Optimization of Coagulation-Flocculation Process in Efficient Arsenic Removal from Highly Contaminated Groundwater by Response Surface Methodology
Abstract
:1. Introduction
2. Results and Discussion
2.1. Model Fitting and Statistical Analysis
2.2. Analysis of Variance
0.002X1X2 + 0.006X1X3 − 0.01X1X4 + 0.00003X1X5 + 0.03X2X3 −
0.20X2X4 − 1.64E − 18X2X5 − 0.25X3X4 − 0.02X3X5 + 3.12E −
17X1X5 − 0.001X12 − 13.72X32 − 3.22X42 − 0.00006X52
2.3. Three-Dimensional Surface and Two-Dimensional Contour Plots of As(V) Removal
2.4. Optimal Coagulation-Flocculation Condition in As(V) Removal
2.5. Volume of the Produced Sludge Analysis
2.6. Comparison with Literature Data
3. Experimental Section
3.1. Materials and Apparatus
3.2. As(V) Removal Procedure
3.3. Experimental Design and Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Shankar, S.; Shanker, U. Shikha Arsenic Contamination of Groundwater: A Review of Sources, Prevalence, Health Risks, and Strategies for Mitigation. Sci. World J. 2014, 2014, 304524. [Google Scholar] [CrossRef] [PubMed]
- Sakhi, D.; Rakhila, Y.; Elmchaouri, A.; Abouri, M.; Souabi, S.; Jada, A. Optimization of Coagulation Flocculation Process for the Removal of Heavy Metals from Real Textile Wastewater. In Proceedings of the International Conference on Advanced Intelligent Systems for Sustainable Development, Tangier, Morocco, 21–26 December 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 257–266. [Google Scholar]
- Hughes, M.F.; Beck, B.D.; Chen, Y.; Lewis, A.S.; Thomas, D.J. Arsenic Exposure and Toxicology: A Historical Perspective. Toxicol. Sci. 2011, 123, 305–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, X.; Lu, C.; Xu, R.; Yang, X.; Yan, L.; Su, C. Arsenic removal by manganese-doped mesoporous iron oxides from groundwater: Performance and mechanism. Sci. Total Environ. 2022, 806, 150615. [Google Scholar] [CrossRef]
- Regis, A.O.; Vanneste, J.; Acker, S.; Martínez, G.; Ticona, J.; García, V.; Alejo, F.D.; Zea, J.; Krahenbuhl, R.; Vanzin, G. Pressure-driven membrane processes for boron and arsenic removal: pH and synergistic effects. Desalination 2022, 522, 115441. [Google Scholar] [CrossRef]
- Berkani, M.; Vasseghian, Y.; Le, V.T.; Dragoi, E.-N.; Khaneghah, A.M. The Fenton-like reaction for Arsenic removal from groundwater: Health risk assessment. Environ. Res. 2021, 202, 111698. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Wang, N.; Wang, C.; Li, G. Arsenic removal from water and river water by the combined adsorption-UF membrane process. Chemosphere 2018, 202, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, R.; Cooper, A.M.; Aymar, K.; Jain, A.; Hristovski, K. Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles. J. Hazard. Mater. 2011, 193, 296–303. [Google Scholar] [CrossRef]
- Awual, M.R.; Hossain, M.A.; Shenashen, M.; Yaita, T.; Suzuki, S.; Jyo, A. Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents. Environ. Sci. Pollut. Res. 2013, 20, 421–430. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, C.; Xiao, L.; Fu, G.; Liu, Y.; Ye, S.; Chen, Y. Arsenic removal from alkaline leaching solution using Fe (III) precipitation. Environ. Technol. 2019, 40, 1714–1720. [Google Scholar] [CrossRef]
- Baskan, M.B.; Pala, A. A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate. Desalination 2010, 254, 42–48. [Google Scholar] [CrossRef]
- Vatanpour, V.; Shokouhifar, E.; Halimehjani, A.Z.; He, T. Impact of dithiocarbamate-based polymeric additives on the performance of polyethersulfone membrane for the treatment of arsenic contaminated waters. Process Saf. Environ. Prot. 2022, 158, 589–606. [Google Scholar] [CrossRef]
- Johnston, R.; Heijnen, H.; Wurzel, P. Safe Water Technology. In United Nations Synthesis Report on Arsenic in Drinking Water; World Health Organization: Geneva, Switzerland, 2001; pp. 1–98. [Google Scholar]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Mondal, P.; Majumder, C.; Mohanty, B. Laboratory based approaches for arsenic remediation from contaminated water: Recent developments. J. Hazard. Mater. 2006, 137, 464–479. [Google Scholar] [CrossRef]
- Pio, I.; Scarlino, A.; Bloise, E.; Mele, G.; Santoro, O.; Pastore, T.; Santoro, D. Efficient removal of low-arsenic concentrations from drinking water by combined coagulation and adsorption processes. Sep. Purif. Technol. 2015, 147, 284–291. [Google Scholar] [CrossRef]
- Iwuozor, K.O. Prospects and Challenges of Using Coagulation-Flocculation method in the treatment of Effluents. Adv. J. Chem. A 2019, 2, 105–127. [Google Scholar] [CrossRef] [Green Version]
- Baskan, M.B.; Pala, A. Determination of arsenic removal efficiency by ferric ions using response surface methodology. J. Hazard. Mater. 2009, 166, 796–801. [Google Scholar] [CrossRef] [PubMed]
- Sibiya, N.P.; Rathilal, S.; Tetteh, E.K. Coagulation Treatment of Wastewater: Kinetics and Natural Coagulant Evaluation. Molecules 2021, 26, 698. [Google Scholar] [CrossRef]
- Chakraborti, D.; Mukherjee, S.C.; Pati, S.; Sengupta, M.K.; Rahman, M.M.; Chowdhury, U.K.; Lodh, D.; Chanda, C.R.; Chakraborti, A.K.; Basu, G.K. Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: A future danger? Environ. Health Perspect. 2003, 111, 1194–1201. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, A.S.; Sorg, T.J.; Supply, W. Costs of Arsenic Removal Technologies for Small Water Systems: US EPA Arsenic Removal Technology Demonstration Program; Cincinnati United States Environmental Protection Agency: Cincinnati, OH, USA, 2011; p. 92.
- Choong, T.S.; Chuah, T.; Robiah, Y.; Koay, F.G.; Azni, I. Arsenic toxicity, health hazards and removal techniques from water: An overview. Desalination 2007, 217, 139–166. [Google Scholar] [CrossRef]
- McNeill, L.S.; Edwards, M. Soluble arsenic removal at water treatment plants. J. Am. Water Work. Assoc. 1995, 87, 105–113. [Google Scholar] [CrossRef]
- Aguilar, M.; Llorens, M.; Sáez, J.; Leal, L.; Ortuño, J.; Torres, J. Treatment of Slaughterhouse Wastewater by Coagulation-Flocculation; Influence of pH and Coagulant Aids, Anales de Química; Springer: Berlin/Heidelberg, Germany, 1998; pp. 231–237. [Google Scholar]
- Zhao, C.; Zhou, J.; Yan, Y.; Yang, L.; Xing, G.; Li, H.; Wu, P.; Wang, M.; Zheng, H. Application of coagulation/flocculation in oily wastewater treatment: A review. Sci. Total Environ. 2020, 765, 142795. [Google Scholar] [CrossRef] [PubMed]
- Gregor, J. Arsenic removal during conventional aluminium-based drinking-water treatment. Water Res. 2001, 35, 1659–1664. [Google Scholar] [CrossRef]
- Song, S.; Lopez-Valdivieso, A.; Hernandez-Campos, D.; Peng, C.; Monroy-Fernandez, M.; Razo-Soto, I. Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite. Water Res. 2006, 40, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Liu, H.; Chen, G.; Qu, J. Effect of aluminum speciation on arsenic removal during coagulation process. Sep. Purif. Technol. 2012, 86, 35–40. [Google Scholar] [CrossRef]
- Fan, M.; Brown, R.C.; Sung, S.W.; Huang, C.-P.; Ong, S.K.; Van Leeuwen, J. Comparisons of polymeric and conventional coagulants in arsenic(V) removal. Water Environ. Res. 2003, 75, 308–313. [Google Scholar] [CrossRef]
- Cui, J.; Jing, C.; Che, D.; Zhang, J.; Duan, S. Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: A comparative and mechanistic study. J. Environ. Sci. 2015, 32, 42–53. [Google Scholar] [CrossRef]
- Qiao, J.; Jiang, Z.; Sun, B.; Sun, Y.; Wang, Q.; Guan, X. Arsenate and arsenite removal by FeCl3: Effects of pH, As/Fe ratio, initial As concentration and co-existing solutes. Sep. Purif. Technol. 2012, 92, 106–114. [Google Scholar] [CrossRef]
- Jiang, J.-Q. Removing arsenic from groundwater for the developing world—A review. Water Sci. Technol. 2001, 44, 89–98. [Google Scholar] [CrossRef]
- Wang, L.K.; Wang, M.H.; Kao, J.-F. Application and determination of organic polymers. Water Air Soil Pollut. 1978, 9, 337–348. [Google Scholar] [CrossRef]
- Yu, J.; Wang, N.; Yan, M.; Ye, C.; Yang, M.; Ge, X. Optimized Coagulation of High Alkalinity, Low Temperature and Particle Water: pH Adjustment and Polyelectrolytes as Coagulant Aids. Environ. Monit. Assess. 2007, 131, 377–386. [Google Scholar] [CrossRef]
- Yu, J.; Wang, D.; Ge, X.; Yan, M.; Yang, M. Flocculation of kaolin particles by two typical polyelectrolytes: A comparative study on the kinetics and floc structures. Colloids Surfaces A Physicochem. Eng. Asp. 2006, 290, 288–294. [Google Scholar] [CrossRef]
- Wickramasinghe, S.; Han, B.; Zimbron, J.; Shen, Z.; Karim, M. Arsenic removal by coagulation and filtration: Comparison of groundwaters from the United States and Bangladesh. Desalination 2004, 169, 231–244. [Google Scholar] [CrossRef]
- Zouboulis, A.; Katsoyiannis, I. Removal of arsenates from contaminated water by coagulation–direct filtration. Sep. Sci. Technol. 2002, 37, 2859–2873. [Google Scholar] [CrossRef]
- Han, B.; Runnells, T.; Zimbron, J.; Wickramasinghe, R. Arsenic removal from drinking water by flocculation and microfiltration. Desalination 2002, 145, 293–298. [Google Scholar] [CrossRef]
- Cheng, R.C.; Liang, S.; Wang, H.C.; Beuhler, M.D. Enhanced coagulation for arsenic removal. J. Am. Water Work. Assoc. 1994, 86, 79–90. [Google Scholar] [CrossRef]
- Koohestanian, A.; Hosseini, M.; Abbasian, Z. The separation method for removing of colloidal particles from raw water. Am. Eurasian J. Agric. Environ. Sci. 2008, 4, 266–273. [Google Scholar]
- Lee, Y.; Um, I.-H.; Yoon, J. Arsenic(III) Oxidation by Iron(VI) (Ferrate) and Subsequent Removal of Arsenic(V) by Iron(III) Coagulation. Environ. Sci. Technol. 2003, 37, 5750–5756. [Google Scholar] [CrossRef]
- Laky, D.; Licskó, I. Arsenic removal by ferric-chloride coagulation–effect of phosphate, bicarbonate and silicate. Water Sci. Technol. 2011, 64, 1046–1055. [Google Scholar] [CrossRef]
- Guan, X.; Ma, J.; Dong, H.; Jiang, L. Removal of arsenic from water: Effect of calcium ions on As(III) removal in the KMnO4–Fe(II) process. Water Res. 2009, 43, 5119–5128. [Google Scholar] [CrossRef]
- Amiri, S.; Vatanpour, V.; He, T. Optimization of effective parameters in arsenite oxidation process with Cl2, H2O2, and O3 using response surface methodology. Chem. Eng. Process. Process Intensif. 2022, 181, 109167. [Google Scholar] [CrossRef]
- Inam, M.A.; Khan, R.; Yeom, I.T.; Buller, A.S.; Akram, M.; Inam, M.W. Optimization of antimony removal by coagulation-flocculation-sedimentation process using response surface methodology. Processes 2021, 9, 117. [Google Scholar] [CrossRef]
- Morita, K.; Kaneko, E. Spectrophotometric Determination of Arsenic in Water Samples Based on Micro Particle Formation of Ethyl Violet-Molybdoarsenate. Anal. Sci. 2006, 22, 1085–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Luo, M.; Cai, W. Influence of operating parameters on the performance of magnetic seeding flocculation. Environ. Sci. Pollut. Res. 2016, 23, 2873–2881. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.-H.; Xie, X.-Q.; Wang, X.-L.; Zhan, Y.; Yao, Y.-J. Application of Box-Behnken design in optimisation for polysaccharides extraction from cultured mycelium of Cordyceps sinensis. Food Bioprod. Process. 2009, 87, 139–144. [Google Scholar] [CrossRef]
- Tatsi, A.; Zouboulis, A.; Matis, K.; Samaras, P. Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere 2003, 53, 737–744. [Google Scholar] [CrossRef]
- Amuda, O.S.; Amoo, I.A. Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment. J. Hazard. Mater. 2007, 141, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Amuda, O.; Alade, A. Coagulation/flocculation process in the treatment of abattoir wastewater. Desalination 2006, 196, 22–31. [Google Scholar] [CrossRef]
- Amuda, O.; Amoo, I.; Ajayi, O. Performance optimization of coagulant/flocculant in the treatment of wastewater from a beverage industry. J. Hazard. Mater. 2006, 129, 69–72. [Google Scholar] [CrossRef]
- Aguilar, M.; Saez, J.; Llorens, M.; Soler, A.; Ortuno, J. Nutrient removal and sludge production in the coagulation-flocculation process. Water Res. 2002, 36, 2910–2919. [Google Scholar] [CrossRef]
- Aguilar, M.; Sáez, J.; Lloréns, M.; Soler, A.; Ortuño, J. Microscopic observation of particle reduction in slaughterhouse wastewater by coagulation-flocculation using ferric sulphate as coagulant and different coagulant aids. Water Res. 2003, 37, 2233–2241. [Google Scholar] [CrossRef]
- Harper, T.R.; Kingham, N.W. Removal of arsenic from wastewater using chemical precipitation methods. Water Environ. Res. 1992, 64, 200–203. [Google Scholar] [CrossRef]
- Testing, A.S.F. Materials, Standard Practice for Coagulation-flocculation Jar Test of Water; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Agbovi, H.K.; Wilson, L.D. Flocculation Optimization of Orthophosphate with FeCl3 and Alginate Using the Box-Behnken Response Surface Methodology. Ind. Eng. Chem. Res. 2017, 56, 3145–3155. [Google Scholar] [CrossRef]
- Kakoi, B.; Kaluli, J.W.; Ndiba, P.; Thiong’o, G. Optimization of Maerua Decumbent bio-coagulant in paint industry wastewater treatment with response surface methodology. J. Clean. Prod. 2017, 164, 1124–1134. [Google Scholar] [CrossRef]
Source | Sum of Squares | df | Mean Square | F Value | p Value | |
---|---|---|---|---|---|---|
Model | 16,377.99 | 20 | 818.90 | 84.71 | <0.0001 | significant |
A: Coagulant dosing | 13,689.00 | 1 | 13689.00 | 1416.10 | <0.0001 | |
B: Co-Coagulant dosing | 25.00 | 1 | 25.00 | 2.59 | 0.1204 | |
C: pH | 175.56 | 1 | 175.56 | 18.16 | 0.0003 | |
D: Fast mixing time | 7.56 | 1 | 7.56 | 0.7823 | 0.3849 | |
E: Fast mixing speed | 225.00 | 1 | 225.00 | 23.28 | <0.0001 | |
AB | 6.25 | 1 | 6.25 | 0.6466 | 0.4289 | |
AC | 1.0000 | 1 | 1.00 | 0.1034 | 0.7504 | |
AD | 4.00 | 1 | 4.00 | 0.4138 | 0.5259 | |
AE | 0.2500 | 1 | 0.2500 | 0.0259 | 0.8735 | |
BC | 0.2500 | 1 | 0.2500 | 0.0259 | 0.8735 | |
BD | 9.00 | 1 | 9.00 | 0.9310 | 0.3438 | |
BE | 0.0000 | 1 | 0.0000 | 0.0000 | 1.0000 | |
CD | 0.2500 | 1 | 0.2500 | 0.0259 | 0.8735 | |
CE | 20.25 | 1 | 20.25 | 2.09 | 0.1602 | |
DE | 0.0000 | 1 | 0.0000 | 0.0000 | 1.0000 | |
A2 | 730.00 | 1 | 730.00 | 75.52 | <0.0001 | |
B2 | 5.76 | 1 | 5.76 | 0.5960 | 0.4473 | |
C2 | 1645.00 | 1 | 1645.00 | 170.17 | <0.0001 | |
D2 | 91.00 | 1 | 91.00 | 9.41 | 0.0051 | |
E2 | 3.64 | 1 | 3.64 | 0.3766 | 0.5450 | |
Residual | 241.67 | 25 | 9.67 | |||
Lack of Fit | 204.17 | 20 | 10.21 | 1.36 | 0.3939 | not significant |
Pure Error | 37.50 | 5 | 7.50 | |||
Cor Total | 16,619.65 | 45 |
Coagulant | Co-Coagulant | Initial [As(V)] | As(V) Removal Efficiency (%) | Ref. | ||
---|---|---|---|---|---|---|
Type | Dosage | Type | Dosage | |||
Al2(SO4)3 | 40 mg L−1 | Magnafloc LT22 | 2 mg L−1 | 50 μg L−1 | 81 | [11] |
Magnafloc LT27 | 2 mg L−1 | 80 | ||||
Magnafloc LT20 | 2 mg L−1 | 76 | ||||
FeCl3 | 30 mg L−1 | - | - | 50 μg L−1 | 80 | [33] |
Fe2(SO4)3 | 40 mg L−1 | - | - | 72 | ||
FeSO4 | 60 mg L−1 | - | - | 72 | ||
Fe2(SO4)3 | 500 mg L−1 | Activated silica Activated carbon Cationic polyacrylamide Polyvinyl alcohol Polyacrylic acid Anionic polyacrylamide | 1.9 mg L−1 1.6 g L−1 50 mg L−1 20 mg L−1 5 mg L−1 25 mg L−1 | 50 μg L−1 | 87 77 95 96 93 95 99 | [54] |
FeCl3 | 0.64 g L−1 | Himoloc DR3000 | 2.6 g L−1 | 20 μg L−1 | 81.76 | [2] |
Hydrated lime/FeCl3 Hydrated lime/Al2(SO4)3 | 1000 mg L−1 FeCl3 1000 mg L−1 Al2(SO4)3 | - - | - - | 9.8 mg L−1 | 98.9 81.6 | [55] |
FeCl3 | 197.3 mg L−1 | Polyacrylamide k16 | 19.5 mg L−1 | 5 mg L−1 | 100% | This work |
Components | Value/Concentration |
---|---|
pH | 7.7 |
Conductivity (µS/cm) | 1983 |
Alkalinity (mg/L as HCO3−) | 277.6 |
TDS (mg/L) | 1338 |
As(V) (mg/L) | 0.5 |
Cl− (mg/L) | 492 |
NO3− (mg/L) | 8.3 |
SO42− (mg/L) | 158 |
Na (mg/L) | 2.39 |
Ca (mg/L) | 84.52 |
Mg (mg/L) | 185 |
Al (mg/L) | 0.12 |
Fe (mg/L) | 0.09 |
Mn (mg/L) | <0.01 |
Pb (µg/L) | 30.7 |
Ni (µg/L) | 22.1 |
Cr (µg/L) | 4.5 |
Variables | Symbols | Level −1 | Level 0 | Level +1 | |
---|---|---|---|---|---|
Uncoded | Coded | ||||
A: Coagulant dosing (mg/L) | X1 | A | 50 | 125 | 200 |
B: Co-Coagulant dosing (mg/L) | X2 | B | 5 | 12.5 | 20 |
C: pH | X3 | C | 6 | 7 | 8 |
D: Fast mixing time (min) | X4 | D | 1 | 2 | 3 |
E: Fast mixing speed (rpm) | X5 | E | 100 | 200 | 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amiri, S.; Vatanpour, V.; He, T. Optimization of Coagulation-Flocculation Process in Efficient Arsenic Removal from Highly Contaminated Groundwater by Response Surface Methodology. Molecules 2022, 27, 7953. https://doi.org/10.3390/molecules27227953
Amiri S, Vatanpour V, He T. Optimization of Coagulation-Flocculation Process in Efficient Arsenic Removal from Highly Contaminated Groundwater by Response Surface Methodology. Molecules. 2022; 27(22):7953. https://doi.org/10.3390/molecules27227953
Chicago/Turabian StyleAmiri, Saba, Vahid Vatanpour, and Tao He. 2022. "Optimization of Coagulation-Flocculation Process in Efficient Arsenic Removal from Highly Contaminated Groundwater by Response Surface Methodology" Molecules 27, no. 22: 7953. https://doi.org/10.3390/molecules27227953
APA StyleAmiri, S., Vatanpour, V., & He, T. (2022). Optimization of Coagulation-Flocculation Process in Efficient Arsenic Removal from Highly Contaminated Groundwater by Response Surface Methodology. Molecules, 27(22), 7953. https://doi.org/10.3390/molecules27227953