Low-Cost and Environmental-Friendly Route for Synthesizing Nano-Rod Aluminosilicate MAZ Zeolite
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.1.1. Synthesis of MAZ Zeolite
3.1.2. Synthesis of Conventional MAZ Zeolite
3.2. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davis, M.E. Ordered porous materials for emerging applications. Nature 2002, 417, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.Q.; Sun, D.F.; Wang, X.S.; Zhou, H.C. A mesh-adjustable molecular sieve for general use in gas separation. Angew. Chem. Int. Ed. 2007, 46, 2458–2462. [Google Scholar] [CrossRef] [PubMed]
- Gies, H.; Marler, B. The structure-controlling role of organic templates for the synthesis of porosils in the system SiO2/template/H2O. Zeolite 1992, 12, 42–49. [Google Scholar] [CrossRef]
- Dusselier, M.; Davis, M.E. Small-Pore Zeolites: Synthesis and Catalysis. Chem. Rev. 2018, 118, 5265–5329. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Camblor, M.A.; Woo, H.C.; Miller, S.R.; Wright, P.A.; Hong, S.B. PST-1: A synthetic small-pore zeolite that selectively adsorbs H2. Angew. Chem. Int. Ed. 2009, 48, 6647–6650. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.E.; Lobo, R.F. Zeolite and Molecular Sieve Synthesis. Chem. Mater. 1992, 4, 756–768. [Google Scholar] [CrossRef]
- Cundy, C.S.; Cox, P.A. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chem. Rev. 2003, 103, 663–702. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liu, D.X.; Xu, D.D.; Asahina, S.; Cychosz, K.A.; Agrawal, K.V.; Al Wahedi, Y.; Bhan, A.; Al Hashimi, S.; Terasaki, O.; et al. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science 2012, 336, 1684–1687. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Park, M.B.; Lee, J.K.; Min, H.K.; Song, M.K.; Hong, S.B. Synthesis and characterization of ERI-type UZM-12 zeolites and their methanol-to-olefin performance. J. Am. Chem. Soc. 2010, 132, 12971–12982. [Google Scholar] [CrossRef]
- Xiao, F.-S.; Meng, X. Green chemistry and sustainable technology. In Zeolites in Sustainable Chemistry: Synthesis, Characterization and Catalytic Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Zou, X.; Conradsson, T.; Klingstedt, M.; Dadachov, M.S.; O’Keeffe, M. A mesoporous germanium oxide with crystalline pore walls and its chiral derivative. Nature 2005, 437, 716–719. [Google Scholar] [CrossRef]
- Song, W.; Justice, R.E.; Jones, C.A.; Grassian, V.H.; Larsen, S.C. Size-dependent properties of nanocrystalline silicalite synthesized with systematically varied crystal sizes. Langmuir 2004, 20, 4696–4702. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.C. Nanocrystalline zeolites and zeolite structures: Synthesis, characterization, and applications. J. Phys. Chem. C 2007, 111, 18464–18474. [Google Scholar] [CrossRef]
- Chen, W.; Fan, Z.L.; Pan, X.L.; Bao, X.H. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. J. Am. Chem. Soc. 2008, 130, 9414–9419. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Liu, Y.; Sun, Q.; Meng, X.J.; Zou, X.D.; Zheng, A.M.; Wang, L.; Xiao, F.-S. Design and preparation of efficient hydroisomerization catalysts by the formation of stable SAPO-11 molecular sieve nanosheets with 10–20 nm thickness and partially blocked acidic sites. Chem. Commun. 2017, 53, 4942–4945. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Tang, X.M.; Hu, J.Y.; Ma, Y.H.; Chen, W.; Liu, Z.Q.; Han, S.C.; Xu, C.; Wu, Q.M.; Zheng, A.M.; et al. Design of a Small Organic Template for the Synthesis of Self-Pillared Pentasil Zeolite Nanosheets. J. Am. Chem. Soc. 2022, 144, 6270–6277. [Google Scholar] [CrossRef]
- Guo, X.K.; Xu, M.X.; She, M.Y.; Zhu, Y.; Shi, T.T.; Chen, Z.X.; Peng, L.M.; Guo, X.F.; Lin, M.; Ding, W.P. Morphology-Reserved Synthesis of Discrete Nanosheets of CuO@SAPO-34 and Pore Mouth Catalysis for One-Pot Oxidation of Cyclohexane. Angew. Chem. In. Ed. 2020, 132, 2628–2633. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Dong, M.; Fan, S.; Zhao, T.; Wang, J.; Fan, W. Strategies to control zeolite particle morphology. Chem. Soc. Rev. 2019, 48, 885–907. [Google Scholar] [CrossRef]
- Lu, K.; Huang, J.; Ren, L.; Li, C.; Guan, Y.J.; Hu, B.W.; Xu, H.; Ma, Y.H.; Wu, P. High Ethylene Selectivity in Methanol-to-Olefin (MTO) Reaction over MOR-Zeolite Nanosheets. Angew. Chem. In. Ed. 2020, 59, 6258–6262. [Google Scholar] [CrossRef]
- Wang, X.Y.; Ma, Y.; Wu, Q.M.; Wen, Y.Q.; Xiao, F.-S. Zeolite nanosheets for catalysis. Chem. Soc. Rev. 2022, 51, 2431–2443. [Google Scholar] [CrossRef]
- Martucci, A.; Alberti, A.; Guzman-Castillo, M.L.; Di Renzo, F.; Fajula, F. Crystal structure of zeolite omega, the synthetic counterpart of the natural zeolite mazzite. Microporous Mesoporous Mater. 2003, 63, 33–42. [Google Scholar] [CrossRef]
- Wang, L.Z.; Li, Z.; Wang, Z.X.; Chen, X.Y.; Song., W.Y.; Zhao, Z.; Wei, Y.C.; Zhang, X. Hetero-Metallic Active Sites in Omega (MAZ) Zeolite-Catalyzed Methane Partial Oxidation: A DFT Study. Ind. Eng. Chem. Res. 2021, 60, 2400–2409. [Google Scholar] [CrossRef]
- Knorpp, A.; Pinar, A.; Baerlocher, C.; McCusker, L.; Casati, N.; Newton, M.; Checchia, S.; Meyet, J.; Palagin, D.; Bokhoven, J. Paired Copper Monomers in Zeolite Omega: The Active Site for Methane-to-Methanol Conversion. Angew. Chem. Int. Ed. 2021, 60, 5854–5858. [Google Scholar] [CrossRef]
- Erhart, W.A.; Rohrer, C.E. Toluene Disproportionation Employing Modified Omega Zeolite Catalyst. US Patent 3578728, 7 January 1971. [Google Scholar]
- Flanigen, E.; Kellberg, E.R. Synthetic Crystalline Zeolite and Process for Preparing Same. US Patent 4241036, 24 July 1980. [Google Scholar]
- Perrotta, A.J.; Kibby, C.; Mitchell, B.R.; Tucci, E.R. The synthesis, characterization, and catalytic activity of omega and ZSM-4 zeolites. J. Catal. 1978, 55, 240–249. [Google Scholar] [CrossRef]
- Coq, B.; Figueras, F.; Rajaofanova, V. Preparation and properties of platinum/Ω-zeolite bifunctional catalysts. J. Catal. 1988, 114, 321–331. [Google Scholar] [CrossRef]
- Solinas, V.; Monaci, R.; Marongiu, B.; Forni, L. Isomerisation of 1-methylnaphthalene over Ω-zeolite. Appl. Catal. 1983, 5, 171–177. [Google Scholar] [CrossRef]
- Coossens, A.M.; Fejien, E.J.P.; Verhoeven, G.; Wouters, B.H.; Grobet, P.J.; Jacobs, P.A.; Martens, J.A. Crystallization of MAZ-type zeolites using tetramethylammonium, sodium and n-hexane derivatives as structure-and composition-directing agents. Microporous Mesoporous Mater. 2000, 35, 555–572. [Google Scholar] [CrossRef]
- Martucci, A.; Alberti, A.; Fajula, F.; Verapacheco, M.; Figueras, F. Synthesis of zeolite omega. Influence of the temperature and the reagents on the crystallization kinetics. Zeolites 1987, 7, 203–208. [Google Scholar]
- Zones, S.I.; Occelli, M.L.; Kessler, H. Synthesis of Porous Materials: Zeolites, Clays, and Nanostructures; Marcel Dekker Inc.: New City, NY, USA, 1997; pp. 93–94. [Google Scholar]
- Xu, H.; Dong, P.; Liu, L.; Wang, J.G.; Deng, F.; Dong, J.-X. Synthesis and characterization of zeolite mazzite analogue in Na2O–Al2O3–SiO2–Piperazine-H2O. J. Porous Mater. 2007, 14, 97–101. [Google Scholar] [CrossRef]
- He, D.W.; Yuan, D.H.; Song, Z.J.; Xu, Y.P.; Liu, Z.M. Eco-friendly synthesis of high silica zeolite Y with choline as green and innocent structure-directing agent. Chin. J. Catal. 2019, 40, 52–59. [Google Scholar] [CrossRef]
- Chen, B.H.; Xu, R.N.; Zhang, R.D.; Liu, N. Economical Way to Synthesize SSZ-13 with Abundant Ion-exchanged Cu+ for an Extraordinary Performance in Selective Catalytic Reduction (SCR) of NOx by Ammonia. Environ. Sci. Technol. 2014, 48, 13909–13916. [Google Scholar] [CrossRef]
- Zhao, X.H.; Wang, H.; Kang, C.X.; Sun, Z.P.; Li, G.X.; Wang, X.L. Ionothermal synthesis of mesoporous SAPO-5 molecular sieves by microwave heating and using eutectic solvent as structure-directing agent. Microporous Mesoporous Mater. 2012, 151, 501–505. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, L.; Yang, Z.C.; Han, S.C.; Zhu, Q.Y.; Wang, L.; Liu, C.G.; Meng, X.J.; Xiao, F.-S. Design of fast crystallization of nanosized zeolite omega crystals at higher temperatures. Chin. J. Catal. 2019, 40, 1093–1099. [Google Scholar] [CrossRef]
Run | Na2O/SiO2 | SiO2/Al2O3 | R/SiO2 a | Products b | Crystallinity c (%) |
---|---|---|---|---|---|
1 | 0.187 | 14 | 0.446 | Amor. | / |
2 | 0.203 | 14 | 0.446 | MAZ | 90 |
3 | 0.219 | 14 | 0.446 | MAZ | 100 |
4 | 0.234 | 14 | 0.446 | MAZ + ANA | / |
5 | 0.250 | 14 | 0.446 | MAZ + ANA | / |
6 | 0.219 | 10 | 0.446 | MAZ | 90 |
7 | 0.219 | 12 | 0.446 | MAZ | 100 |
8 | 0.219 | 18 | 0.446 | MAZ | 125 |
9 | 0.219 | 14 | 0.382 | MAZ + Amor. | / |
10 | 0.219 | 14 | 0.511 | MAZ | 85 |
11 | 0.219 | 14 | 0.575 | MAZ | 80 |
12 | 0.219 | 14 | 0.639 | MAZ | 76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Chen, W.; Wang, L.; Song, W.; Hu, Y. Low-Cost and Environmental-Friendly Route for Synthesizing Nano-Rod Aluminosilicate MAZ Zeolite. Molecules 2022, 27, 7930. https://doi.org/10.3390/molecules27227930
Zhang F, Chen W, Wang L, Song W, Hu Y. Low-Cost and Environmental-Friendly Route for Synthesizing Nano-Rod Aluminosilicate MAZ Zeolite. Molecules. 2022; 27(22):7930. https://doi.org/10.3390/molecules27227930
Chicago/Turabian StyleZhang, Fen, Wei Chen, Lingling Wang, Weiguo Song, and Yin Hu. 2022. "Low-Cost and Environmental-Friendly Route for Synthesizing Nano-Rod Aluminosilicate MAZ Zeolite" Molecules 27, no. 22: 7930. https://doi.org/10.3390/molecules27227930
APA StyleZhang, F., Chen, W., Wang, L., Song, W., & Hu, Y. (2022). Low-Cost and Environmental-Friendly Route for Synthesizing Nano-Rod Aluminosilicate MAZ Zeolite. Molecules, 27(22), 7930. https://doi.org/10.3390/molecules27227930