Cinnamaldehyde Resist Salmonella Typhimurium Adhesion by Inhibiting Type I Fimbriae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Cell Line, Animals and Reagents
2.2. Susceptibility Testing
2.3. Bacterial Growth Curve Assay
2.4. Hemagglutination Inhibition Test
2.5. Biofilm Assay
2.6. Transmission Electron Microscope (TEM)
2.7. RNA Isolation and Reverse Transcription Polymerase Chain Reaction (RT-PCR)
2.8. Western Blotting
3. Proteomic Sample Preparation, Enzymolysis and Labeling Peptide Fragments
3.1. Proteomic Data Analyses
3.2. Cytotoxicity and Cell Invasion Assay
3.3. Determination of Bacterial Load in Cecum
3.4. Intestinal Factor Detection
3.5. Statistical Analysis
4. Results
4.1. Cinnamaldehyde Inhibits the Expression of S. typhimurium fimbriae
4.2. Cinnamaldehyde Affects S. typhimurium Type I Fimbriae Related Factors
4.3. Cinnamaldehyde Effects the Proteomic Changes of S. typhimurium
4.4. Cinnamaldehyde Inhibited Salmonella Adhesion and Attenuated Intestinal Inflammation by Inhibiting Type I Fimbriae
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Duff, N.; Steele, A.D.; Garrett, D. Global Action for Local Impact: The 11th International Conference on Typhoid and Other Invasive Salmonelloses. Clin. Infect. Dis. 2022, 71, S59–S63. [Google Scholar] [CrossRef] [PubMed]
- Bearson, S.M.D. Salmonella in Swine: Prevalence, Multidrug Resistance, and Vaccination Strategies. Annu. Rev. Anim. Biosci. 2022, 10, 373–393. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.; Hensel, M. Adhesive Mechanisms of Salmonella enterica. Adv. Exp. Med. Biol. 2011, 715, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Dufresne, K.; Daigle, F. Salmonella Fimbriae: What is the Clue to Their Hairdo? In Current Topics in Salmonella and Salmonellosis; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Dufresne, K.; Saulnier-Bellemare, J.; Daigle, F. Functional Analysis of the Chaperone-Usher Fimbrial Gene Clusters of Salmonella enterica serovar Typhi. Front. Cell Infect. Microbiol. 2018, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Patterson, S.K.; Borewicz, K.; Johnson, T.; Xu, W.; Isaacson, R.E. Characterization and Differential Gene Expression between Two Phenotypic Phase Variants in Salmonella enterica Serovar Typhimurium. PLoS ONE 2012, 7, e43592. [Google Scholar] [CrossRef]
- Saini, S.; Pearl, J.A.; Rao, C.V. Role of FimW, FimY, and FimZ in regulating the expression of type i fimbriae in Salmonella enterica serovar Typhimurium. J. Bacteriol. 2009, 191, 3003–3010. [Google Scholar] [CrossRef] [Green Version]
- Duguid, J.; Anderson, E.; Campbell, I. Fimbriae and adhesive properties in Salmonellae. J. Pathol. Bacteriol. 1966, 92, 107–138. [Google Scholar] [CrossRef]
- Boddicker, J.D.; Ledeboer, N.A.; Jagnow, J.; Jones, B.D.; Clegg, S. Differential binding to and biofilm formation on, HEp-2 cells by Salmonella enterica Serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster. Mol. Microbiol. 2002, 45, 1255–1265. [Google Scholar] [CrossRef] [Green Version]
- Guo, A.; Cao, S.; Tu, L.; Chen, P.; Zhang, C.; Jia, A.; Yang, W.; Liu, Z.; Chen, H.; Schifferli, D.M. FimH alleles direct preferential binding of Salmonella to distinct mammalian cells or to avian cells. Microbiology 2009, 155, 1623–1633. [Google Scholar] [CrossRef]
- Kisiela, D.I.; Chattopadhyay, S.; Libby, S.J.; E Karlinsey, J.; Fang, F.; Tchesnokova, V.; Kramer, J.J.; Beskhlebnaya, V.; Samadpour, M.; Grzymajlo, K.; et al. Evolution of Salmonella enterica Virulence via Point Mutations in the Fimbrial Adhesin. PLOS Pathog. 2012, 8, e1002733. [Google Scholar] [CrossRef] [Green Version]
- Kuźmińska-Bajor, M.; Kuczkowski, M.; Grzymajło, K.; Wojciech, M.; Sabat, M.; Kisiela, D.; Wieliczko, A.; Ugorski, M. Decreased colonization of chicks by Salmonella enterica serovar Gallinarum expressing mannose-sensitive FimH adhesin from Salmonella enterica serovar Enteritidis. Veter-Microbiol. 2012, 158, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Humphries, A.D.; Raffatellu, M.; Winter, S.; Weening, E.H.; Kingsley, R.; Droleskey, R.; Zhang, S.; Figueiredo, J.; Khare, S.; Nunes, J.; et al. The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Mol. Microbiol. 2003, 48, 1357–1376. [Google Scholar] [CrossRef] [PubMed]
- Yeh, K.S.; Hancox, L.S.; Clegg, S. Construction and characterization of a fimZ mutant of Salmonella typhimurium. J. Bacteriol. 1995, 177, 6861–6865. [Google Scholar] [CrossRef] [Green Version]
- Cotter, A.P.; Miller, J.F. BvgAS-mediated signal transduction: Analysis of phase-locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect. Immun. 1994, 62, 3381–3390. [Google Scholar] [CrossRef] [Green Version]
- Tinker, J.K.; Clegg, S. Control of FimY translation and type 1 fimbrial production by the arginine tRNA encoded by fimU in Salmonella enterica serovar Typhimurium. Mol. Microbiol. 2001, 40, 757–768. [Google Scholar] [CrossRef]
- Kuźmińska-Bajor, M.; Grzymajlo, K.; Ugorski, M. Type 1 fimbriae are important factors limiting the dissemination and colonization of mice by Salmonella Enteritidis and contribute to the induction of intestinal inflammation during Salmonella invasion. Front. Microbiol. 2015, 6, 276. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Friedman, M.; Henika, P.; Mandrell, R. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 2002, 65, 1545–1560. [Google Scholar] [CrossRef]
- Karumathil, D.P.; Surendran-Nair, M.; Venkitanarayanan, K. Efficacy of Trans-cinnamaldehyde and Eugenol in Reducing Acinetobacter baumannii Adhesion to and Invasion of Human Keratinocytes and Controlling Wound Infection In Vitro. Phytother. Res. 2016, 30, 2053–2059. [Google Scholar] [CrossRef]
- Upadhyaya, I.; Upadhyay, A.; Kollanoor-Johny, A.; Mooyottu, S.; Baskaran, S.A.; Yin, H.-B.; Schreiber, D.T.; Khan, M.I.; Darre, M.J.; Curtis, P.A.; et al. In-Feed Supplementation of trans-Cinnamaldehyde Reduces Layer-Chicken Egg-Borne Transmission of Salmonella enterica Serovar Enteritidis. Appl. Environ. Microbiol. 2015, 81, 2985–2994. [Google Scholar] [CrossRef] [Green Version]
- Birhanu, B.T.; Lee, E.-B.; Park, S.-C. Evaluation of the pharmacokinetic-pharmacodynamic integration of marbofloxacin in combination with methyl gallate against Salmonella Typhimurium in rats. PLoS ONE 2020, 15, e0234211. [Google Scholar] [CrossRef] [PubMed]
- Unwin, R.D.; Griffiths, J.R.; Whetton, A.D. Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobaric tags with 2D nano LC–MS/MS. Nat. Protoc. 2010, 5, 1574–1582. [Google Scholar] [CrossRef] [PubMed]
- Antonanzas, F.; Lozano, C.; Torres, C. Economic Features of Antibiotic Resistance: The Case of Methicillin-Resistant Staphylococcus aureus. Pharmacoeconomics 2014, 33, 285–325. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-G.; Lee, J.-H.; Gwon, G.; Kim, S.-I.; Park, J.G.; Lee, J. Essential Oils and Eugenols Inhibit Biofilm Formation and the Virulence of Escherichia coli O157:H7. Sci. Rep. 2016, 6, 36377. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Song, M.; Pan, J.; Shen, X.; Liu, W.; Zhang, X.; Li, H.; Deng, X. Quercetin impairs Streptococcus pneumoniae biofilm formation by inhibiting sortase A activity. J. Cell Mol. Med. 2018, 22, 6228–6237. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Lv, X.; Wang, Y.; Zhou, Y.; Lu, N.; Deng, X.; Wang, J. Honokiol Restores Polymyxin Susceptibility to MCR-1-Positive Pathogens both In Vitro and In Vivo. Appl. Environ. Microbiol. 2020, 86, e02346–19. [Google Scholar] [CrossRef]
- Lv, Q.; Li, S.; Wei, H.; Wen, Z.; Wang, Y.; Tang, T.; Wang, J.; Xia, L.; Deng, X. Identification of the natural product paeonol derived from peony bark as an inhibitor of the Salmonella enterica serovar Typhimurium type III secretion system. Appl. Microbiol. Biotechnol. 2020, 104, 1673–1682. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, Y.; Sun, X.; Ding, R.; Wang, Y.; Niu, X.; Wang, J.; Deng, X. Application of Oleanolic Acid and Its Analogues in Combating Pathogenic Bacteria In Vitro/Vivo by a Two-Pronged Strategy of beta-Lactamases and Hemolysins. ACS Omega. 2020, 5, 11424–11438. [Google Scholar] [CrossRef]
- Liao, J.; Deng, J.; Chiu, C.; Hou, W.; Huang, S.; Shie, P.; Huang, G.J. Anti-Inflammatory Activities of Cinnamomum cassia Constituents In Vitro and In Vivo. Res. Artic. 2012, 2012, 429320. [Google Scholar]
- Song, F.; Li, H.; Sun, J.; Wang, S. Protective effects of cinnamic acid and cinnamic aldehyde on isoproterenol-induced acute myocardial ischemia in rats. J. Ethnopharmacol. 2013, 150, 125–130. [Google Scholar] [CrossRef]
- Zhu, L.; Olsen, C.; McHugh, T.; Friedman, M.; Jaroni, D.; Ravishankar, S. Apple, Carrot, and Hibiscus Edible Films Containing the Plant Antimicrobials Carvacrol and Cinnamaldehyde Inactivate Salmonella Newport on Organic Leafy Greens in Sealed Plastic Bags. J. Food Sci. 2013, 79, M61–M66. [Google Scholar] [CrossRef] [PubMed]
- Shreaz, S.; Wani, W.A.; Behbehani, J.M.; Raja, V.; Irshad, M.; Karched, M.; Ali, I.; Siddiqi, W.A.; Hun, L.T. Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia 2016, 112, 116–131. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods. J. Agric. Food Chem. 2017, 65, 10406–10423. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-G.; Lee, J.-H.; Kim, S.-I.; Baek, K.-H.; Lee, J. Cinnamon bark oil and its components inhibit biofilm formation and toxin production. Int. J. Food Microbiol. 2015, 195, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Fàbrega, A.; Vila, J. Salmonella enterica Serovar Typhimurium Skills To Succeed in the Host: Virulence and Regulation. Clin. Microbiol. Rev. 2013, 26, 308–341. [Google Scholar] [CrossRef] [Green Version]
- Duguid, J.; Smith, I.; Dempster, G.; Edmunds, P. Non-flagellar filamentous appendages (fimbriae) and haemagglutinating activity in Bacterium coli. J. Pathol. Bacteriol. 1955, 70, 335–348. [Google Scholar] [CrossRef]
- Quan, G.; Xia, P.; Zhao, J.; Zhu, C.; Meng, X.; Yang, Y.; Wang, Y.; Tian, Y.; Ding, X.; Zhu, G. Fimbriae and related receptors for Salmonella Enteritidis. Microb. Pathog. 2019, 126, 357–362. [Google Scholar] [CrossRef]
- Wang, R.; Li, S.; Jia, H.; Si, X.; Lei, Y.; Lyu, J.; Dai, Z.; Wu, Z. Protective Effects of Cinnamaldehyde on the Inflammatory Response, Oxidative Stress, and Apoptosis in Liver of Salmonella typhimurium-Challenged Mice. Molecules 2021, 26, 2309. [Google Scholar] [CrossRef]
Gene | Primer Sequence (5′-3′) | Tm (°C) | Product Length |
---|---|---|---|
16s-F | ATGGCTCAGATTGAACGC | 53 | 117 bp |
16s-R | GGCAGTTTCCCAGACATTAC | ||
fimA-F | TGCCTTTCTCCATCGTCC | 53 | 134 bp |
fimA-R | TGCGGTAGTGCTATTGTCC | ||
fimW-F | ATCAGCTACGGGCGATTA | 50 | 169 bp |
fimW-R | CCAGAAGGGACGCTATGT | ||
fimZ-F | GGCACCGACGGCTTTACCT | 51 | 116 bp |
fimZ-R | CCCGCTCTTATTGCTCTTCC | ||
fimY-F | CACGCAGGGAAAGACACC | 53 | 293 bp |
fimY-R | CGCCTCCATATCTACAATCAGT | ||
fimH-F | ATCCCTCGCCAGACAATG | 53 | 155 bp |
fimH-R | TCGCCGAAATCAAACTCC |
Gene | Primer (5′-3′) | Tm (°C) | Product |
---|---|---|---|
β-actin-F | GGTATGGGCCAGAAAGAC | 56 | 165 bp |
β-actin-R | CTCCTCACGGGCTACTCT | ||
IL-1β-F | GGTCAACATCGCCACCTACA | 59 | 86 bp |
IL-1β-R | CATACGAGATGGAAACCAGCAA | ||
IL-6-F | AAATCCCTCCTCGCCAATCT | 59 | 106 bp |
IL-6-R | CCCTCACGGTCTTCTCCATAAA | ||
IL-10-F | CGGGAGCTGAGGGTGAA | 58 | 272 bp |
IL-10-R | GTGAAGAAGCGGTGACAGC | ||
TGF-β-F | CGGGACGGATGAGAAGAA | 58 | 141 bp |
TGF-β-R | TCGGCGCTCCAGATGTAC | ||
TNF-α-F | TGTCGGTCAGCCGCTTCTC | 62 | 219 bp |
TNF-α-R | TGGTCGCCTCCAACTCGTC | ||
MUC1-F | TCGCCTTGGAGGAATCTA | 55 | 395 bp |
MUC1-R | AGCAGTGGCAATGGTATCT | ||
MUC2-F | TGAGTCAGGCATAAATCG | 53 | 419 bp |
MUC2-R | GGTCTAAGTCGGGAAGTG |
Diluted Multiples | 1:02 | 1:04 | 1:08 | 1:16 | 1:32 | 1:64 | 1:128 | 1:256 |
---|---|---|---|---|---|---|---|---|
0 μg/mL | ++ | ++ | + | + | + | + | - | - |
16 μg/mL | + | + | + | + | + | - | - | - |
32 μg/mL | + | + | + | - | - | - | - | - |
64 μg/mL | + | + | - | - | - | - | - | - |
PBS | - | - | - | - | - | - | - | - |
Accession Name | Gene Name | Function | Fold Change | p Value |
---|---|---|---|---|
A0A0D6H7T1 | fimA | Fim subunit | 0.80 | 0.02 |
A0A0M2IX42 | CR079_01855 | Fim subunit | 0.72 | 0.01 |
A0A0D6H693 | fimW | Fim regulator | 0.73 | 0.02 |
A0A0C5PU36 | invB | SPI-1molecular chaperone | 0.66 | 0.03 |
A0A0C5PPT0 | sipA | SPI-1effector | 0.61 | 0.0002 |
A0A0C5Q2B9 | prgI | SPI-1needle protein | 0.55 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, L.; Dai, Y.; Chen, H.; He, X.; Ouyang, P.; Huang, X.; Sun, X.; Ai, Y.; Lai, S.; Zhu, L.; et al. Cinnamaldehyde Resist Salmonella Typhimurium Adhesion by Inhibiting Type I Fimbriae. Molecules 2022, 27, 7753. https://doi.org/10.3390/molecules27227753
Yin L, Dai Y, Chen H, He X, Ouyang P, Huang X, Sun X, Ai Y, Lai S, Zhu L, et al. Cinnamaldehyde Resist Salmonella Typhimurium Adhesion by Inhibiting Type I Fimbriae. Molecules. 2022; 27(22):7753. https://doi.org/10.3390/molecules27227753
Chicago/Turabian StyleYin, Lizi, Yuyun Dai, Han Chen, Xuewen He, Ping Ouyang, Xiaoli Huang, Xiangang Sun, Yanru Ai, Siyuan Lai, Ling Zhu, and et al. 2022. "Cinnamaldehyde Resist Salmonella Typhimurium Adhesion by Inhibiting Type I Fimbriae" Molecules 27, no. 22: 7753. https://doi.org/10.3390/molecules27227753
APA StyleYin, L., Dai, Y., Chen, H., He, X., Ouyang, P., Huang, X., Sun, X., Ai, Y., Lai, S., Zhu, L., & Xu, Z. (2022). Cinnamaldehyde Resist Salmonella Typhimurium Adhesion by Inhibiting Type I Fimbriae. Molecules, 27(22), 7753. https://doi.org/10.3390/molecules27227753