Effect of Functionalized Benzene Derivatives as Potential Hole Scavengers for BiVO4 and rGO-BiVO4 Photoelectrocatalytic Hydrogen Evolution
Abstract
:1. Introduction
2. Results and Discussion
2.1. DFT Study of SFBDs and Their Interactions with rGO
2.2. Characterization of the Photoelectrode Morphology and Microstructural Characterization of BiVO4 and rGO Materials
2.3. Photoelectrochemical Characterization
3. Materials and Methods
3.1. Synthesis of BiVO4
3.2. Synthesis of GO and rGO
3.3. Photoelectrode Preparation
3.4. Photocatalyst Characterization
3.5. Photoelectrochemical (PEC) Measurements
3.6. Density Functional Theory Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Xu, X.T.; Pan, L.; Zhang, X.; Wang, L.; Zou, J.J. Rational Design and Construction of Cocatalysts for Semiconductor-Based Photo-Electrochemical Oxygen Evolution: A Comprehensive Review. Adv. Sci. 2019, 6, 1801505. [Google Scholar] [CrossRef]
- Candia-Onfray, C.; Rojas, S.; Zanoni, M.V.B.; Salazar, R. An updated review of metal–organic framework materials in photo(electro)catalytic applications: From CO2 reduction to wastewater treatments. Curr. Opin. Electrochem. 2021, 26, 100669. [Google Scholar] [CrossRef]
- Ozer, L.Y.; Garlisi, C.; Oladipo, H.; Pagliaro, M.; Sharief, S.A.; Yusuf, A.; Almheiri, S.; Palmisano, G. Inorganic semiconductors-graphene composites in photo(electro)catalysis: Synthetic strategies, interaction mechanisms and applications. J. Photochem. Photobiol. C: Photochem. Rev. 2017, 33, 132–164. [Google Scholar] [CrossRef]
- Marinho, B.A.; Suhadolnik, L.; Likozar, B.; Huš, M.; Marinko, Č.M. Photocatalytic, electrocatalytic and photoelectrocatalytic degradation of pharmaceuticals in aqueous media: Analytical methods, mechanisms, simulations, catalysts and reactors. J. Clean. Prod. 2022, 343, 131061. [Google Scholar] [CrossRef]
- Lozano, I.; Pérez-Guzmán, C.J.; Mora, A.; Mahlknecht, J.; Aguilar, C.L.; Cervantes-Avilés, P. Pharmaceuticals and personal care products in water streams: Occurrence, detection, and removal by electrochemical advanced oxidation processes. Sci. Total Environ. 2022, 827, 154348. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, T.; Ghayeb, Y.; Mohammadi, T.; Momeni, M.M. Enhanced photoelectrochemical water splitting of CrTiO2 nanotube photoanodes by the decoration of their surface via the photodeposition of Ag and Au. Dalton Transactions 2018, 47, 11593–11604. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Kamarudin, S.K.; Minggu, L.J.; Kassim, M. Hydrogen from photo-catalytic water splitting process: A review. Renew. Sustain. Energy Rev. 2015, 43, 599–610. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, C.; Wang, L.; Guo, S.; Zhang, Y.; Li, H.; Huang, H.; Liu, Y.; Tang, J.; Kang, Z. Control Strategy on Two-/Four-Electron Pathway of Water Splitting by Multidoped Carbon Based Catalysts. ACS Catal. 2017, 7, 1637–1645. [Google Scholar] [CrossRef]
- Kamat, P.V.; Jin, S. Semiconductor Photocatalysis: "Tell Us the Complete Story!". ACS Energy Lett. 2018, 3, 622–623. [Google Scholar] [CrossRef] [Green Version]
- Mehtab, A.; Alshehri, S.M.; Ahmad, T. Photocatalytic and Photoelectrocatalytic Water Splitting by Porous g-C3N4 Nanosheets for Hydrogen Generation. ACS Appl. Nano Mater. 2022, 5, 12656–12665. [Google Scholar] [CrossRef]
- Patsoura, A.; Kondarides, D.I.; Verykios, X.E. Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catal. Today 2007, 124, 94–102. [Google Scholar] [CrossRef]
- Daskalaki, V.M.; Antoniadou, M.; Li Puma, G.; Kondarides, D.I.; Lianos, P. Solar Light-Responsive Pt/CdS/TiO2 Photocatalysts for Hydrogen Production and Simultaneous Degradation of Inorganic or Organic Sacrificial Agents in Wastewater. Environ. Sci. Technol. 2010, 44, 7200–7205. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Tian, F.; Yang, R.; He, J.; Zhong, J.; Chen, B. Z scheme system ZnIn2S4/RGO/BiVO4 for hydrogen generation from water splitting and simultaneous degradation of organic pollutants under visible light. Renew. Energy 2019, 139, 22–27. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, S.; Li, N.; Wu, F.; Chen, S.; Lu, W.; Chen, W. Waste-to-Energy Conversion on Graphitic Carbon Nitride: Utilizing the Transformation of Macrolide Antibiotics to Enhance Photoinduced Hydrogen Production. ACS Sustain. Chem. Eng. 2017, 5, 9667–9672. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Nguyen, V.-H.; Nanda, S.; Vo, D.-V.N.; Nguyen, V.H.; Van Tran, T.; Nong, L.X.; Nguyen, T.T.; Bach, L.-G.; Abdullah, B.; et al. BiVO4 photocatalysis design and applications to oxygen production and degradation of organic compounds: A review. Environ. Chem. Lett. 2020, 18, 1779–1801. [Google Scholar] [CrossRef]
- Fang, G.; Liu, Z.; Han, C.; Wang, P.; Ma, X.; Lv, H.; Huang, C.; Cheng, Z.; Tong, Z. Promising CoFe-NiOOH Ternary Polymetallic Cocatalyst for BiVO4-Based Photoanodes in Photoelectrochemical Water Splitting. ACS Appl. Energy Mater. 2021, 4, 3842–3850. [Google Scholar] [CrossRef]
- Liu, J.; Chen, W.; Sun, Q.; Zhang, Y.; Li, X.; Wang, J.; Wang, C.; Yu, Y.; Wang, L.; Yu, X. Oxygen Vacancies Enhanced WO3/BiVO4 Photoanodes Modified by Cobalt Phosphate for Efficient Photoelectrochemical Water Splitting. ACS Appl. Energy Mater. 2021, 4, 2864–2872. [Google Scholar] [CrossRef]
- Sharifi, T.; Jozić, D.; Kovačić, M.; Kušić, H.; Lončarić Božić, A. In-situ high temperature XRD study on thermally induced phase changes of BiVO4: The formation of an iso-type heterojunction. Mater. Lett. 2021, 305, 130816. [Google Scholar] [CrossRef]
- Sharifi, T.; Crmaric, D.; Kovacic, M.; Popovic, M.; Rokovic, M.K.; Kusic, H.; Jozić, D.; Ambrožić, G.; Kralj, D.; Kontrec, J.; et al. Tailored BiVO4 for enhanced visible-light photocatalytic performance. J. Environ. Chem. Eng. 2021, 9, 106025. [Google Scholar] [CrossRef]
- Zhou, K.-G.; Zhang, H.-L. Graphene: Synthesis, Characterization, and Applications. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 1–21. [Google Scholar]
- Huh, S.H.; Choi, S.H.; Ju, H.M.; Kim, D.H. Properties of interlayer thermal expansion of 6-layered reduced graphene oxide. J. Korean Phys. Soc. 2014, 64, 615–618. [Google Scholar] [CrossRef]
- Nagabhushana, G.P.; Nagaraju, G.; Chandrappa, G.T. Synthesis of bismuth vanadate: Its application in H2 evolution and sunlight-driven photodegradation. J. Mater. Chem. A 2013, 1, 388–394. [Google Scholar] [CrossRef]
- Cheng, M.-M.; Huang, L.-J.; Wang, Y.-X.; Zhao, Y.-C.; Tang, J.-G.; Wang, Y.; Zhang, Y.; Hedayati, M.; Kipper, M.J.; Wickramasinghe, S.R. Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification. J. Mater. Sci. 2019, 54, 252–264. [Google Scholar] [CrossRef]
- Iskandar, F.; Hikmah, U.; Stavila, E.; Aimon, A.H. Microwave-assisted reduction method under nitrogen atmosphere for synthesis and electrical conductivity improvement of reduced graphene oxide (rGO). RSC Adv. 2017, 7, 52391–52397. [Google Scholar] [CrossRef] [Green Version]
- Rabchinskii, M.K.; Shnitov, V.V.; Dideikin, A.T.; Aleksenskii, A.E.; Vul’, S.P.; Baidakova, M.V.; Pronin, I.I.; Kirilenko, D.A.; Brunkov, P.N.; Weise, J.; et al. Nanoscale Perforation of Graphene Oxide during Photoreduction Process in the Argon Atmosphere. J. Phys. Chem. C 2016, 120, 28261–28269. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, W.; Yan, S.; Feng, J.; Zhao, Z.; Zhu, Y.; Li, Z.; Zou, Z. BiVO4 nano–leaves: Mild synthesis and improved photocatalytic activity for O2 production under visible light irradiation. CrystEngComm 2011, 13, 2500–2504. [Google Scholar] [CrossRef]
- Kumar, A.; Sadanandhan, A.M.; Jain, S.L. Silver doped reduced graphene oxide as a promising plasmonic photocatalyst for oxidative coupling of benzylamines under visible light irradiation. New J. Chem. 2019, 43, 9116–9122. [Google Scholar] [CrossRef]
- Aragaw, B.A. Reduced graphene oxide-intercalated graphene oxide nano-hybrid for enhanced photoelectrochemical water reduction. J. Nanostructure Chem. 2020, 10, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Hamid, S.B.A.; Teh, S.J.; Lai, C.W.; Perathoner, S.; Centi, G. Applied bias photon-to-current conversion efficiency of ZnO enhanced by hybridization with reduced graphene oxide. J. Energy Chem. 2017, 26, 302–308. [Google Scholar] [CrossRef]
- Sehrawat, P.; Islam, S.S.; Mishra, P.; Ahmad, S. Reduced graphene oxide (rGO) based wideband optical sensor and the role of Temperature, Defect States and Quantum Efficiency. Sci. Rep. 2018, 8, 3537. [Google Scholar]
- Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D.A.; Aguilar Martinez, J.A.; Anantharaman, M.R.; Shaji, S. Tin sulfide: Reduced graphene oxide nanocomposites for photovoltaic and electrochemical applications. Sol. Energy Mater. Sol. Cells 2019, 189, 53–62. [Google Scholar] [CrossRef]
- Han, X.; Wei, Y.; Su, J.; Zhao, Y. Low-Cost Oriented Hierarchical Growth of BiVO4/rGO/NiFe Nanoarrays Photoanode for Photoelectrochemical Water Splitting. ACS Sustain. Chem. Eng. 2018, 6, 14695–14703. [Google Scholar] [CrossRef]
- Gutić, S.J.; Kozlica, D.K.; Korać, F.; Bajuk-Bogdanović, D.; Mitrić, M.; Mirsky, V.M.; Mentus, S.V.; Pašti, I.A. Electrochemical tuning of capacitive response of graphene oxide. Phys. Chem. Chem. Phys. 2018, 20, 22698–22709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, Y.J.; Yoo, J.J.; Kim, Y.I.; Yoon, J.K.; Yoon, H.N.; Kim, J.-H.; Park, S.B. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim. Acta 2014, 116, 118–128. [Google Scholar] [CrossRef] [Green Version]
- Olasz, A.; Mignon, P.; De Proft, F.; Veszprémi, T.; Geerlings, P. Effect of the π-π stacking interaction on the acidity of phenol. Chem. Phys. Lett. 2005, 407, 504–509. [Google Scholar] [CrossRef]
- Kovačić, M.; Perović, K.; Papac, J.; Tomić, A.; Matoh, L.; Žener, B.; Brodar, T.; Capan, I.; Surca, A.K.; Kušić, H.; et al. One-Pot Synthesis of Sulfur-Doped TiO2/Reduced Graphene Oxide Composite (S-TiO2/rGO) with Improved Photocatalytic Activity for the Removal of Diclofenac from Water. Materials 2020, 13, 1621. [Google Scholar] [CrossRef] [Green Version]
- Villarreal, T.L.; Gómez, R.; Neumann-Spallart, M.; Alonso-Vante, N.; Salvador, P. Semiconductor Photooxidation of Pollutants Dissolved in Water: A Kinetic Model for Distinguishing between Direct and Indirect Interfacial Hole Transfer. I. Photoelectrochemical Experiments with Polycrystalline Anatase Electrodes under Current Doubling and Absence of Recombination. J. Phys. Chem. B 2004, 108, 15172–15181. [Google Scholar]
- Monfort, O.; Pop, L.-C.; Sfaelou, S.; Plecenik, T.; Roch, T.; Dracopoulos, V.; Stathatos, E.; Plesch, G.; Lianos, P. Photoelectrocatalytic hydrogen production by water splitting using BiVO4 photoanodes. Chem. Eng. J. 2016, 286, 91–97. [Google Scholar] [CrossRef]
- Quezada Renteria, J.A.; Ruiz-Garcia, C.; Sauvage, T.; Chazaro-Ruiz, L.F.; Rangel-Mendez, J.R.; Ania, C.O. Photochemical and electrochemical reduction of graphene oxide thin films: Tuning the nature of surface defects. Phys. Chem. Chem. Phys. 2020, 22, 20732–20743. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Kete, M.; Pavlica, E.; Fresno, F.; Bratina, G.; Štangar, U.L. Highly active photocatalytic coatings prepared by a low-temperature method. Environ. Sci. Pollut. Res. 2014, 21, 11238–11249. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Zhao, C.; Cai, Q.; Fu, X.; Sheykhahmad, F.R. Adsorption behavior of 5-aminosalicylic acid drug on the B12N12, AlB11N12 and GaB11N12 nanoclusters: A comparative DFT study. Inorg. Chem. Commun. 2020, 114, 107808. [Google Scholar] [CrossRef]
- Mennucci, B.; Tomasi, J.; Cammi, R.; Cheeseman, J.R.; Frisch, M.J.; Devlin, F.J.; Gabriel, S.; Stephens, P.J. Polarizable Continuum Model (PCM) Calculations of Solvent Effects on Optical Rotations of Chiral Molecules. J. Phys. Chem. A 2002, 106, 6102–6113. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules 2016, 21, 748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chattaraj, P.K.; Giri, S. Electrophilicity index within a conceptual DFT framework. Annu. Rep. Sect. C 2009, 105, 13–39. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maity, I.; Ghosh, K.; Rahaman, H.; Bhattacharyya, P. Selectivity Tuning of Graphene Oxide Based Reliable Gas Sensor Devices by Tailoring the Oxygen Functional Groups: A DFT Study Based Approach. IEEE Trans. Device Mater. Reliab. 2017, 17, 738–745. [Google Scholar] [CrossRef]
DFT Descriptor | PH 1 | BA 1 | BA−,1 | SA 1 | SA−,1 | 5-ASA 1 | 5-ASA ZW 1 |
---|---|---|---|---|---|---|---|
ΔEHOMO-LUMO, eV | −5.932 | −5.724 | −5.157 | −5.076 | −5.184 | −4.077 | −4.752 |
χ | 3.456 | 4.599 | 3.129 | 4.163 | 3.238 | 3.619 | 3.456 |
η | 2.966 | 2.884 | 2.612 | 2.558 | 2.612 | 2.068 | 2.395 |
S | 249.5 | 256.6 | 284.2 | 289.5 | 282.9 | 360.4 | 309.3 |
ω | 2.011 | 3.646 | 1.888 | 3.401 | 2.011 | 3.157 | 2.495 |
Resistance | NaCl | PH | BA | SA | 5-ASA |
---|---|---|---|---|---|
Rs(BiVO4) (Ω) | 69.31 | 75.27 | 65.11 | 37.10 | 50.77 |
Rs(rGO-BiVO4) (Ω) | 81.63 | 85.09 | 70.67 | 54.86 | 64.45 |
Rct(BiVO4) × 10−4 (Ω) | 23.60 | 10.40 | 9.32 | 6.14 | 2.47 |
Rct(rGO-BiVO4) × 10−4 (Ω) | 18.23 | 69.45 | 15.22 | 17.97 | 7.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharifi, T.; Kovačić, M.; Belec, M.; Perović, K.; Popović, M.; Radić, G.; Žener, B.; Pulitika, A.; Kraljić Roković, M.; Lavrenčič Štangar, U.; et al. Effect of Functionalized Benzene Derivatives as Potential Hole Scavengers for BiVO4 and rGO-BiVO4 Photoelectrocatalytic Hydrogen Evolution. Molecules 2022, 27, 7806. https://doi.org/10.3390/molecules27227806
Sharifi T, Kovačić M, Belec M, Perović K, Popović M, Radić G, Žener B, Pulitika A, Kraljić Roković M, Lavrenčič Štangar U, et al. Effect of Functionalized Benzene Derivatives as Potential Hole Scavengers for BiVO4 and rGO-BiVO4 Photoelectrocatalytic Hydrogen Evolution. Molecules. 2022; 27(22):7806. https://doi.org/10.3390/molecules27227806
Chicago/Turabian StyleSharifi, Tayebeh, Marin Kovačić, Monika Belec, Klara Perović, Marin Popović, Gabrijela Radić, Boštjan Žener, Anamarija Pulitika, Marijana Kraljić Roković, Urška Lavrenčič Štangar, and et al. 2022. "Effect of Functionalized Benzene Derivatives as Potential Hole Scavengers for BiVO4 and rGO-BiVO4 Photoelectrocatalytic Hydrogen Evolution" Molecules 27, no. 22: 7806. https://doi.org/10.3390/molecules27227806
APA StyleSharifi, T., Kovačić, M., Belec, M., Perović, K., Popović, M., Radić, G., Žener, B., Pulitika, A., Kraljić Roković, M., Lavrenčič Štangar, U., Lončarić Božić, A., & Kušić, H. (2022). Effect of Functionalized Benzene Derivatives as Potential Hole Scavengers for BiVO4 and rGO-BiVO4 Photoelectrocatalytic Hydrogen Evolution. Molecules, 27(22), 7806. https://doi.org/10.3390/molecules27227806