Beer, Barley Tea, and their Ingredients. Biosci. Biotechnol. Biochem. 2013, 77, 2218–2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamkasem, N.; Harmon, T. Direct Determination of Glyphosate, Glufosinate, and AMPA in Soybean and Corn by Liquid Chromatography/Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2016, 408, 4995–5004. [Google Scholar] [CrossRef]
- Liao, Y.; Berthion, J.; Colet, I.; Merlo, M.; Nougadère, A.; Hu, R. Validation and Application of Analytical Method for Glyphosate and Glufosinate in Foods by Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2018, 1549, 31–38. [Google Scholar] [CrossRef]
- Zoller, O.; Rhyn, P.; Rupp, H.; Zarn, J.A.; Geiser, C. Glyphosate Residues in Swiss Market Foods: Monitoring and Risk Evaluation. Food Addit. Contam. Part B Surveill. 2017, 11, 83–91. [Google Scholar] [CrossRef]
- Santilio, A.; Pompili, C.; Giambenedetti, A. Determination of Glyphosate Residue in Maize and Rice using a Fast and Easy Method Involving Liquid Chromatography-Mass Spectrometry (LC/MS/MS). J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2019, 54, 205–210. [Google Scholar] [CrossRef]
- Herrera López, S.; Scholten, J.; Kiedrowska, B.; de Kok, A. Method Validation and Application of a Selective Multiresidue Analysis of Highly Polar Pesticides in Food Matrices using Hydrophilic Interaction Liquid Chromatography and Mass Spectrometry. J. Chromatogr. A 2019, 1594, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Cai, Q.; Yang, Z. Ion Chromatography/Inductively Coupled Plasma Mass Spectrometry for Simultaneous Determination of Glyphosate, Glufosinate, Fosamine and Ethephon at Nanogram Levels in Water. Rapid Commun. Mass Spectrom. 2007, 21, 1606–1612. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Cai, Q.; Yang, Z. Determination of Glyphosate and Phosphate in Water by Ion Chromatography—Inductively Coupled Plasma Mass Spectrometry Detection. J. Chromatogr. A 2005, 1100, 160–167. [Google Scholar] [CrossRef]
- Sadi, B.B.M.; Vonderheide, A.P.; Caruso, J.A. Analysis of Phosphorus Herbicides by Ion-Pairing Reversed-Phase Liquid Chromatography Coupled to Inductively Coupled Plasma Mass Spectrometry with Octapole Reaction Cell. J. Chromatogr. A 2004, 1050, 95–101. [Google Scholar] [CrossRef]
- Kazui, Y.; Seto, Y.; Inoue, H. Phosphorus-Specific Determination of Glyphosate, Glufosinate, and their Hydrolysis Products in Biological Samples by Liquid Chromatography–inductively Coupled Plasma–mass Spectrometry. Forensic Toxicol. 2014, 32, 317–322. [Google Scholar] [CrossRef]
- Lajin, B.; Goessler, W. Direct Speciation Analysis of Organophosphorus Environmental Pollutants in Water by HPLC-ICPMS/MS. Talanta 2019, 196, 357–361. [Google Scholar] [CrossRef]
- Tiago, J.P.F.; Sicupira, L.C.; Barros, R.E.; de Pinho, G.P.; Silvério, F.O. Simultaneous and Direct Determination of Glyphosate and AMPA in Water Samples from the Hydroponic Cultivation of Eucalyptus Seedlings using HPLC-ICP-MS/MS. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2020, 55, 558–565. [Google Scholar] [CrossRef]
- Pimenta, E.; da Silva, F.; Barbosa, É.; Cacique, A.; Cassimiro, D.; de Pinho, G.; Silvério, F. Quantification of Glyphosate and AMPA by HPLC-ICP-MS/MS and HPLC-DAD: A Comparative Study. J. Braz. Chem. Soc. 2020, 31, 298–304. [Google Scholar] [CrossRef]
- Fernández, S.D.; Sugishama, N.; Encinar, J.R.; Sanz-Medel, A. Triple Quad ICPMS (ICPQQQ) as a New Tool for Absolute Quantitative Proteomics and Phosphoproteomics. Anal. Chem. 2012, 84, 5851–5857. [Google Scholar] [CrossRef]
- Anastassiades, M.; Kolberg, D.I.; Benkenstein, A.; Eichhorn, E.; Zechmann, S.; Mack, D.; Wildgrube, C.; Sigalov, I.; Dörk, D.; Barth, A. Quick Method for the Analysis of Numerous Highly Polar Pesticides in Foods of Plant Origin Via LC-MS/MS Involving Simultaneous Extraction with Methanol (QuPPe-Method); EU Reference Laboratory for Pesticides Requiring Single Residue Methods (EURL-SRM); CVUA: Stuttgart, Germany, 2015. [Google Scholar]
- Adams, S.; Guest, J.; Dickinson, M.; Fussell, R.J.; Beck, J.; Schoutsen, F. Development and Validation of Ion Chromatography–Tandem Mass Spectrometry-Based Method for the Multiresidue Determination of Polar Ionic Pesticides in Food. J. Agric. Food Chem. 2017, 65, 7294–7304. [Google Scholar] [CrossRef]
- Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized Guidelines for Single-Laboratory Validation of Methods of Analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835–855. [Google Scholar] [CrossRef]
Matrix | Spiked Levels (mg kg−1) | Recovery (%) † | Standard Deviation (SD) | Coefficient of Variation (CV%) ‡ |
---|---|---|---|---|
White rice | 0.01 | 76 | 8 | 11 |
0.03 | 90 | 6 | 6 | |
0.05 | 105 | 3 | 3 | |
Brown rice | 0.05 | 94 | 8.3 | 8.8 |
0.14 | 99 | 1.3 | 1.4 | |
0.27 | 97 | 2.6 | 2.7 |
Articles | Matrix | Instrument | Derivatisation | Isotopic Internal Standard | Clean up | ME |
---|---|---|---|---|---|---|
Botero-Coy et al., (2013) [26] | rice | LC-MS/MS | / | ILIS-isotope labeled GLY | / | 70–80% |
Botero-Coy et al., (2013) [26] | maize | LC-MS/MS | / | ILIS-isotope labeled GLY | OASIS HLB | 75% |
Nagatomi et al., (2013) [27] | corn | LC-MS/MS | / | / | OASIS MCX + INERT SEK | only mention |
Mol and van Dam 2014 [25] | wheat flour | FI-MS/MS c | / | yes | / | 20 < ME < 40 |
Chamkasem and Harmon, (2016) [28] | corn | LC-MS/MS | / | yes | OASIS HLB | 101% |
Liao et al. (2018) [29] | rice, wheat, maize | LC-MS/MS | FMOC-Cl a | yes | SPE-C18 cartridge (60 mg) | / |
Zoller et al., 2018 [30] | wheat, white flour | LC-MS/MS | / | yes | SPE cartridge | no indication of disturbing matrix effects |
Gotti et al., 2019 [23] | wheat | CE-UV | FMOC-Cl a | Taurine b | SPE C18 cartridge SAX cartridge | no significant differences were found |
Herrera López et al. (2019) [32] | oat | LC-MS/MS | / | ILIS-isotope labeled GLY | / | 34% |
Santilio et al., (2019) [31] | rice | LC-MS/MS | / | yes | / | 77% |
Santilio et al., (2019) [31] | maize | LC-MS/MS | / | yes | / | 104% |
Ciasca et al., 2020 [24] | wheat | FI-MS/MS c | / | yes | OASIS HLB | no effect |
This study | white rice | HPLC-ICP-MS/MS | / | 89Y | / | 96% |
This study | brown rice | HPLC-ICP-MS/MS | / | 89Y | / | 80% |
Articles | Matrix | Instrument | Fortification Level of Matrix | LOD | LOQ |
---|---|---|---|---|---|
Botero-Coy et al., (2013) [26] | rice | LC-MS/MS | 0.1 mg GLY kg−1 | 0.008 mg GLY kg−1 | 0.03 mg GLY kg−1 |
Botero-Coy et al., (2013) [26] | maize | LC-MS/MS | 0.1 mg GLY kg−1 | 0.007 mg GLY kg−1 | 0.02 mg GLY kg−1 |
Nagatomi et al., (2013) [27] | corn–malt | LC-MS/MS | 0.010 mg GLY kg−1 | 0.010 mg GLY kg−1 | |
Mol and van Dam (2014) [25] | wheat flour | FI-MS/MS * | 0.2 mg GLY kg−1 | 0.1 mg GLY kg−1 | |
Chamkasem and Harmon, (2016) [28] | corn | LC-MS/MS | 0.1 mg GLY kg−1 | 0.015 mg GLY kg−1 | 0.045 mg GLY kg−1 |
Liao et al. (2018) [29] | rice, wheat, maize | LC-MS/MS | 0.005 mg GLY kg−1 | 0.0017 mg GLY kg−1 | 0.005 mg GLY kg−1 |
Zoller et al., 2018 [30] | wheat, white flour | LC-MS/MS | 0.001 mg GLY kg−1 | 0.0003 mg GLY kg−1 | 0.001 mg GLY kg−1 |
Gotti et al., 2019 [23] | wheat | CE-UV | 0.1 mg GLY kg−1 | ||
Herrera López et al. (2019) [32] | oat | LC-MS/MS | 0.1 mg GLY kg−1 | 0.1 mg GLY kg−1 | |
Santilio et al., (2019) [31] | rice | LC-MS/MS | 0.01 mg GLY kg−1 | 0.002 mg GLY kg−1 | 0.01 mg GLY kg−1 |
Santilio et al., (2019) [31] | maize | LC-MS/MS | 0.01 mg GLY kg−1 | 0.004 mg GLY kg−1 | 0.01 mg GLY kg−1 |
Ciasca et al., 2020 [24] | wheat | FI-MS/MS * | 2.0 mg GLY kg−1 | ||
This study | white rice | HPLC-ICP-MS/MS | 0.0027 mg GLY kg−1 | 0.0092 mg GLY kg−1 | |
This study | brown rice | HPLC-ICP-MS/MS | 0.0136 mg GLY kg−1 | 0.0456 mg GLY kg−1 |
HPLC Parameters | |
---|---|
HPLC | Agilent 1260 Bio-inert LC system |
Column: | Hamilton, PRP-X100, 250 × 2.1 mm, 5 μm particle size |
Column temperature: | 50 °C |
Mobile phase: | 2 mM malonic acid (C3H4O4) at pH 5.3 |
Injection volume: | 60 μL |
Flow rate: | 0.6 mL min−1 |
Acquisition time: | 25 min |
ICP-QQQ-MS | |
Scan mode | MS/MS |
RF applied power (W) | 1550 |
Sampling depth (mm) | 8.0 |
Lens type | s-lens |
Octopole bias (V) | −5.0 |
Octopole RF (V) | 180 |
KED (V) | 0 |
Cell reaction gas | O2 |
Cell gas flow rate (%) | 25 |
Cell entrance (V) | −50 |
Cell exit (V) | −70 |
Deflect (V) | 6.0 |
Plate bias (V) | −60 |
Monitored mass (Q1) | 31–60 |
Monitored mass (Q2) | 47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontanella, M.C.; Lamastra, L.; Beone, G.M. Determination of Glyphosate in White and Brown Rice with HPLC-ICP-MS/MS. Molecules 2022, 27, 8049. https://doi.org/10.3390/molecules27228049
Fontanella MC, Lamastra L, Beone GM. Determination of Glyphosate in White and Brown Rice with HPLC-ICP-MS/MS. Molecules. 2022; 27(22):8049. https://doi.org/10.3390/molecules27228049
Chicago/Turabian StyleFontanella, Maria Chiara, Lucrezia Lamastra, and Gian Maria Beone. 2022. "Determination of Glyphosate in White and Brown Rice with HPLC-ICP-MS/MS" Molecules 27, no. 22: 8049. https://doi.org/10.3390/molecules27228049
APA StyleFontanella, M. C., Lamastra, L., & Beone, G. M. (2022). Determination of Glyphosate in White and Brown Rice with HPLC-ICP-MS/MS. Molecules, 27(22), 8049. https://doi.org/10.3390/molecules27228049