Heat Capacity Estimation Using a Complete Set of Homodesmotic Reactions for Organic Compounds
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Terminology
3.2. Isobaric Molar Heat Capacities at 298 K, the KIAS16 Test Set of Organic Compounds
3.3. DFT Estimation of Gas-Phase CP at 298 K
3.4. Estimation of Gas-Phase CP (298 K) from Experimental Data by the Homodesmotic Method
3.5. Estimation of Liquid-Phase CP (298 K) by the Homodesmotic Method
EtOEt + MeOMe → 2 EtOMe
3.6. Gas-Phase Heat Capacities of n-Alkanes at 200–1500 K
- All HDRs are thermoneutral, taking into account the effect of small molecules;
- An increase in the size of a small molecule, as expected, diminishes the enthalpy correction to almost zero for n-butane;
- “Ideal” HDRs for n-alkanes should be compiled with reference compounds not less than n-butane.
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Benson, S.W.; Buss, J.H. Additivity rules for the estimation of molecular properties. Thermodynamic properties. J. Chem. Phys. 1958, 29, 546–572. [Google Scholar] [CrossRef]
- Benson, S.W. Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1976; p. 320. [Google Scholar]
- Hehre, W.J.; Ditchfield, R.; Radom, L.; Pople, J.A. Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation. J. Am. Chem. Soc. 1970, 92, 4796–4801. [Google Scholar] [CrossRef]
- George, P.; Trachtman, M.; Bock, C.; Brett, A.M. An alternative approach to the problem of assessing stabilization energies in cyclic conjugated hydrocarbons. Theor. Chim. Acta 1975, 38, 121–129. [Google Scholar] [CrossRef]
- George, P.; Trachtman, M.; Brett, A.M.; Bock, C. Comparison of various isodesmic and homodesmotic reaction heats with values derived from published ab initio molecular orbital calculations. J. Chem. Soc. Perkin Trans. 2 1977, 8, 1036–1047. [Google Scholar] [CrossRef]
- Wheeler, S.E.; Houk, K.N.; Schleyer, P.v.R.; Allen, W.D. A hierarchy of homodesmotic reactions for thermochemistry. J. Am. Chem. Soc. 2009, 131, 2547–2560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, S.E. Homodesmotic reactions for thermochemistry. WIREs Comput. Mol. Sci. 2012, 2, 204–220. [Google Scholar] [CrossRef]
- Khursan, S.L.; Ismagilova, A.S.; Akhmerov, A.A.; Spivak, S.I. Constructing homodesmic reactions for calculating the enthalpies of formation of organic compounds. Russ. J. Phys. Chem. A 2016, 90, 796–802. [Google Scholar] [CrossRef]
- Novak, I. Computational thermochemistry of C-nitroso compounds. Struct. Chem. 2016, 27, 1395–1401. [Google Scholar] [CrossRef]
- Song, G.; Bozzelli, J.W. Structural and thermochemical studies on CH3SCH2CHO, CH3CH2SCHO, CH3SC(=O)CH3, and radicals corresponding to loss of H atom. J. Phys. Org. Chem. 2017, 30, e3688. [Google Scholar] [CrossRef]
- Song, G.; Bozzelli, J.W. Structures and thermochemistry of methyl ethyl sulfide and its hydroperoxides: HOOCH2SCH2CH3, CH3SCH(OOH)CH3, CH3SCH2CH2OOH, and radicals. J. Phys. Org. Chem. 2018, 31, e3751. [Google Scholar] [CrossRef]
- Song, G.; Bozzelli, J.W. Structural and thermochemical properties of methyl ethyl sulfide alcohols: HOCH2SCH2CH3, CH3SCH(OH)CH3, CH3SCH2CH2OH, and radicals corresponding to loss of H atom. J. Phys. Org. Chem. 2018, 31, e3836. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, X.; Nie, K.; Han, Y.; Li, J. Structures, relative stability, bond dissociation energies, and stabilization energies of alkynes and imines from a homodesmotic reaction. Comput. Theor. Chem. 2021, 1203, 113329. [Google Scholar] [CrossRef]
- Dorofeeva, O.V.; Ryzhova, O.N. Accurate estimation of enthalpies of formation for C-, H-, O-, and N-containing compounds using DLPNO-CCSD(T1)/CBS method. Struct. Chem. 2021, 32, 553–563. [Google Scholar] [CrossRef]
- Poskrebyshev, G.A. The standard thermochemical properties of the p-benzylphenol and dimethyl phthalate, and their temperature dependencies. Comput. Theor. Chem. 2021, 1197, 113146. [Google Scholar] [CrossRef]
- Poskrebyshev, G.A. The values of ΔfHo298.15 and So298.15 of the radicals formed by the abstraction of H atom from the p-benzylphenol and dimethyl phthalate. Int. J. Chem. Kinet. 2022, 54, 619–646. [Google Scholar] [CrossRef]
- Alonso, M.; Herradón, B. A universal scale of aromaticity for π-organic compounds. J. Comput. Chem. 2010, 31, 917–928. [Google Scholar] [CrossRef] [PubMed]
- An, K.; Zhu, J. Direct energetic evaluation of aromaticity by cleaving the rings of cyclic compounds. J. Organomet. Chem. 2018, 864, 81–87. [Google Scholar] [CrossRef]
- Szatylowicz, H.; Jezuita, A.; Krygowski, T.M. On the relations between aromaticity and substituent effect. Struct. Chem. 2019, 30, 1529–1548. [Google Scholar] [CrossRef] [Green Version]
- Magers, D.B.; Magers, A.K.; Magers, D.H. The s-homodesmotic method for the computation of conventional strain energies of bicyclic systems and individual rings within these systems. Int. J. Quantum. Chem. 2019, 119, e25864. [Google Scholar] [CrossRef]
- Watanabe, K.; Segawa, Y.; Itami, K. A theoretical study on the strain energy of helicene-containing carbon nanobelts. Chem. Commun. 2020, 56, 15044–15047. [Google Scholar] [CrossRef]
- Akhmetshina, E.S.; Khursan, S.L. Application of group separation reaction formalism for analysis of non-valence effects of organic compounds: Three-carbon rings. Russ. Chem. Bull. 2020, 69, 76–83. [Google Scholar] [CrossRef]
- Akhmetshina, E.S.; Khursan, S.L. Complete set of homodesmotic reactions for the analysis of non-valence effects in the three-to-six-membered cyclic organic compounds. Thermochim. Acta 2020, 685, 178541. [Google Scholar] [CrossRef]
- Khursan, S.L.; Akhmetshina, E.S. Interplay of the ring and steric strains in the highly substituted cyclopropanes. J. Phys. Chem. A 2021, 125, 7607–7615. [Google Scholar] [CrossRef] [PubMed]
- Fokin, A.A.; Reshetylova, O.K.; Bakhonsky, V.V.; Pashenko, A.E.; Kivernik, A.; Zhuk, T.S.; Becker, J.; Dahl, J.E.P.; Carlson, R.M.K.; Schreiner, P.R. Synthetic doping of diamondoids through skeletal editing. Org. Lett. 2022, 24, 4845–4849. [Google Scholar] [CrossRef]
- Planells, A.R.; Ferao, A.E. Accurate ring strain energies of unsaturated three-membered heterocycles with one group 13–16 element. Inorg. Chem. 2022, 61, 6459–6468. [Google Scholar] [CrossRef]
- Planells, A.R.; Ferao, A.E. Ring strain energies of three-membered homoatomic inorganic rings El3 and diheterotetreliranes El2Tt (Tt = C, Si, Ge): Accurate versus additive approaches. Inorg. Chem. 2022, 61, 13846–13857. [Google Scholar] [CrossRef]
- Fishtik, I.; Datta, R. Group additivity vs ab initio. J. Phys. Chem. A 2003, 107, 6698–6707. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Emel’yanenko, V.N.; Diky, V.; Muzny, C.D.; Chirico, R.D.; Frenkel, M. New group-contribution approach to thermochemical properties of organic compounds: Hydrocarbons and oxygen-containing compounds. J. Phys. Chem. Ref. Data 2013, 42, 033102. [Google Scholar] [CrossRef] [Green Version]
- Khursan, S.L.; Ismagilova, A.S.; Spivak, S.I. A graph theory method for determining the basis of homodesmic reactions for acyclic chemical compounds. Dokl. Phys. Chem. 2017, 474, 99–102. [Google Scholar] [CrossRef]
- Khursan, S.L.; Ismagilova, A.S.; Ziganshina, F.T.; Akhmet’yanova, A.I. Constructing a complete set of homodesmic reactions using the depth-first search procedure. Russ. J. Phys. Chem. A 2021, 95, 1386–1393. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Mai, T.V.-T.; Huynh, L.K. mHDFS-HoF: A generalized multilevel homodesmotic fragment-separation reaction based program for heat-of-formation calculation for acyclic hydrocarbons. J. Comput. Chem. 2019, 40, 1360–1373. [Google Scholar] [CrossRef] [PubMed]
- Minenkova, I.; Otlyotov, A.A.; Cavallo, L.; Minenkov, Y. Gas-phase thermochemistry of polycyclic aromatic hydrocarbons: An approach integrating the quantum chemistry composite scheme and reaction generator. Phys. Chem. Chem. Phys. 2022, 24, 3163–3181. [Google Scholar] [CrossRef] [PubMed]
- McQuarrie, D.A.; Simon, J.D. Molecular Thermodynamics; University Science Books: Sausalitio, CA, USA, 1999; p. 659. [Google Scholar]
- Acree, W.E., Jr.; Chickos, J.S. JPCRD: 50 years of providing the scientific community with critically evaluated thermodynamic data, predictive methods, and large thermodynamic data compilations. J. Phys. Chem. Ref. Data 2021, 50, 033101. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Revision C.1; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef] [Green Version]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Curtiss, L.A.; Redfern, P.C.; Raghavachari, K. Gaussian-4 theory. J. Chem. Phys. 2007, 126, 084108. [Google Scholar] [CrossRef]
- Růžička, V.; Domalski, E.S. Estimation of the heat capacities of organic liquids as a function of temperature using group additivity. I. Hydrocarbon compounds. J. Phys. Chem. Ref. Data 1993, 22, 597–618. [Google Scholar] [CrossRef]
- Zábranský, M.; Růžička, V. Estimation of the heat capacities of organic liquids as a function of temperature using group additivity: An amendment. J. Phys. Chem. Ref. Data 2004, 33, 1071–1081. [Google Scholar] [CrossRef] [Green Version]
- Afeefy, H.Y.; Liebman, J.F.; Stein, S.E. Neutral thermochemical data. In NIST Chemistry Webbook, NIST Standard Reference Database Number 69; Linstrom, P.J., Mallard, W.G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, USA, 20899.
- Entropy and heat capacity of organic compounds by Glushko thermocenter, Russian academy of sciences, Moscow. In NIST Chemistry Webbook, NIST Standard Reference Database Number 69; Linstrom, P.J.; Mallard, W.G. (Eds.) National Institute of Standards and Technology: Gaithersburg, MD, USA, 20899.
- Domalski, E.S.; Hearing, E.D. Condensed phase heat capacity data. In NIST Chemistry Webbook, NIST Standard Reference Database Number 69; Linstrom, P.J., Mallard, W.G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, USA, 20899.
- Chao, J.; Hall, K.R.; Marsh, K.N.; Wilhoit, R.C. Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties. J. Phys. Chem. Ref. Data 1986, 15, 1369–1436. [Google Scholar] [CrossRef] [Green Version]
- Stull, D.R.; Westrum, E.F., Jr.; Sinke, G.C. The Chemical Thermodynamics of Organic Compounds; John Wiley & Sons: New York, NY, USA, 1969. [Google Scholar]
- Engineering Toolbox. Propane—Specific Heat vs. Temperature and Pressure. Available online: https://www.engineeringtoolbox.com/specific-heat-capacity-propane-Cp-Cv-isobaric-isochoric-d_2060.html (accessed on 26 October 2022).
- Engineering Toolbox. Butane—Specific Heat vs. Temperature and Pressure. Available online: https://www.engineeringtoolbox.com/butane-C4H10-specific-heat-capacity-Cp-Cv-isobaric-isochoric-d_2087.html (accessed on 26 October 2022).
- Conner, A.Z.; Elving, P.J.; Steingiser, S. Specific heats of acetaldehyde and acetaldehyde dibutyl acetal. J. Am. Chem. Soc. 1947, 69, 1532. [Google Scholar] [CrossRef]
- Acree, W.; Chickos, J.S. Phase transition enthalpy measurements of organic and organometallic compounds. Sublimation, vaporization and fusion enthalpies from 1880 to 2015. Part 1. C1—C10. J. Phys. Chem. Ref. Data 2016, 45, 033101. [Google Scholar] [CrossRef]
Group of Compounds 1 | Number of HDRs | B3LYP/6-31G(d) | M06-2X/cc-pVTZ |
---|---|---|---|
Hydrocarbons (16) | 44 | 0.53 | 1.64 |
Alcohols and ethers (20) | 60 | 1.04 | 2.00 |
Carbonyl compounds (7) | 14 | 0.53 | 0.91 |
N-containing (10) | 20 | 0.44 | 1.27 |
KIAS16 test set (53) | 138 | 0.74 | 1.67 |
including HDR2 and 3 | 24 | 0.25 | 0.78 |
Level of HDR | Homodesmotic Reaction | CP |
---|---|---|
1 | EtC(O)Et + MeCHO → EtC(O)Me + EtCHO | 127.1 |
1 | EtC(O)Et + 2 MeCHO → MeC(O)Me + 2 EtCHO | 125.8 |
2 | EtC(O)Et + EtCHO → EtC(O)Me + PrCHO | 124.3 |
2 | EtC(O)Et + 2 MeC(O)Me → 2 EtC(O)Me | 128.3 |
Average: | CP (298 K) of pentanone-3 is | 126.4 ± 1.7 |
No. | Compound | CP | Comment |
---|---|---|---|
1 | EtCHO | 85.5 | Equation 38 |
2 | MeOCH2CH2OH | 100.1 ± 0.7 | Equations 20.1–20.4 |
3 | Me2CHCH2OH | 108.6 | Equation 22 |
4 | PrOMe | 108.1 ± 0.9 | Equations 24.1–24.4 |
5 | Me2CHOMe | 112.1 | Equation 26 |
6 | HO(CH2)4OH | 120.6 ± 2.0 | Equations 27.1–27.5 |
7 | MeOCH2CH2OMe | 121.9 ± 1.1 | Equations 28.1–28.5 |
8 | MeC(O)Pr | 123.7 ± 1.9 | Equations 41.1–41.5 |
9 | EtC(O)Et | 126.4 ± 1.7 | Equations 42.1–42.4 |
10 | Me(CH2)4OH | 130.3 ± 2.1 | Equations 29.1–29.6 |
11 | Me2CHCH2CH2OH | 132.3 ± 1.7 | Equations 30.1–30.3 |
12 | EtMeCHCH2OH | 132.6 ± 1.6 | Equations 31.1–31.3 |
13 | PrMeCHOH | 135.0 ± 1.0 | Equations 32.1–32.3 |
14 | Me2CHCH(Me)OH | 133.2 | Equation 33 |
15 | BuOMe | 130.4 ± 2.2 | Equations 34.1–34.7 |
16 | PrOEt | 129.7 ± 1.3 | Equations 35.1–35.6 |
17 | Me3COMe | 136.4 | Equation 36 |
18 | EtC≡CEt | 120.6 ± 0.4 | Equations 10.1–10.4 |
19 | BuCH=CH2 | 130.5 ± 2.0 | Equations 11.1–11.5 |
20 | Et2C=CH2 | 131.6 ± 0.9 | Equations 12.1–12.4 |
Group of Compounds | Gas | Liquid | ||
---|---|---|---|---|
Number of HDRs | MA ΔCP | Number of HDRs | MA ΔCP | |
Hydrocarbons | 44 (16) | 1.66 | 26 (9) | 3.18 |
Alcohols and ethers | 56 (16) | 1.23 | 47 (11) | 2.17 |
Carbonyl compounds | 12 (5) | 1.59 | 13 (6) | 3.80 |
N-containing | – | – | 16 (6) | 3.37 |
KIAS16 test set | 112 (37) | 1.44 | 102 (32) | 2.83 |
including HDR2 and HDR3 | 20 | 1.36 | 18 | 2.68 |
No. | Compound | CP | Comment |
---|---|---|---|
1 | MeCHO | 102 | Equations 40; 41.1,3; 42.1,2 |
2 | MeC(O)NH2 | 94.0 | Equation 45 |
3 | MeOMe | 102.8 | Equations 19; 28.3 |
4 | C2H6 | 75.5 | Equations 17; 18 |
5 | EtNH2 | 129.4 ± 6.2 | Equations 44; 47.2,3,5 |
6 | EtC(O)NH2 | 126.7 | Equation 51 |
7 | EtOMe | 133.9 | Equations 19; 28.3 |
8 | C3H8 | 107.9 | Liquid alkanes regression |
9 | Et2CHCHO | 156.1 | Equation 43 |
10 | Me2C=CH2 | 130.2 | Equation 5 |
11 | PrC(O)NH2 | 158.1 ± 1.7 | Equations 50.1–50.3 |
12 | EtOEt | 165.4 | See text |
13 | n-C4H10 | 137.2 | Liquid alkanes regression |
14 | Me3CH | 133.5 ± 1.5 | Equations 7; 14.1,2; 15.2 |
15 | EtMeCHNH2 | 193.7 | Equation 49 |
16 | BuC≡N | 166.1 ± 2.9 | Equations 52.1–52.5 |
17 | EtMeCHC≡N | 185.5 | Equation 53 |
18 | EtMeCHCH2OH | 203.9 ± 6.0 | Equations 31.1–31.3 |
19 | PrMeCHOH | 225.0 ± 4.0 | Equations 32.1–32.3 |
20 | Me4C | 159.0 | Equation 16 |
21 | Et2C=CH2 | 183.9 ± 0.6 | Equations 12.1–12.4 |
Compound | a0 | a1 | a2 | a3 | a−2 | CP (298K) 1 | CP (calc) 2 |
---|---|---|---|---|---|---|---|
Ethane | −8.48 | 64.96 | −9.63 | 0.56 | 5.10 | 52.49 | 52.5 |
Propane | −16.75 | 100.42 | −16.54 | 1.07 | 5.59 | 73.60 | 73.8 |
Butane 3 | −26.19 | 136.84 | −23.75 | 1.61 | 9.10 | 98.49 | 97.6 |
Pentane 3 | −35.92 | 173.84 | −31.30 | 2.19 | 11.50 | 120.0 ± 0.1 | 120.3 |
Hexane 3 | −45.66 | 210.85 | −38.86 | 2.76 | 13.90 | 142.6 ± 0.2 | 143.0 |
Heptane 3 | −55.40 | 247.86 | −46.42 | 3.33 | 16.31 | 165.2 ± 0.3 | 165.7 |
Octane 3 | −65.13 | 284.87 | −53.98 | 3.91 | 18.71 | 187.8 ± 0.4 | 188.4 |
Nonane 3 | −74.87 | 321.88 | −61.53 | 4.48 | 21.12 | 210.4 ± 0.5 | 211.1 |
Decane 3 | −84.61 | 358.89 | −69.09 | 5.06 | 23.52 | 233.1 ± 0.6 | 233.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khursan, S.L. Heat Capacity Estimation Using a Complete Set of Homodesmotic Reactions for Organic Compounds. Molecules 2022, 27, 7814. https://doi.org/10.3390/molecules27227814
Khursan SL. Heat Capacity Estimation Using a Complete Set of Homodesmotic Reactions for Organic Compounds. Molecules. 2022; 27(22):7814. https://doi.org/10.3390/molecules27227814
Chicago/Turabian StyleKhursan, Sergey L. 2022. "Heat Capacity Estimation Using a Complete Set of Homodesmotic Reactions for Organic Compounds" Molecules 27, no. 22: 7814. https://doi.org/10.3390/molecules27227814
APA StyleKhursan, S. L. (2022). Heat Capacity Estimation Using a Complete Set of Homodesmotic Reactions for Organic Compounds. Molecules, 27(22), 7814. https://doi.org/10.3390/molecules27227814