Photoelectric and Self-Assembly Properties of Tetrasubstituted Pyrene Discotic Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectroscopic Characterizations
2.2. Electrochemical Properties
2.3. Self-Assembly of Pyrene Derivatives
3. Experimental Section
Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winiger, C.B.; Li, S.G.; Kumar, G.R.; Langenegger, S.M.; Haner, R. Long-distance electronic energy transfer in light-harvesting supramolecular polymers. Angew. Chem. Int. Ed. 2014, 53, 13609–13613. [Google Scholar]
- Duan, Y.W.; Qian, J.; Guo, J.H.; Jiang, S.; Yang, C.D.; Wang, H.Y.; Wang, Q.J.; Shi, Y.; Li, Y. Patterning 2D Organic Crystalline Semiconductors via Thermally Induced Self-Assembly. Adv. Electron. Mater. 2020, 9, 2000438. [Google Scholar]
- Garg, K.; Majumder, C.; Nayak, S.K.; Aswal, D.K.; Gupta, S.K.; Chattopadhyay, S. Silicon-pyrene/perylene hybrids as molecular rectifiers. Phys. Chem. Chem. Phys. 2015, 17, 1891–1899. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, W.J.; Ma, Y.G.; Wang, H.L.; Qi, L.M.; Cao, Y.; Wang, J.; Pei, J. Single microwire transistors of oligoarenes by direct solution process. J. Am. Chem. Soc. 2007, 129, 12386–12387. [Google Scholar] [PubMed]
- Li, Y.X.; Yu, M.N.; Zhang, H.S.; Eginligil, M.; Nie, Y.J.; Xie, L.H.; Lin, Z.Q.; Liu, J.Q.; Huang, W. 3D Steric Bulky Semiconductor Molecules toward Organic Optoelectronic Nanocrystals. ACS Mater. Lett. 2021, 3, 1799–1818. [Google Scholar] [CrossRef]
- Jin, W.S.; Yamamoto, Y.; Fukushima, T.; Ishii, N.; Kim, J.; Kato, K.; Takata, M.; Aida, T. Systematic studies on structural parameters for nanotubular assembly of hexa-peri-hexabenzocoronenes. J. Am. Chem. Soc. 2008, 130, 9434–9440. [Google Scholar]
- Jin, Z.K.; Wang, D.; Wang, X.K.; Liang, P.X.; Mi, Y.S.; Yang, H. Efficient modification of pyrene-derivative featuring third-order nonlinear optics via the click post-functionalization. Tetrahedron. Lett. 2013, 54, 4859–4864. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, T.; Tashiro, K.; Honsho, Y.; Saeki, A.; Seki, S.; Osuka, A.; Muranaka, A.; Uchiyama, M.; Kim, J.; Ha, S.; et al. Electron- or hole-transporting nature selected by side-chain-directed pi-stacking geometry: Liquid crystalline fused metalloporphyrin dimers. J. Am. Chem. Soc. 2011, 133, 6537–6540. [Google Scholar]
- Irla, S.; Pruthvi, M.; Raghunathan, V.A.; Kumar, S. Design and synthesis of extended pyrene based discotic liquid crystalline dyes. Dyes Pigments 2021, 194, 109574. [Google Scholar]
- Sergeyev, S.; Pisulab, W.; Geerts, Y.H. Discotic liquid crystals: A new generation of organic semiconductors. Chem. Soc. Rev. 2007, 36, 1902–1929. [Google Scholar] [CrossRef]
- Termine, R.; Golemme, A. Charge mobility in discotic liquid crystals. Int. J. Mol. Sci. 2021, 22, 877. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.R.; Li, W.; Zhou, X.; Wong, W.-Y.; Yu, Z.-Q. Highly ordered smectic structures of disc–rod luminescent liquid crystals: The role of the tolane group. J. Mater. Chem. C 2021, 9, 3555–3561. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; Long, G.; Li, Y.; Ganguly, R.; Zhang, M.; Aratani, N.; Yamada, H.; Liu, M.; Zhang, Q. Pyrene-Containing Twistarene: Twelve Benzene Rings Fused in a Row. Angew. Chem. Int. Ed. 2018, 57, 13555–13559. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Singh, N.J.; Lim, J.; Pan, J.; Na Kim, H.; Park, S.; Kim, K.S.; Yoon, J. Unique Sandwich Stacking of Py-rene-Adenine-Pyrene for Selective and Ratiometric Fluorescent Sensing of ATP at Physiological pH. J. Am. Chem. Soc. 2009, 131, 15528–15533. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, T.; Murakami, S.; Takeda, Y.; Fukuhara, G.; Tohnai, N.; Yakiyama, Y.; Sakurai, H.; Kambe, N. Molecular Packing and Solid-State Photophysical Properties of 1,3,6,8-Tetraalkylpyrenes. Chem.–A Eur. J. 2019, 25, 14817–14825. [Google Scholar] [CrossRef]
- Niko, Y.; Moritomo, H.; Sugihara, H.; Suzuki, Y.; Kawamata, J.; Konishi, G.I. A novel pyrene-based two-photon active fluorescent dye efficiently excited and emitting in the ‘tissue optical window (650–1100 nm)’. J. Mater. Chem. B 2015, 3, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Pathiranage, T.; Ma, Z.Y.; Chinthaka, M.; Udamulle, G.; Pan, X.C.; Lee, Y.; Gomez, E.D.; Biewer, M.C.; Matyjaszewski, K.; Stefan, M.C. Improved Self-Assembly of P3HT with Pyrene-Functionalized Methacrylates. ACS Omega 2021, 6, 27325–27334. [Google Scholar] [CrossRef]
- Li, Y.; Wang, D.; Wang, L.; Li, Z.Q.; Cui, Q.; Zhang, H.Q.; Yang, H. Novel asymmetrical pyrene derivatives as light emitting materials: Synthesis and photophysics. J. Lumin. 2012, 132, 1010–1014. [Google Scholar] [CrossRef]
- Diring, S.; Camerel, F.; Donnio, B.; Dintzer, T.; Toffanin, S.; Capelli, R.; Muccini, M.; Ziessel, R. Luminescent ethynyl-pyrene liquid crystals and gels for optoelectronic devices. J. Am. Chem. Soc. 2009, 131, 18177–18185. [Google Scholar] [CrossRef]
- Kim, Y.S.; Bae, S.Y.; Kim, K.H.; Lee, T.W.; Hur, J.A.; Hoang, M.H.; Cho, M.J.; Kim, S.J.; Kim, Y.; Kim, M.; et al. Highly sensitive phototransistor with crystalline microribbons from new pi-extended pyrene derivative via solution-phase self-assembly. Chem. Commun. 2011, 47, 8907–8909. [Google Scholar]
- Fujimoto, K.; Shimizu, H.; Furusyo, M.; Akiyama, S.; Ishida, M.; Furukawa, U.; Yokoo, T.; Inouye, M. Photophysical properties of 1,3,6,8-tetrakis(arylethynyl) pyrenes with donor or acceptor substituents: Their fluorescence solvatochromism and lightfastness. Tetrahedron 2009, 65, 9357–9361. [Google Scholar]
- Idzik, K.R.; Ledwon, P.; Licha, T.; Kuznik, W.; Lapkowski, M.; Frydel, J. Furyl derivatives of pyrene: Efficient synthesis and relevant optical properties. Dyes Pigment. 2014, 103, 55–61. [Google Scholar] [CrossRef]
- Li, J.B.; Li, P.Z.; Wu, J.S.; Gao, J.K.; Xiong, W.W.; Zhang, G.D.; Zhao, Y.L.; Zhang, Q.C. [4+2] cycloaddition reaction to approach diaza twist pentacenes: Synthesis, structures, physical properties, and self-assembly. J. Org. Chem. 2014, 79, 4438–4445. [Google Scholar] [CrossRef]
- Das, A.; Ghosh, S. Stimuli-responsive self-assembly of a naphthalene diimide by orthogonal hydrogen bonding and its coassembly with a pyrene derivative by a pseudo-intramolecular charge-transfer interaction. Angew. Chem. Int. Ed. 2014, 53, 1092–1097. [Google Scholar]
- Mi, Y.S.; Liang, P.X.; Yang, Z.; Wang, D.; He, W.L.; Cao, H.; Yang, H. Synthesis and co-assembly of gold nanoparticles functionalized by a pyrene-thiol derivative. RSC Adv. 2015, 5, 140–145. [Google Scholar] [CrossRef]
- Ghosh, G.; Kartha, K.K.; Fernández, G. Tuning the mechanistic pathways of peptide self-assembly by aromatic interactions. Chem. Commun. 2021, 57, 1603–1606. [Google Scholar]
- Anthony, J.E.; Brooks, J.S.; Eaton, D.L.; Parkin, S.R. Functionalized pentacene: Improved electronic properties from control of solid-state order. J. Am. Chem. Soc. 2001, 123, 9482–9483. [Google Scholar] [PubMed]
- Wang, D.; Jin, Z.K.; Tang, J.K.; Liang, P.X.; Mi, Y.S.; Miao, Z.C.; Zhang, Y.M.; Yang, H. Photophysical and self-assembly properties of asymmetrical multi-aralkyl and arylaldehyde substituted pyrene derivatives. Tetrahedron 2012, 68, 6338–6342. [Google Scholar] [CrossRef]
- Ogino, K.; Iwashima, S.; Inokuchi, H.; Harada, Y. Photoelectric emission and electrical conductivity of the cesium complex with pyrene derivatives. Bull. Chem. Soc. Jpn. 1965, 38, 473–477. [Google Scholar]
Compd | Absorption a λabs (nm) | Fluorescence b λem (nm) | Stokes Shift (cm−1) | Φf c |
---|---|---|---|---|
4a | 253, 306,402, 426 d | 432, 460 | 326 | 0.21 |
4b | 252, 342,446, 472 d | 490, 522 | 778 | 0.41 |
4c | 280, 350, 457, 483 d | 503, 537 | 823 | 0.39 |
4d | 256, 306, 331, 408, 526 d | 562 | 1218 | 0.15 |
Compd | Egopt [eV] a | Egelec [eV] | Eoxonset [V] | HOMO [eV] | Eredonset [V] | LUMO [eV] |
---|---|---|---|---|---|---|
4a | 2.75 | 2.03 | 0.34 | −4.94 | −1.69 | −2.91 |
4b | 2.48 | 1.87 | 0.35 | −4.95 | −1.52 | −3.08 |
4c | 2.33 | 1.85 | 0.36 | −4.96 | −1.50 | −3.10 |
4d | 2.13 | 1.73 | 0.06 | −4.66 | −1.67 | −2.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Yu, Y.; Zhao, X.; Zhao, Y.; Guo, Z.; Zhang, H.; Yao, R.; Ji, X.; Wang, D. Photoelectric and Self-Assembly Properties of Tetrasubstituted Pyrene Discotic Derivatives. Molecules 2022, 27, 7559. https://doi.org/10.3390/molecules27217559
Zhao Y, Yu Y, Zhao X, Zhao Y, Guo Z, Zhang H, Yao R, Ji X, Wang D. Photoelectric and Self-Assembly Properties of Tetrasubstituted Pyrene Discotic Derivatives. Molecules. 2022; 27(21):7559. https://doi.org/10.3390/molecules27217559
Chicago/Turabian StyleZhao, Yuzhen, Yang Yu, Xiangrong Zhao, Yang Zhao, Zhun Guo, Huimin Zhang, Ruijuan Yao, Xinyu Ji, and Dong Wang. 2022. "Photoelectric and Self-Assembly Properties of Tetrasubstituted Pyrene Discotic Derivatives" Molecules 27, no. 21: 7559. https://doi.org/10.3390/molecules27217559
APA StyleZhao, Y., Yu, Y., Zhao, X., Zhao, Y., Guo, Z., Zhang, H., Yao, R., Ji, X., & Wang, D. (2022). Photoelectric and Self-Assembly Properties of Tetrasubstituted Pyrene Discotic Derivatives. Molecules, 27(21), 7559. https://doi.org/10.3390/molecules27217559