Photolysis by UVA–Visible Light of TNT in Ethanolic, Aqueous-Ethanolic, and Aqueous Solutions According to Electrospray and Aerodynamic Thermal Breakup Droplet Ionization Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. An ATBDI System and Thermal Degradation
2.3. Mass-Spectrometric Conditions
2.4. Photolysis
2.5. UV–Vis Spectroscopy Settings
3. Results and Discussion
3.1. Changes in Appearance and UV–Vis Spectra during the Photolysis of TNT in Aqueous and Ethanolic Solutions
3.2. ESI Mass Spectra of TNT Solutions Subjected to Photolysis in Water and Ethanol
3.3. Mass Spectra of ATBDI after the Photolysis of the TNT Solutions in Ethanol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maloney, S.W.; Adrian, N.R.; Hickey, R.F.; Heine, R.L. Anaerobic treatment of pink water in a fluidized bed reactor containing GAC. J. Hazard. Mater. 2002, 92, 77–88. [Google Scholar] [CrossRef]
- Oh, S.-Y.; Cha, D.K.; Chiu, P.C.; Kim, B.J. Conceptual comparison of pink water treatment technologies: Granular activated carbon, anaerobic fluidized bed, and zero-valent iron-Fenton process. Water Sci. Technol. 2004, 49, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Smock, L.A.; Stoneburner, D.L.; Clark, J.R. The Toxic Effects of Trinitrotoluene (TNT) and its Primary Degradation Products on two Species of Algae and the Fathead Minnow. Water Res. 1976, 10, 537–543. [Google Scholar] [CrossRef]
- Park, J.; Comfort, S.D.; Shea, P.J.; Machacek, T.A. Organic compounds in the environment: Remediating munitions-contaminated soil with zerovalent iron and cationic surfactants. J. Environ. Qual. 2004, 33, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Fawcett-Hirst, W.; Temple, T.J.; Ladyman, M.K.; Coulon, F. A review of treatment methods for insensitive high explosive contaminated wastewater. Heliyon 2021, 7, e07438. [Google Scholar] [CrossRef] [PubMed]
- Burlinson, N.E.; Sitzmann, M.E.; Kaplan, L.A.; Kayser, E. Photochemical generation of the 2,4,6-trinitrobenzyl anion. J. Org. Chem. 1979, 44, 3695–3698. [Google Scholar] [CrossRef]
- Thorn, K.A. 13C and 15N NMR identification of product compound classes from aqueous and solid phase photodegradation of 2,4,6-trinitrotoluene. PLoS ONE 2019, 14, e0224112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, H.-S.; Lee, S.-J.; Cho, I.-H.; Zoh, K.-D. Kinetics and mechanism of TNT degradation in TiO2 Photocatalysis. Chemosphere 2004, 57, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Fant, F.; De Sloovere, A.; Matthijsen, K.; Marie, C.; El Fantroussi, S.; Verstraete, W. The use of amino compounds for binding 2,4,6-trinitrotoluene in water. Envir. Pollut. 2001, 111, 503–507. [Google Scholar] [CrossRef]
- Mastrikov, Y.A.; Tsyshevsky, R.; Wang, F.; Kuklja, M.M. Recruiting Perovskites to Degrade Toxic Trinitrotoluene. Materials 2021, 14, 7387. [Google Scholar] [CrossRef]
- Vione, D.; Falletti, G.; Maurino, V.; Minero, C.; Pelizzetti, E.; Malandrino, M.; Ajassa, R.-l.; Olariu, R.; Arsene, C. Sources and sinks of hydroxyl radicals upon irradiation of water samples. Environ. Sci. Technol. 2006, 40, 3775–3781. [Google Scholar] [CrossRef] [PubMed]
- Mabey, W.R.; Tse, D.; Baraze, A.; Mill, T. Photolysis of nitroaromatics in aquatic systems. I. 2,4,6-Trinitrotoluene. Chemosphere 1983, 12, 3–16. [Google Scholar] [CrossRef]
- Tomaševića, A.; Mijin, D.; Radišić, M.; Prlainović, N.; Cvijetić, I.; Kovačević, D.V.; Marinković, A. Photolysis of insecticide methomyl in various solvents: An experimental and theoretical study. J. Photochem. Photobiol. A 2020, 391, 112366. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Sivey, J.D.; Dai, N. Emerging investigators series: Sunlight photolysis of 2,4-D herbicides in system simulating leaf surfaces. Environ. Sci. Process. Impact 2018, 20, 1123–1135. [Google Scholar] [CrossRef]
- Choi, J.; Choi, W.; Mhin, B.J. Solvent-specifc photolytic behavior of octa- chlorodibenzo-p-dioxin. Environ. Sci. Technol. 2004, 38, 2082–2088. [Google Scholar] [CrossRef]
- Hidaka, H.; Tsukamoto, T.; Mitsutsuka, Y.; Oyama, T.; Serpone, N. Enhanced Ga2O3- photocatalyzed and photochemical degradation of the Fipronil insecticide by UVC. Photochem. Photobiol. Sci. 2015, 14, 919–928. [Google Scholar] [CrossRef]
- Mandal, S.; Joardar, S.; Das, S.; Bhattacharyya, A. Photodegradation of hexythiazox in diferent solvent systems under the infuence of ultraviolet light and sunlight in the presence of TiO2, H2O2, and KNO3 and identifcation of the photometabolites. Agric. Food Chem. 2011, 59, 11727–11734. [Google Scholar] [CrossRef]
- Yousef, Y.; El-Khatib, F. Photodegradation of carbaryl in acetonitrile solution. Spectrosc. Lett. 2007, 40, 537–582. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 73rd ed.; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Glebov, E.M.; Matveeva, S.G.; Pozdnyakov, I.P.; Grivin, V.P.; Plyusnin, V.F.; Vasilchenko, D.B.; Romanova, T.E.; Melnikov, A.A.; Chekalin, S.V.; Fedunov, R.G. Photochemistry of hexachloroosmate in ethanol. J. Photochem. Photobiol. Sci. 2020, 19, 1569–1579. [Google Scholar] [CrossRef]
- Pervukhin, V.; Sheven, D. Aerodynamic thermal breakup droplet ionization in mass spectrometric drug analysis. J. Am. Soc. Mass Spectrom. 2020, 31, 1074–1082. [Google Scholar] [CrossRef]
- Pervukhin, V.; Sheven, D. Analysis of trinitrotoluene in solutions using Aerodynamic Thermal Breakup Droplet Ionization (ATBDI) mass spectrometry. Talanta 2020, 212, 120770. [Google Scholar] [CrossRef]
- Pervukhin, V.V.; Sheven, D.G. Acceleration of the thermal decomposition of RDX in microdroplets investigated by aerodynamic thermal breakup droplet ionization mass spectrometry. Aerosol Sci. Technol. 2021, 55, 243–253. [Google Scholar] [CrossRef]
- Sheven, D.G.; Pervukhin, V.V. Acceleration of the thermal degradation of PETN in the microdroplets flow reactor. J. Hazard. Mater. 2021, 420, 126670. [Google Scholar] [CrossRef] [PubMed]
- Pervukhin, V.V.; Sheven, D.G. Using of aerodynamic droplet breakup for mass-spectrometric analysis. Talanta 2018, 185, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Dodd, E.E. The statistics of liquid spray and dust electrification by the Hopper and Laby method. J. Appl. Phys. 1953, 24, 73–80. [Google Scholar] [CrossRef]
- Dasary, S.S.R.; Singh, A.K.; Yu, H.; Ray, P.C. Gold Nanoparticle Based Label-Free SERS Probe for Ultrasensitive and Selective Detection of Trinitrotoluene. J. Am. Chem. Soc. 2009, 131, 13806–13812. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, H.; Mei, Q.; Wang, S.; Guan, G.; Liu, R.; Zhang, J.; Zhang, Z. Instant Visual Detection of Trinitrotoluene Particulates on Various Surfaces by Ratiometric Fluorescence of Dual-Emission Quantum Dots Hybrid. J. Am. Chem. Soc. 2011, 133, 8424–8427. [Google Scholar] [CrossRef]
- Pervukhin, V.V.; Sheven, D.G. Photolysis by UVA-visible light and thermal degradation of TNT in aqueous solutions according to aerodynamic thermal breakup droplet ionization mass spectrometry. J. Photochem. Photobiol. A 2022, 432, 114079. [Google Scholar] [CrossRef]
- Taylor, S.; Lever, J.; Walsh, M.; Fadden, J.; Perron, N.; Bigl, S.; Spanggord, R.; Curnow, M.; Packer, B.; Dissolution rate, Weathering Mechanics, and Friability of TNT, Comp B, Tritonal, and Octol. Defense Technical Information Center, ERDC/CRRELL TR-10-2, Published 1 February 2010. Available online: http://www.dtic.mil/dtic/tr/fulltext/u2/a518701.pdf (accessed on 28 October 2022).
- Kunz, R.R.; Gregory, K.E.; Aernecke, M.J.; Clark, M.L.; Ostrinskaya, A.; Fountain, A.W. Fate dynamics of environmentally exposed explosive traces. J. Phys. Chem. A 2012, 116, 3611–3624. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheven, D.G.; Pervukhin, V.V. Photolysis by UVA–Visible Light of TNT in Ethanolic, Aqueous-Ethanolic, and Aqueous Solutions According to Electrospray and Aerodynamic Thermal Breakup Droplet Ionization Mass Spectrometry. Molecules 2022, 27, 7992. https://doi.org/10.3390/molecules27227992
Sheven DG, Pervukhin VV. Photolysis by UVA–Visible Light of TNT in Ethanolic, Aqueous-Ethanolic, and Aqueous Solutions According to Electrospray and Aerodynamic Thermal Breakup Droplet Ionization Mass Spectrometry. Molecules. 2022; 27(22):7992. https://doi.org/10.3390/molecules27227992
Chicago/Turabian StyleSheven, Dmitriy G., and Viktor V. Pervukhin. 2022. "Photolysis by UVA–Visible Light of TNT in Ethanolic, Aqueous-Ethanolic, and Aqueous Solutions According to Electrospray and Aerodynamic Thermal Breakup Droplet Ionization Mass Spectrometry" Molecules 27, no. 22: 7992. https://doi.org/10.3390/molecules27227992
APA StyleSheven, D. G., & Pervukhin, V. V. (2022). Photolysis by UVA–Visible Light of TNT in Ethanolic, Aqueous-Ethanolic, and Aqueous Solutions According to Electrospray and Aerodynamic Thermal Breakup Droplet Ionization Mass Spectrometry. Molecules, 27(22), 7992. https://doi.org/10.3390/molecules27227992