Dissipation and Residues of Imidacloprid and Its Efficacy against Whitefly, Bemisia tabaci, in Tomato Plants under Field Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Imidacloprid on Tomato Fruit Yield
2.2. Recovery of Imidacloprid
3. Materials and Methods
3.1. Chemicals and Tested Insecticide
3.2. Field Experiments and Sampling Procedure
3.3. Seed Treatment with Imidacloprid
3.4. Foliar Spraying with Imidacloprid
3.5. Residues and Loss Percentage of Imidacloprid in Tomato Leaves and Fruits
3.6. Analytical Processes
3.7. Measurement and Residues via HPLC
3.8. Validation Procedure
3.9. Half-LIFE Time Value
3.10. Effect of Imidacloprid on Tomato Yield
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
References
- Dorais, M.; Ehret, D.L.; Papadopoulos, A.P. Tomato (Solanum lycopersicum) health components: From the seed to the consumer. Phytochem. Rev. 2008, 7, 231–250. [Google Scholar] [CrossRef]
- Brown, J.K.; Frohlich, D.R.; Rosell, R.C. The sweet potato or silver leaf whiteflies: Biotypes of Bemisia tabaci or a species complex? Annu. Rev. Entomol. 1995, 40, 511–534. [Google Scholar] [CrossRef]
- Said, A.A.; Shaheen, F.A.H.; Hamid, A.M.; Elzahi, E.S. Population dynamic of aphids, whitefly, some predators and seed cotton yield as inflected by cotton sowing date. Egypt. J. Agric. Res. 2005, 83, 813–830. [Google Scholar]
- Oliveira, M.; Henneberry, T.; Anderson, P. History, current status, and collaborative research projects for Bemisia tabaci. Crop Prot. 2001, 20, 709–723. [Google Scholar] [CrossRef] [Green Version]
- Obeng-Ofori, D. Major arthropod pests of root, tuber crops and plantains. In Major Pests of Food and Selected Fruit and Industrial Crops in West Africa; Obeng-Ofori, D., Ed.; City Publishers: Accra, Ghana, 2007; pp. 59–75. [Google Scholar]
- Li, Y.; Mbata, G.N.; Punnuri, S.; Simmons, A.M.; Shapiro-Ilan, D. Bemisia tabaci on Vegetables in the Southern United States: Incidence, Impact, and Management. Insects 2021, 12, 198. [Google Scholar] [CrossRef]
- Krogh, K.A.; Jensen, G.G.; Schneider, M.K.; Fenner, K.; Sorensen, B.H. Analysis of the dissipation kinetics of ivermectin at different temperatures and in four different soils. Chemosphere 2009, 75, 1097–1104. [Google Scholar] [CrossRef]
- Wilde, G.; Roozeboom, K.; Claassen, M. Does the systemic insecticide imidacloprid (Gaucho) have a direct effect on yield of grain sorghum? J. Prod. Agric. 1999, 12, 382–389. [Google Scholar] [CrossRef]
- Graham, C.T.; Johnie, N.J.; Mccarty, J.C. Performance of Gaucho seed treatment insecticide against early season cotton insect pests. Proc. Beltwide Cotton Conf. Memphis. Tenn. 1995, 2, 917–918. [Google Scholar]
- Burd, J.D.; Elliott, N.C.; Reed, D.K. Effect of the aphicides ‘Gaucho’ and CGA-215944 on feeding behavior and tritrophic interactions of Russian wheat aphids. Southwest. Ent. 1996, 21, 145–152. [Google Scholar]
- Almand, L.K. Gaucho seed treatment for protection against early season insects. Proc. Beltwide Cotton Conf. Memphis. Tenn. 1995, 2, 1063–1065. [Google Scholar]
- Mckirdy, S.; Jones, R. Use of imidacloprid and newer generation synthetic pyrethroids to control the spread of barley yellow dwarf luteovirus in cereals. Plant Dis. 1996, 80, 895–901. [Google Scholar] [CrossRef]
- Van Iersel, M.W.; Oetting, R.D.; Hall, D.B. Imidacloprid applications by sub-irrigation for control of silverleaf whitefly (Homoptera: Aleyrodidae) on Poinsettia. J. Econ. Entomol. 2000, 93, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Dhandapani, N.; Dhivahar, P.; Palanisamy, S. Evaluation of new molecules, clothianidin (Poncho 600 FS) and imidacloprid (Gaucho 600 FS) as seed treatment against sucking pests of cotton. In Resources Management in Plant Protection during Twenty First Century; Babu, B.S., Varaprasad, K.S., Anitha, K., Eds.; Plant Prot. As.: Hyderabad, India, 2002; Volume 2, pp. 127–130. [Google Scholar]
- Sur, R.; Stork, A. Uptake, Translocation and metabolism of imidacloprid in plants. Bull. Insectology 2003, 56, 35–40. [Google Scholar]
- El-Naggar, J.B. Population density of certain early cotton season insects and associated predators influenced by seed treatments. J. Agric. Sci. Mansoura Univ. 2006, 31, 7423–7434. [Google Scholar]
- Abdel razik, M.A.A. Residues of imidacloprid insecticide and its efficacy on whitefy, Bemisia tabaci (gennadius) in tomato plants. Int. J. Environ. Sci. Technol. 2019, 16, 3989–4000. [Google Scholar] [CrossRef]
- El-Seady, A.A. Effect of imidacloprid on early season sap sucking insects in relation to analysis of its residues in cotton plants. J. Agric. Sci. Mansoura Univ. 2009, 34, 5357–5363. [Google Scholar] [CrossRef]
- Stansly, P.A.; Liu, T.; Charles, S.V.J. Response of Bemisia argentifolii (Homoptera: Aleyrodidae) to Imidacloprid under Greenhouse, Field, and Laboratory Conditions. Econ. Entomol. 1998, 91, 686–692. [Google Scholar] [CrossRef]
- Hassanzadeh, N.; Sari, A.E.; Bahramifar, N. Dissipation of Imidacloprid in Greenhouse Cucumbers at Single and Double Dosages Spraying. J. Agric. Sci. Tech. 2012, 14, 557–564. [Google Scholar]
- Sabry, A.H.; Abolmaaty, S.M.; Abd-El Rahman, T.A.; Abd-El Rahman, A. Residue determination of some rational insecticides in tomato fruits and their efficacy on sweet potato whitefly, Bemisia tabaci. Int. J. Curr. Sci. 2016, 19, 37–46. [Google Scholar]
- Raidu, L.C.; Meena, R.S.; Laichattiwar, M.A.; Srivastava, C.P. Efficacy of certain insecticides against leafhopper and whitefly infesting Brinjal (Solanum melongena L.). J. Entomol. Res. 2018, 42, 57–60. [Google Scholar] [CrossRef]
- Rustamani, F.A.; Bukero, A.; Rustamani, F.A.; Nahiyoon, S.A.; Bukero, A.A.; Kumar, D.; Chetram. Impact of insecticides on sucking insect pests of cucumber in greenhouse. Pure Appl. Biol. 2022, 11, 397–403. [Google Scholar] [CrossRef]
- Aioub, A.A.A.; Raslan, S.A.A.; Gomaa, E.A.; Desuky, W.M.; Zaki, A.A. Management of sap sucking insect populations on cotton plants by imidacloprid application and NPK fertilization. Zagazig J. Agric. Res. 2002, 29, 269–289. [Google Scholar]
- Naveed, M.; Salam, A.; Saleem, M.A.; Rafiq, M.; Hamza, A. Toxicity of thiamethoxam and imidacloprid as seed treatments to parasitoids associated to control Bemisia tabaci. Pak. J. Zool. 2010, 42, 5. [Google Scholar]
- El-Naggar, J.B.; Zidan, N.A. Field evaluation of imidacloprid and thiamethoxam against sucking insects and their side effects on soil fauna. J. Plant Prot. Res. 2013, 53, 4. [Google Scholar] [CrossRef]
- El-Dewy, M.H.E. Toxicological Studies on Some Pests Attacking Cotton. Ph.D. Thesis, Faculty of Agriculture, Kafr El-Sheikh Univsity, Kafr El-Sheikh, Egypt, 2006; p. 101. [Google Scholar]
- Kar, A. Bioefficacy evaluation of imidacloprid 17.8% SL and thiamethoxam against whitefly on tomato and their effect on natural enemies. J. Entomol. Zool. Stud. 2017, 5, 1064–1067. [Google Scholar]
- Mohammadali, M.T.; Alyousuf, A.A.; Baqir, H.A.; Kadhim, A.A. Evaluation of the efficacy of different Neocontinoid insecticides against cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) on eggplant under greenhouse Condition. Earth Environ. Sci. 2019, 388, 012012. [Google Scholar] [CrossRef]
- El-Zahi, E.S.; El-Sarand, E.A.; El Masry, G.N. Activity of Flonicamid and Two Neonicotinoid Insecticides against Bemisia tabaci (Gennadius) and Its Associated Predators on Cotton Plants. Egypt. Acad. J. Biolog. Sci. 2017, 10, 25–34. [Google Scholar] [CrossRef]
- Sharma, D.; Asifa, M.; Jamwa, V.V.S.; Srivastava, K.; Sharma, A. Seasonal dynamics and management of whitefly (Bemesia tabaci Genn.) in tomato (Solanum esculentum Mill.). Biol. Appl. Sci. Braz. Arch. Biol. Technol. 2017, 60, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Barrania, A.A.; Abou-Taleb, H.K. Field Efficiency of Some Insecticide Treatments against Whitefly, Bemisia tabaci, Cotton Aphid, Aphis gossypii and Their Associated Predator, Chrysopa vulgaris, in Cotton Plants. Alex. J. Agric. Res. 2014, 59, 105–111. [Google Scholar]
- Ahmed, N.E.; Kanan, H.O.; Sugimoto, Y.; Ma, Y.Q.; Inanaga, S. Effect of Imidacloprid on Incidence of Tomato yellow leaf Curl virus. Plant Dis. 2001, 85, 84–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndereyimana, A.; Nyalala, S.; Murerwa, P.; Gaidashova, S. Growth, yield and fruit quality of tomato under different integrated management options against Tuta absoluta. Adv. Hort. Sci. 2020, 34, 123–132. [Google Scholar]
- Saljoqi, A.U.R.; Amin, S.; Salim, M.; Nawaz, T.; Anjum, F. Pesticide Residue Analysis of three Different Pesticides used against Helicoverpa Armigera (Hubner) in Tomato Crop. Sarhad J. Agric. 2022, 38, 448. [Google Scholar] [CrossRef]
- Nassar, A.M.K.; Abbassy, M.A.; Salem, Y.M. Mammalian detrimental effects of imidacloprid residues in tomato fruits. Res. J. Environ. Toxicol. 2015, 9, 149–159. [Google Scholar] [CrossRef]
- Peng, S.; Yang, S.; Zhang, X.; Jia, J.; Chen, Q.; Lian, Y.; Wang, A.; Zeng, B.; Yang, H.; Li, J.; et al. Analysis of imidacloprid residues in mango, cowpea and water samples based on portable molecular imprinting sensors. PLoS ONE 2021, 16, e0257042. [Google Scholar] [CrossRef]
- Health Canada. Imidacloprid. PMRL2013-61, Proposed Maximum Residue Limits, Health Canada Pest Management Regulatory Agency, Canada. Available online: Hc-sc.gc.ca/cpsspc/altformats/pdf/pest/part/consultat-ions/_pmrl.2013-61/pmrl2013-61-eng (accessed on 2 March 2020).
- Arora, P.K.; Jyot, G.; Singh, B.; Battu, R.S.; Singh, B.; Aulakh, P.S. Persistence of Imidacloprid on Grape Leaves, Grape Berries and Soil. Bull. Environ. Contam. Toxicol. 2009, 82, 239–242. [Google Scholar] [CrossRef]
- Venkateswarlu, P.; Mohan, K.R.; Kumar, C.R.; Seshaiah, K. Monitoring of multi-class pesticide residues in fresh grape samples using liquid chromatography with electrospray tandem mass spectrometry. Food Chem. 2007, 105, 1760–1766. [Google Scholar] [CrossRef]
- Mohapatra, S.; Ahuja, A.K.; Sharma, D.; Deepa, M.; Prakash, G.S.; Kumar, S. Residue study of imidacloprid in grapes (Vitis vinifera L.) and soil. Qual. Assur. Saf. Crops Foods 2011, 3, 24–27. [Google Scholar] [CrossRef]
- Baskaran, S.; Kookana, R.S.; Naidu, R. Degradation of bifenthrin, chlorpyrifos and imidacloprid in soil and bedding materials at termiticidal application rates. Pestic. Sci. 1999, 55, 1222–1228. [Google Scholar] [CrossRef]
- Jiao, W.; Xiao, Y.; Qian, X.; Tong, M.; Hu, Y.; Hou, R. Optimized combination of dilution and refined QuEChERS to overcome matrix effects of six types of tea for determination eight neonicotinoid insecticides by ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Food Chem. 2016, 210, 26–34. [Google Scholar] [CrossRef]
- Gupta, S.P.; Singh, S.P.; Atyanarayanas, P.; Kumar, N. Dissipation and decontamination of imidacloprid and lambda—Cyhalothrin residues in brinjal. Int. J. Plant Prot. 2015, 8, 379–383. [Google Scholar] [CrossRef]
- Shokr, S.A.A.; Nasr, I.N.; Hassan, A.S.M. Residues of imidacloprid and tetraconazole on and in cucumber and tomato fruits. J. Agric. Env. Sci. Alex. Univ. 2006, 5, 39. [Google Scholar]
- Sharma, P.C.; Chandresh, P.; Sharma, S. Persistence of imidacloprid, indoxacarb and λ-cyhalothrin on tomato (Solanum lycopersicum L.) under protected cultivation. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2783–2794. [Google Scholar] [CrossRef]
- Hassanzadeh, N.; Bahramifar, N.; Zaheri, F.M. Food safety evaluation of imidacloprid residue in Grape berries at a different dose of spraying. Arch. Hyg. Sci. 2018, 7, 165–173. [Google Scholar] [CrossRef]
- Singh, S.; Dubey, J.K.; Katna, S.; Sharma, A.; Devi, N.; Brar, G.S.; Singh, G.; Gautam, H.; Thakur, N. Dissipation pattern and dietary risk assessment of some commonly used insecticides on tomato (Solanum lycopersicum L.). Biomed. Chromatogr. 2022, 36, e5372. [Google Scholar] [CrossRef]
- Vladi, V.; Hariza, J.F.; Vorpsi, V.; Cara, M. The degradation of the insecticide Imidacloprid in greenhouse tomatoes and an estimation of the level of residues. Albanian J. Agric. Sci. 2014, 123–126. [Google Scholar]
- Omirou, M.; Vryzas, Z.; Papadopoulou-Mourkidou, E.; Economou, A. Dissipation Rates of Iprodione and Thiacloprid during Tomato Production in Greenhouse. Food Chem. 2009, 116, 499–504. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Henderson, C.F.; Tilton, E.W. Tests with acaricides against the brow wheat mite. J. Econ. Entomol. 1955, 48, 157–161. [Google Scholar] [CrossRef]
- Fernandez-alba, A.R.; Valverde, A.; Aguera, A.; Contreras, M.; Chiro, S. Determination of imidacloprid in vegetables by high- performance liquid chromatography with diode-array detection. J. Chromatogr. A 1996, 721, 97–105. [Google Scholar] [CrossRef]
- Schoo, S.; Chahil, K.; Mandal, G.S.; Battu, K.; Singh, B. Estimation of β-cyfuthrin and imidacloprid in okra fruits and soil by chromatography techniques. J. Environ. Sci. Health Part B 2012, 47, 42–50. [Google Scholar] [CrossRef]
- Gao, N.; Guo, X.; Zhang, K.; Hu, D. High performance liquid chromatography and gas chromatography-mass spectrometry methods for the determination of imidacloprid, chlorpyrifos and bifenthrin residues in tea leaves. Instrum. Sci. Technol. 2014, 42, 267–277. [Google Scholar] [CrossRef]
- Moye, H.A.; Malagodi, M.H.; Yoh, J.; Leibee, G.L.; Ku, C.C. Residues of avermectin bla: Rotational crops and soils following soil treatment with (C14) avermectin bla. Agric. Food Chem. 1987, 35, 859–864. [Google Scholar] [CrossRef]
- COSTAT version 6.400 copyright © 2022-2008 COHORT SOFTWARE (798 Lighthouse Ave. PMB 320, Monterey, CA, 93940, USA).
Field Rates | Seedling Produced from Treated Seeds + Spraying (STSs) | Seedling Produced from Untreated Seeds + Spraying (SUSs) | ||||
---|---|---|---|---|---|---|
Average Weight Fruits/Plant (g) | * Increase % | RSD % | Average Weight Fruits/Plant (g) | * Increase % | RSD % | |
½ RD treatment 1 | 921 bc ± 1.15 | 31.38 | 0.13 | 824 c ± 2.89 | 23.30 | 0.35 |
¾ RD treatment 2 | 1380 a ± 5.20 | 54.20 | 0.38 | 1240 ab ± 3.46 | 49.03 | 0.28 |
1 RD treatment 3 | 1460 a ± 1.15 | 56.71 | 0.40 | 1301 a ± 4.04 | 51.42 | 0.31 |
LSD 5% | 340.97 |
Applied Amount (mg/kg) | Found Amount (mg) | Recovery % | Recovery Average % | |||||
---|---|---|---|---|---|---|---|---|
Leaves ± SE | RSD% | Fruits ± SE | RSD% | Leaves | Fruits | Leaves | Fruits | |
0.25 | 0.259 c ± 0.013 | 8.49 | 0. 0.261 c ± 0.006 | 3.83 | 103.6 | 104.4 | 102.2 | 102.7 |
0.50 | 0.510 b ± 0.009 | 2.94 | 0.513 b ± 0.003 | 1.17 | 102.0 | 102.6 | ||
1.00 | 1.014 a ± 0.058 | 9.86 | 1.011 a ± 0.058 | 9.89 | 101.0 | 101.1 | ||
LSD 5% | 0.018 | 0.013 | - | - | - | - |
Days After Spraying | Seedlings Produced From Treated Seeds + Spraying (STSs) | Seedlings Produced From Untreated Seeds + Spraying (SUSs) | ||||
---|---|---|---|---|---|---|
Conc. ± SE (mg/kg) | RSD % | Disappearance % | Conc. ± SE (mg/kg) | RSD % | Disappearance % | |
Leaves | ||||||
1 h | 0.921 a ± 0.006 | 1.19 | - | 0.501 a ± 0.021 | 7.19 | - |
2 days | 0.820 b ± 0.029 | 6.10 | 10.97 | 0.333 b ± 0.006 | 3.00 | 33.53 |
5 days | 0.561 c ± 0.023 | 7.13 | 39.09 | 0.293 c ± 0.006 | 3.41 | 41.52 |
7 days | 0.331 d ± 0.006 | 3.02 | 64.06 | 0.086 d ±0.006 | 11.63 | 82.83 |
9 days | 0.242 e ± 0.006 | 4.55 | 73.24 | 0.078 e ± 0.003 | 6.41 | 84.43 |
15 days | 0.170 f ± 0.006 | 5.88 | 81.54 | 0.063 f ± 0.002 | 4.76 | 87.43 |
21 days | 0.061 g ± 0.0006 | 1.64 | 93.38 | 0.050 g ± 0.001 | 4 | 90.02 |
LSD 5% | 0.0096 | 0.0075 | ||||
t ½ (day) | 6.99 | 5.59 | ||||
Fruits | ||||||
1 h | 0.641 a ± 0.012 | 3.28 | - | 0.486 a ± 0.015 | 5.49 | - |
2 days | 0.581 b ± 0.12 | 3.44 | 9.36 | 0.391 b ± 0.006 | 2.56 | 19.55 |
5 days | 0.427 c ± 0.006 | 2.34 | 33.39 | 0.252 c ± 0.002 | 1.59 | 48.15 |
7 days | 0.216 d ± 0.002 | 1.39 | 66.30 | 0.130 d ± 0.006 | 7.69 | 73.25 |
9 days | 0.114 e ± 0.001 | 1.75 | 82.22 | 0.056 e ± 0.003 | 8.93 | 88.48 |
15 days | 0.081 f ± 0.003 | 6.17 | 87.36 | 0.022 f ± 0.001 | 9.09 | 95.47 |
21 days | 0.040 g ± 0.0006 | 2.75 | 93.76 | 0.010 g ± 0.0006 | 10 | 97.74 |
LSD 5% | 0.008 | 0.0075 | ||||
t ½ (day) | 6.48 | 4.59 | ||||
PHI (days) | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel razik, M.A.A.; Al Dhafar, Z.M.; Alqahtani, A.M.; Osman, M.A.; Sweelam, M.E. Dissipation and Residues of Imidacloprid and Its Efficacy against Whitefly, Bemisia tabaci, in Tomato Plants under Field Conditions. Molecules 2022, 27, 7607. https://doi.org/10.3390/molecules27217607
Abdel razik MAA, Al Dhafar ZM, Alqahtani AM, Osman MA, Sweelam ME. Dissipation and Residues of Imidacloprid and Its Efficacy against Whitefly, Bemisia tabaci, in Tomato Plants under Field Conditions. Molecules. 2022; 27(21):7607. https://doi.org/10.3390/molecules27217607
Chicago/Turabian StyleAbdel razik, Manal A. A., Zamzam M. Al Dhafar, Aisha M. Alqahtani, Mohamed A. Osman, and Mohamed E. Sweelam. 2022. "Dissipation and Residues of Imidacloprid and Its Efficacy against Whitefly, Bemisia tabaci, in Tomato Plants under Field Conditions" Molecules 27, no. 21: 7607. https://doi.org/10.3390/molecules27217607
APA StyleAbdel razik, M. A. A., Al Dhafar, Z. M., Alqahtani, A. M., Osman, M. A., & Sweelam, M. E. (2022). Dissipation and Residues of Imidacloprid and Its Efficacy against Whitefly, Bemisia tabaci, in Tomato Plants under Field Conditions. Molecules, 27(21), 7607. https://doi.org/10.3390/molecules27217607