Ultrasound-Assisted Water Extraction of Gentiopicroside, Isogentisin, and Polyphenols from Willow Gentian “Dust” Supported by Hydroxypropyl-β-Cyclodextrin as Cage Molecules
Abstract
:1. Introduction
2. Results and Discussion
2.1. Model Assessment
2.2. Influence Analysis
2.2.1. Effect of Extraction Parameters on Total Phenolics Content
2.2.2. Effect of Extraction Parameters on Gentiopicroside Content
2.2.3. Effect of Extraction Parameters on Isogentisin Content
2.3. Multi-Response Optimization and Experimental Validation
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals and Reagents
3.3. Applied Experimental Design, Modeling, and Optimization
3.4. Ultrasound-Assisted Extraction Process
3.5. Analytical Methods for Quantification of Target Compounds
3.5.1. HPLC-DAD Analysis
3.5.2. Determination of Total Phenolics Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Šavikin, K.; Aljančić, I.; Vajs, V.; Milosavljević, S.; Jadranin, M.; Ðordević, I.; Menković, N. Bioactive secondary metabolites in several genera of Gentianaceae species from the central regions of the Balkan Peninsula. In The Gentianaceae—Volume 2: Biotechnology and Applications; Rybczyński, J.J., Davey, M.R., Mikuła, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 2, pp. 319–347. [Google Scholar] [CrossRef]
- Matejić, J.S.; Stefanović, N.; Ivković, M.; Živanović, N.; Marin, P.D.; Džamić, A.M. Traditional uses of autochthonous medicinal and ritual plants and other remedies for health in Eastern and South-Eastern Serbia. J. Ethnopharmacol. 2020, 261, 113186. [Google Scholar] [CrossRef] [PubMed]
- Menković, N.; Šavikin, K.; Tasić, S.; Zdunić, G.; Stešević, D.; Milosavljević, S.; Vincek, D. Ethnobotanical study on traditional uses of wild medicinal plants in Prokletije Mountains (Montenegro). J. Ethnopharmacol. 2011, 133, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Hudecová, A.; Kusznierewicz, B.; Hašplová, K.; Huk, A.; Magdolenová, Z.; Miadoková, E.; Gálová, E.; Dušinská, M. Gentiana asclepiadea exerts antioxidant activity and enhances DNA repair of hydrogen peroxide- and silver nanoparticles-induced DNA damage. Food Chem. Toxicol. 2012, 50, 3352–3359. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Cui, B.-W.; Wu, Y.-L.; Nan, J.-X.; Lian, L.-H. Genus Gentiana: A review on phytochemistry, pharmacology and molecular mechanism. J. Ethnopharmacol. 2020, 264, 113391. [Google Scholar] [CrossRef] [PubMed]
- Mihailović, V.; Mihailović, M.; Uskoković, A.; Arambašić, J.; Mišić, D.; Stanković, V.; Katanić, J.; Mladenović, M.; Solujić, S.; Matić, S. Hepatoprotective effects of Gentiana asclepiadea L. extracts against carbon tetrachloride induced liver injury in rats. Food Chem. Toxicol. 2013, 52, 83–90. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Gadimli, A.I.; Isaev, J.I.; Kashchenko, N.I.; Prokopyev, A.S.; Kataeva, T.N.; Chirikova, N.K.; Vennos, C. Caucasian Gentiana Species: Untargeted LC-MS Metabolic Profiling, Antioxidant and Digestive Enzyme Inhibiting Activity of Six Plants. Metabolites 2019, 9, 271. [Google Scholar] [CrossRef] [Green Version]
- Živković, I.; Šavikin, K.; Zdunić, G.; Živković, J.; Bigović, D.; Menković, N.; Radin, D. Antiviral activity of medicinal plants extracts against foodborne norovirus. Lek. Sirovine 2018, 38, 31–34. [Google Scholar] [CrossRef] [Green Version]
- Buza, V.; Cătană, L.; Andrei, S.M.; Ștefănuț, L.C.; Răileanu, Ș.; Matei, M.C.; Vlasiuc, I.; Cernea, M. In vitro anthelmintic activity assessment of six medicinal plant aqueous extracts against donkey strongyles. J. Helminthol. 2020, 94, e147. [Google Scholar] [CrossRef]
- Stefanović, O.; Ličina, B.; Vasić, S.; Radojević, I.; Čomić, L. Bioactive extracts of Gentiana asclepiadea: Antioxidant, antimicrobial, and antibiofilm activity. Bot. Serb. 2018, 42, 223–229. [Google Scholar] [CrossRef]
- Jovanović, M.; Matejić, J.; Kitić, D.; Krstev, T.M.; Kitić, N.; Šavikin, K.; Milutinović, M. Antimicrobial Activity of Fractions and The Extract from Gentiana asclepiadea L. Underground Parts with Molecular Docking Analysis. Acta Med. Med. 2022, 61, 14–22. [Google Scholar] [CrossRef]
- Öztürk, N.; Korkmaz, S.; Öztürk, Y.; Başer, K. Effects of Gentiopicroside, Sweroside and Swertiamarine, Secoiridoids from Gentian (Gentiana lutea ssp. symphyandra), on Cultured Chicken Embryonic Fibroblasts. Planta Med. 2006, 72, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Almukainzi, M.; El-Masry, T.A.; Negm, W.A.; Elekhnawy, E.; Saleh, A.; Sayed, A.E.; Khattab, M.A.; Abdelkader, D.H. Gentiopicroside PLGA Nanospheres: Fabrication, in vitro Characterization, Antimicrobial Action, and in vivo Effect for Enhancing Wound Healing in Diabetic Rats. Int. J. Nanomed. 2022, 17, 1203–1225. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Deng, W.; Xiang, G.; Lin, X.; An, L. Gentiopicroside Reduces Pain, Pruritus, and Corticosteroid Addictive Dermatitis. Nat. Prod. Commun. 2019, 14, 1934578X1987621. [Google Scholar] [CrossRef] [Green Version]
- Amin, E.A.; Welsh, W.J. A Preliminary in Silico Lead Series of 2-Phthalimidinoglutaric Acid Analogues Designed as MMP-3 Inhibitors. J. Chem. Inf. Model. 2006, 46, 2104–2109. [Google Scholar] [CrossRef] [PubMed]
- Wölfle, U.; Haarhaus, B.; Seiwerth, J.; Cawelius, A.; Schwabe, K.; Quirin, K.W.; Schempp, C.M. The Herbal Bitter Drug Gentiana lutea Modulates Lipid Synthesis in Human Keratinocytes In Vitro and In Vivo. Int. J. Mol. Sci. 2017, 18, 1814. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Kim, S.; Kim, J.H.; Lim, C.; Kim, H.; Cho, S. Gentiana scabra Bunge roots alleviates skin lesions of contact dermatitis in mice. J. Ethnopharmacol. 2019, 233, 141–147. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Popović, B.M.; Blagojević, B.; Latković, D.; Četojević-Simin, D.; Kucharska, A.Z.; Parisi, F.; Lazzara, G. A one step enhanced extraction and encapsulation system of cornelian cherry (Cornus mas L.) polyphenols and iridoids with β-cyclodextrin. LWT 2021, 141, 110884. [Google Scholar] [CrossRef]
- Jansook, P.; Ogawa, N.; Loftsson, T. Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications. Int. J. Pharmaceut. 2018, 535, 272–284. [Google Scholar] [CrossRef]
- Pinho, E.; Grootveld, M.; Soares, G.; Henriques, M. Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohyd. Polym. 2014, 101, 121–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duchêne, D.; Bochot, A.; Yu, S.-C.; Pépin, C.; Seiller, M. Cyclodextrins and emulsions. Int. J. Pharmaceut. 2003, 266, 85–90. [Google Scholar] [CrossRef]
- Loftsson, T.; Masson, M. Cyclodextrins in topical drug formulations: Theory and practice. Int. J. Pharmaceut. 2001, 225, 15–30. [Google Scholar] [CrossRef]
- Jovanović, M.; Ćujić-Nikolić, N.; Drinić, Z. Spray drying of Gentiana asclepiadea L. root extract: Successful encapsulation into powders with preserved stability of bioactive compounds. Ind. Crops Prod. 2021, 172, 114044. [Google Scholar] [CrossRef]
- Jovanović, M.; Mudrić, J.; Drinić, Z.; Matejić, J.; Kitić, D.; Bigović, D.; Šavikin, K. Optimization of ultrasound-assisted extraction of bitter compounds and polyphenols from willow gentian underground parts. Sep. Purif. Technol. 2022, 281, 119868. [Google Scholar] [CrossRef]
- Mudrić, J.; Janković, T.; Šavikin, K.; Bigović, D.; Đukić-Ćosić, D.; Ibrić, S.; Đuriš, J. Optimization and modelling of gentiopicroside, isogentisin and total phenolics extraction from Gentiana lutea L. roots. Ind. Crops Prod. 2020, 155, 112767. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; et al. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef]
- Živković, J.; Vladić, J.; Naffati, A.; Nataša, N.; Šavikin, K.; Tomić, M.; Vidović, S. Comparative Chemical Profiling of Underexploited Arctostaphylos uva-ursi L. Herbal Dust Extracts Obtained by Conventional, Ultrasound-Assisted and Subcritical Water Extractions. Waste Biomass Valor. 2022, 13, 4147–4155. [Google Scholar] [CrossRef]
- Gao, F.; Zhou, T.; Hu, Y.; Lan, L.; Heyden, Y.V.; Crommen, J.; Lu, G.; Fan, G. Cyclodextrin-based ultrasonic-assisted microwave extraction and HPLC-PDA-ESI-ITMSn separation and identification of hydrophilic and hydrophobic components of Polygonum cuspidatum: A green, rapid and effective process. Ind. Crops Prod. 2016, 80, 59–69. [Google Scholar] [CrossRef]
- Parmar, I.; Sharma, S.; Rupasinghe, H.P.V. Optimization of β-cyclodextrin-based flavonol extraction from apple pomace using response surface methodology. J. Food Sci. Technol. 2014, 52, 2202–2210. [Google Scholar] [CrossRef] [Green Version]
- Lakka, A.; Lalas, S.; Makris, D.P. Hydroxypropyl-β-Cyclodextrin as a Green Co-Solvent in the Aqueous Extraction of Polyphenols from Waste Orange Peels. Beverages 2020, 6, 50. [Google Scholar] [CrossRef]
- Cristian Favre, L.; Rolandelli, G.; Mshicileli, N.; Norah Vhangani, L.; dos Santos Ferreira, C.; van Wyk, J.; del Pilar Buera, M. Antioxidant and anti-glycation potential of green pepper (Piper nigrum): Optimization of β-cyclodextrin-based extraction by response surface methodology. Food Chem. 2020, 316, 126280. [Google Scholar] [CrossRef]
- Hemwimol, S.; Pavasant, P.; Shotipruk, A. Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia. Ultrason. Sonochem. 2006, 13, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Arruda, H.S.; Pereira, G.A.; Pastore, G.M. Optimization of Extraction Parameters of Total Phenolics from Annona crassiflora Mart. (Araticum) Fruits Using Response Surface Methodology. Food Anal. Methods 2016, 10, 100–110. [Google Scholar] [CrossRef]
- Živković, J.; Janković, T.; Menković, N.; Šavikin, K. Optimization of ultrasound-assisted extraction of isogentisin, gentiopicroside and total polyphenols from gentian root using response-surface methodology. Ind. Crops Prod. 2019, 139, 111567. [Google Scholar] [CrossRef]
- Ariño, A.; Arberas, I.; Leiton, M.J.; de Renobales, M.; Dominguez, J.B. The extraction of yellow gentian root (Gentiana lutea L.). Z. Lebensm. Unter. Forsch. A 1997, 205, 295–299. [Google Scholar] [CrossRef]
- Dang, J.; Chen, C.; Shao, Y.; Mei, L.; Zhang, H.; Zhong, Z.; Wang, Q.; Tao, Y. Optimization of extraction technology of gentiopicroside from Gentiana straminea Maxim using response surface methodology on account of HPLC. J. Liq. Chromatogr. Relat. Technol. 2014, 37, 1940–1952. [Google Scholar] [CrossRef]
- Waterman, P.G.; Mole, S. (Eds.) Extraction and chemical quantification. In Analysis of Phenolic Plant Metabolites. Methods in Ecology; Blackwell Publishing: Oxford, UK, 1994; pp. 66–103. [Google Scholar]
Run | Independent Variables | Dependent Variables | ||||
---|---|---|---|---|---|---|
X1 Extraction Temperature (°C) | X2 Extraction Time (min) | X3 HPβCD Concentration (%, w/v) | Gentiopicroside (mg/g DW) | Isogentisin (mg/g DW) | TPC (mg GAE/g DW) | |
1 | 20 (−1) | 20 (−1) | 3 (0) | 43.56 | 0.41 | 10.81 |
2 | 80 (1) | 20 (−1) | 3 (0) | 49.03 | 0.49 | 13.18 |
3 | 20 (−1) | 50 (1) | 3 (0) | 41.51 | 0.46 | 12.35 |
4 | 80 (1) | 50 (1) | 3 (0) | 48.44 | 0.51 | 12.37 |
5 | 20 (−1) | 35 (0) | 2 (−1) | 41.76 | 0.37 | 11.63 |
6 | 80 (1) | 35 (0) | 2 (−1) | 48.85 | 0.53 | 12.85 |
7 | 20 (−1) | 35 (0) | 4 (1) | 35.74 | 0.41 | 10.55 |
8 | 80 (1) | 35 (0) | 4 (1) | 48.16 | 0.47 | 11.96 |
9 | 50 (0) | 20 (−1) | 2 (−1) | 45.19 | 0.46 | 12.10 |
10 | 50 (0) | 50 (1) | 2 (−1) | 43.87 | 0.48 | 12.17 |
11 | 50 (0) | 20 (−1) | 4 (1) | 45.54 | 0.49 | 12.28 |
12 | 50 (0) | 50 (1) | 4 (1) | 43.97 | 0.54 | 12.22 |
13 | 50 (0) | 35 (0) | 3 (0) | 44.79 | 0.54 | 12.26 |
14 | 50 (0) | 35 (0) | 3 (0) | 44.64 | 0.57 | 12.54 |
15 | 50 (0) | 35 (0) | 3 (0) | 42.68 | 0.52 | 12.57 |
16 | 50 (0) | 35 (0) | 3 (0) | 45.43 | 0.52 | 12.49 |
17 | 50 (0) | 35 (0) | 3 (0) | 44.85 | 0.53 | 12.83 |
Gentiopicroside | Isogentisin | TPC | |
---|---|---|---|
p Values | |||
Linear, quadratic, and interaction terms | |||
X1: Extraction temperature | <0.0001 | 0.0010 | 0.0001 |
X2: Extraction time | / | 0.0844 | 0.3910 |
X3: HPβCD concentration | / | 0.4534 | 0.0623 |
X1X2 | / | / | 0.0025 |
X1X3 | / | / | / |
X2X3 | / | / | / |
X12 | / | 0.0011 | 0.0190 |
X22 | / | / | / |
X32 | / | 0.0285 | 0.0231 |
Parameters for model assessment | |||
Model | <0.0001 | 0.0008 | 0.0004 |
Lack of fit | 0.1436 | 0.3397 | 0.1760 |
R2 | 0.7533 | 0.8217 | 0.8798 |
Adjusted R2 | 0.7369 | 0.7407 | 0.8077 |
Predicted R2 | 0.6443 | 0.5267 | 0.6294 |
Response Values (mg/g DW) | Predicted Value | Experimental Value |
---|---|---|
Gentiopicroside content | 47.90 | 46.96 ± 1.33 |
Isogentisin content | 0.52 | 0.51 ± 0.03 |
TPC | 12.86 | 12.99 ± 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovanović, M.S.; Krgović, N.; Šavikin, K.; Živković, J. Ultrasound-Assisted Water Extraction of Gentiopicroside, Isogentisin, and Polyphenols from Willow Gentian “Dust” Supported by Hydroxypropyl-β-Cyclodextrin as Cage Molecules. Molecules 2022, 27, 7606. https://doi.org/10.3390/molecules27217606
Jovanović MS, Krgović N, Šavikin K, Živković J. Ultrasound-Assisted Water Extraction of Gentiopicroside, Isogentisin, and Polyphenols from Willow Gentian “Dust” Supported by Hydroxypropyl-β-Cyclodextrin as Cage Molecules. Molecules. 2022; 27(21):7606. https://doi.org/10.3390/molecules27217606
Chicago/Turabian StyleJovanović, Miloš S., Nemanja Krgović, Katarina Šavikin, and Jelena Živković. 2022. "Ultrasound-Assisted Water Extraction of Gentiopicroside, Isogentisin, and Polyphenols from Willow Gentian “Dust” Supported by Hydroxypropyl-β-Cyclodextrin as Cage Molecules" Molecules 27, no. 21: 7606. https://doi.org/10.3390/molecules27217606
APA StyleJovanović, M. S., Krgović, N., Šavikin, K., & Živković, J. (2022). Ultrasound-Assisted Water Extraction of Gentiopicroside, Isogentisin, and Polyphenols from Willow Gentian “Dust” Supported by Hydroxypropyl-β-Cyclodextrin as Cage Molecules. Molecules, 27(21), 7606. https://doi.org/10.3390/molecules27217606