Potential of Low Cost Agro-Industrial Wastes as a Natural Antioxidant on Carcinogenic Acrylamide Formation in Potato Fried Chips
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of Raw Materials
2.2. Extraction Yield
2.3. Total Phenolic Content
2.4. Total Flavonoid Content
2.5. Antioxidant Scavenging Activity of Various Extracts
2.5.1. DPPH Radical Scavenging Activity
2.5.2. ABTS Radical Scavenging Activity
2.6. Identification of Phenolic Compounds of Waste Materials by HPLC Analysis
2.7. Effect of Waste Samples on Acrylamide Formation
2.8. Effect of L-Asparagine and Reducing Sugars Contents on Reduction in Acrylamide Formation
2.9. Oil Uptake in Treated Potatoes Chips
2.10. Impact on Potatoes Fried Sensory Profile
3. Materials and Methods
3.1. Plant Materials
3.2. Chemicals and Reagents
3.3. Preparation of Potato Peels, Olive Leaves, Lemon Peels and Pomegranate Peels Powder
3.4. Preparation of Waste Extracts
3.5. Chemical Composition of the Waste Extracts
3.6. Determination of Waste Materials Total Phenolic Compounds
3.7. Determination of Total Flavonoids Compounds of Waste Materials
3.8. Determination of Antioxidant Activity of Waste Materials
3.8.1. DPPH Radical Scavenging Assay
3.8.2. ABTS Radical Scavenging Assay
3.9. Identification of Phenolic Compounds of Waste Materials by HPLC Analysis
3.10. Fried Potato Chip Processing
3.11. Acrylamide Determination
3.11.1. Sample Preparation
3.11.2. Dispersive SPE Cleanup
3.12. Determination of Reducing Sugars
3.13. Determination of Asparagine
3.14. Oil Uptake Content
3.15. Sensory Analysis of Potato Chips
3.16. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amira, H.; Elissa, N.; Iman, D.; Francesc, S.; Montserrat, P.; Manal, C. The effect of borage, ginger and fennel extracts on acrylamide formation in French fries in deep and electric air frying. Food Chem. 2021, 350, 129060. [Google Scholar]
- Dilini, N.; Perera, G.G.; Hewavitharana, S.B.N. Comprehensive Study on the Acrylamide Content of High Thermally Processed Foods. BioMed Res. Int. 2021, 2021, 6258508. [Google Scholar]
- Alka, K.; Bhaswati, B.; Tripti, A.; Vijay, P.; Chakkaravarthi, S. Integrated approach towards acrylamide reduction in potato-based snacks: A critical review. Food Res. Int. 2022, 156, 111172. [Google Scholar]
- Mousavi, K.A.; Fakhri, Y.; Nematollahi, A.; Seilani, F.; Vasseghian, Y. The concentration of acrylamide in different food products: A global systematic review, meta-analysis, and meta regression. Food Rev. Int. 2022, 389, 1286–1304. [Google Scholar] [CrossRef]
- Nivine, B.; Amira, H.; Franscesc, S.; Montserrat, P. Formation, Mitigation, and Detection of Acrylamide in Foods. Food Anal. Methods 2022, 15, 1736–1747. [Google Scholar]
- Eisenbrand, G. Revisiting the evidence for genotoxicity of acrylamide (acrylamide), key to risk assessment of dietary acrylamide exposure. Arch. Toxicol. 2020, 94, 2939–2950. [Google Scholar] [CrossRef]
- Svensson, K.; Abramsson, L.; Becker, W.; Glynn, A.; Hellenäs, K.E.; Lind, Y.; Rosen, J. Dietary intake of acrylamide in Sweden. Food Chem. Toxicol. 2003, 41, 1581–1586. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, P.; Chen, F.; Yuan, Y.; Zhu, Y.; Yan, H.; Hu, X. Role of plant polyphenols in acrylamide formation and elimination. Food Chem. 2015, 186, 46–53. [Google Scholar] [CrossRef]
- Mesías, M.; Delgado-Andrade, C.; Holgado, F.; Gonz’alez-Mulero, L.; Morales, F.J. Effect of consumer’s decisions on acrylamide exposure during the preparation of French fries. Part 1: Frying conditions. Food Chem. Toxicol. 2021, 147, 111857. [Google Scholar] [CrossRef]
- Liu, C.; Luo, L.; Lin, Q. Antitumor activity and ability to prevent acrylamide formation in fried foods of asparaginase from soybean root nodules. J. Food Biochem. 2019, 43, e12756. [Google Scholar] [CrossRef]
- Food Drink Europe Acrylamide Toolbox. 2019. Available online: https://www.fooddrinkeurope.eu/wp-content/uploads/2021/05/FoodDrinkEurope_Acrylamide_Toolbox_2019.pdf (accessed on 27 March 2011).
- Emanuela, C.G.; Alessandro, C.; Giorgio, G.; Silvia, T.; Giancarlo, C. Emerging Processing Technologies for the Recovery of Valuable Bioactive Compounds from Potato Peels. Foods 2020, 9, 1598. [Google Scholar] [CrossRef]
- Matyas, O.; Zora, K.; Klara, P.; Jaromír, L.; Pavel, K. Acrylamide formation in red-, purple- and yellow-fleshed potatoes by frying and baking. J. Food Compos. Anal. 2022, 110, 104529. [Google Scholar]
- Pathak, P.D.; Mandavgane, S.A.; Puranik, N.M.; Jambhulkar, J.; Kulkarni, B.D. Valorization of potato peel: A biorefinery approach. Crit. Rev. Biotechnol. 2018, 38, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Rawson, A.; Aguil’o-Aguayo, I.; Brunton, N.P.; Rai, D.K. Recovery of steroidal alkaloids from potato peels using pressurized liquid extraction. Molecules 2015, 20, 8560–8573. [Google Scholar] [CrossRef] [Green Version]
- Talhaoui, N.; Taamalli, A.; G’omez-Caravaca, A.M.; Fern’andez-Guti’errez, A.; Segura-Carretero, A. Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Res. Int. 2015, 77, 92–108. [Google Scholar] [CrossRef]
- Marwa, A.Y.; Ahmed, S.; Mai, L.; Mohamed, S.; Ashraf, S.A. Thermostable Chitosan-L-Asparaginase conjugate from Aspergillus fumigatus is a novel structurally stable composite for abolishing acrylamide formation in French fried potatoes. LWT 2022, 162, 113494. [Google Scholar]
- Li-Chao, Z.; Dayang, N.J.A.Z.; Annita, S.K.Y.; Rossita, S.; Yu-Hung, L. Effects of fermented lemon peel supplementation in diet on growth, immune responses, and intestinal morphology of Asian sea bass, Lates calcarifer. Aquac. Rep. 2021, 21, 100801. [Google Scholar]
- Nishant, K.; Davor, D.; Pratibha, N.; Nathan, M.D.; Nenad, N.; Anka, T.P. Pomegranate peel extract–A natural bioactive addition to novel active edible packaging. Food Res. Int. 2022, 156, 111378. [Google Scholar]
- Janati, S.S.F.; Beheshti, H.R.; Feizy, J.; Fahim, N.K. Chemical composition of lemon (Citrus limon) and peels its considerations as animal food. GIDA J. Food 2012, 37, 267–271. [Google Scholar]
- Shirley, L.S.; Spyridon, A.P.; Alexios, A.; Sandrina, A.H.; Celestino, S.; Lillian, B.; Isabel, C.F.R.F. Potato peels as sources of functional compounds for the food industry: A review. Trends Food Sci. Technol. 2020, 103, 118–129. [Google Scholar]
- Javed, A.; Ahmad, A.; Tahir, A.; Shabbir, U.; Nouman, M.; Hameed, A. Potato peel waste its nutraceutical, industrial and biotechnological applications. Aims Agric. Food 2019, 4, 3807–3823. [Google Scholar]
- Kyriakos, K.; Anastasia, K.; Ioannis, M.; Athanasia, M.G. Potential of pomegranate peel extract as a natural additive in foods. Trends Food Sci. Technol. 2021, 115, 380–390. [Google Scholar]
- Mohdaly, A.A.A.; Awad, A.M.; Mohamed, H.H.R.; Iryna, S.; Mohamed, F.R. Phenolic extract from Propolis and bee pollen: Composition, antioxidant and antibacterial activities. J. Food Biochem. 2015, 39, 538–547. [Google Scholar] [CrossRef]
- Azadeh, M.S.; Hashem, P.; Nima, H.; Amirhosein, E. Phenolics in Potato Peels: Extraction and Utilization as Natural Antioxidants. World Appl. Sci. J. 2012, 18, 191–195. [Google Scholar]
- Shalini, M.; Arvind, A.J.; Navam, H. Antioxidant and antibacterial potential of pomegranate peel extracts. J. Food Sci. Technol. 2014, 51, 4132–4137. [Google Scholar]
- Salah, M.B.; Abdelmelek, H.; Abderraba, M. Study of phenolic composition and biological activities assessment of alive leaves from different varieties grown in Tunisia. Med. Chem. 2012, 2, 107–111. [Google Scholar]
- Azman, N.F.I.N.; Azlan, A.; Khoo, H.E.; Razman, M.R. Antioxidant Properties of Fresh and Frozen Peels of Citrus Species. Curr. Res. Nutr. Food Sci. 2019, 7, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Kaderides, K.; Mourtzinos, I.; Goula, A.M. Stability of pomegranate peel polyphenols encapsulated in orange juice industry by-product and their incorporation in cookies. Food Chem. 2020, 310, 125849. [Google Scholar] [CrossRef]
- Nenadis, N.; Kyriakoudi, A.; Tsimidou, M.Z. Impact of alkaline or acid digestion to antioxidant activity, phenolic content and composition of rice hull extracts. LWT Food Sci. Technol. 2013, 54, 207–215. [Google Scholar] [CrossRef]
- Mohdaly, A.A.A.; Sarhan, M.A.; Smetanska, I.; Mahmoud, A. Antioxidant properties of various solvent extracts of potato peel, sugar beet pulp and sesame cake. J. Sci. Food Agric. 2010, 90, 218–226. [Google Scholar] [CrossRef]
- Alexandre, L.; Bianca, C.A.; da Brun, F.A.; Deborah, M.O.; Andress, C.J.; Rui, C.Z. Metabolic profile of olive leaves of different cultivars and collection times. Food Chem. 2021, 345, 128758. [Google Scholar]
- Hsieh, Y.; Yeh, Y.; Lee, Y.; Huang, C. Dietary potato peel extract reduces the toxicity. J. Funct. Foods 2016, 27, 461–471. [Google Scholar] [CrossRef]
- Zhao, D.; Jiang, Y.; Sun, J.; Li, H.; Luo, X.; Zhao, M. Anti-inflammatory mechanism involved in 4-ethylguaiacol-mediated inhibition of LPS-induced inflammation in THP-1 cells. J. Agric. Food Chem. 2019, 67, 1230–1243. [Google Scholar] [CrossRef] [PubMed]
- Jeddou, K.B.; Bouaziz, F.; Boisset, C.; Nouri-ellouz, O.; Maktouf, S.; Ellouz-chaabouni, S.; Ellouz-ghorbel, R. Structural, functional, and biological properties of potato peel oligosaccharides. Int. J. Biol. Macromol. 2018, 112, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Albishi, T.; John, J.A.; Al-Khalifa, A.S.; Shahidi, F. Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. J. Funct. Foods 2013, 5, 590–600. [Google Scholar] [CrossRef]
- Chu, M.J.; Liu, X.M.; Yan, N.; Wang, F.Z.; Du, Y.M.; Zhang, Z.F. Partial purification, identification, and quantitation of antioxidants from wild rice (Zizania latifolia). Molecules 2018, 23, 2782. [Google Scholar] [CrossRef] [PubMed]
- Sir Elkhatim, K.A.; Elagib, R.A.; Hassan, A.B. Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Sci. Nutr. 2018, 6, 1214–1219. [Google Scholar] [CrossRef]
- Herrero, M.; Temirzoda, T.N.; Segura-Carretero, A.; Quirantes, R.; Plaza, M.; Ibañez, E. New possibilities for the valorization of olive oil by-products. J. Chromatogr. A 2011, 1218, 7511–7520. [Google Scholar] [CrossRef] [Green Version]
- Riciputi, Y.; Diaz-de-cerio, E.; Akyol, H.; Capanoglu, E.; Cerretani, L.; Caboni, M.F.; Verardo, V. Establishment of ultrasound-assisted extraction of phenolic compounds from industrial potato by-products using response surface methodology. Food Chem. 2018, 269, 258–263. [Google Scholar] [CrossRef]
- Jin, C.; Wu, X.; Zhang, Y. Relationship between antioxidants and acrylamide formation: A review. Food Res. Int. 2013, 51, 611–620. [Google Scholar] [CrossRef]
- Sara, P.; Lucia, T.; Angelo, C.; Lorenzo, C.; Ana, M.G.; d’Alessandro, N. Acrylamide mitigation in processed potato derivatives by addition of natural phenols from olive chain by-products. J. Food Compos. Anal. 2021, 95, 103682. [Google Scholar]
- Capuano, E.; Fogliano, V. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT Food Sci. Technol. 2011, 44, 793–810. [Google Scholar] [CrossRef]
- Babu, P.A.S.; Aafrin, B.V.; Archanaa, G.; Sabinaa, K.; Sudharsana, K.; Sivarajanb, M.; Sukumar, M. Effects of polyphenols from Caralluma fimbriata on acrylamide formation and lipid oxidation-an integrated approach of nutritional quality and degradation of fried food. Int. J. Food Prop. 2017, 20, 1378–1390. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Yagiz, Y.; Marshall, S.; Li, Z.; Simonne, A.; Lu, J. Application of muscadine grape (Vitis rotundifolia Michx.) pomace extract to reduce carcinogenic acrylamide. Food Chem. 2015, 182, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Morales, G.; Jimenez, M.; Garcia, O.; Mendoza, M.R.; Beristain, C.I. Effect of natural extracts on the formation of acrylamide in fried potatoes. LWT-Food Sci. Technol. 2014, 58, 587–593. [Google Scholar] [CrossRef]
- Esfanjani, A.F.; Jafari, S.M. Biopolymer nano-particles and natural nanocarriers for nano-encapsulation of phenolic compounds. Colloids Surf. B. Biointerfaces 2016, 146, 532–543. [Google Scholar] [CrossRef]
- Napolitano, A.; Morales, F.; Sacchi, R.; Fogliano, V. Relationship between virgin olive oil phenolic compounds and acrylamide formation in fried crisps. J. Agric. Food Chem. 2008, 56, 2034–2040. [Google Scholar] [CrossRef]
- Dilumi, W.K.; Liyanage, D.P.; Yevtushenko, M.K.; Benoît, B.; Zhen-Xiang, L. Processing strategies to decrease acrylamide formation, reducing sugars and free asparagine content in potato chips from three commercial cultivars. Food Control 2021, 119, 107452. [Google Scholar]
- Yang, N.; Qiu, R.; Yang, S.; Zhou, K.N.; Wang, C.; Ou, S.; Zheng, J. Influences of stir-frying and baking on flavonoid profile, antioxidant property, and hydroxymethylfurfural formation during preparation of blueberry-filled pastries. Food chem. 2019, 287, 167–175. [Google Scholar] [CrossRef]
- Zhu, F.; Cai, Y.Z.; Ke, J.; Corke, H. Compositions of phenolic compounds, amino acids and reducing sugars in commercial potato varieties and their effects on acrylamide formation. J. Sci. Food Agric. 2010, 90, 2254–2262. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Rozanska, M.; Piechowska, P.; Waskiewicz, A.; Zawirska, W.R. Effects of polyphenols on volatile profile and acrylamide formation in a model wheat bread system. Food Chem. 2019, 297, 125008. [Google Scholar] [CrossRef] [PubMed]
- Bassama, J.; Brat, P.; Bohuon, P.; Boulanger, R.; Günata, Z. Study of acrylamide mitigation in model system: Effect of pure phenolic compounds. Food Chem. 2010, 123, 558–562. [Google Scholar] [CrossRef]
- Kotsiou, K.; Tasioula-Margari, M.; Capuano, E.; Fogliano, V. Effect of standard phenolic compounds and olive oil phenolic extracts on acrylamide formation in an emulsion system. Food Chem. 2011, 124, 242–247. [Google Scholar] [CrossRef]
- Demirok, E.; Kolsarıcı, N. Effect of green tea extract and microwave pre-cooking on the formation of acrylamide in fried chicken drumsticks and chicken wings. Food Res. Int. 2014, 63, 290–298. [Google Scholar] [CrossRef]
- Abboudi, M.; AL-Bachir, M.; Koudsi, Y.; Jouhara, H. Combined effects of gamma irradiation and blanching process on acrylamide content in fried potato strips. Int. J. Food Prop. 2016, 19, 1447–1454. [Google Scholar] [CrossRef] [Green Version]
- Jia, R.; Wan, X.; Geng, X.; Xue, D.; Xie, Z.; Chen, C. Microbial L-asparaginase for application in acrylamide mitigation from food: Current Research status and future perspectives. Microorganisms 2021, 39, 1659. [Google Scholar] [CrossRef]
- Iqbal, K.M.K.; Amjad, A.; Maan, A.; Nazir, A.; Abrar, M.; Abbas, M.; Muqeet, K. Impact of Various Pre-Treatments on Acrylamide Formation Infrench Fries. Food Sci. Nutr. Technol. 2017, 2, 1–6. [Google Scholar]
- Zhu, Y.; Wang, P.; Wang, F.; Zhao, M.; Hu, X.; Chen, F. The kinetics of the inhibition of acrylamide by glycine in potato model systems. J. Sci. Food Agric. 2015, 96, 548–554. [Google Scholar] [CrossRef]
- Pedreschi, F.; Ferrera, A.; Bunger, A.; Alvarez, F.; Huamán-Castilla, N.L.; Mariotti-Cellis, M.S. Ultrasonic-assisted leaching of glucose and fructose as an alternative mitigation technology of acrylamide and 5-hydroxymethylfurfural in potato chips. Innov. Food Sci. Emerg. Technol. 2021, 73, 102752. [Google Scholar] [CrossRef]
- Yang, Y.; Achaerandio, I.; Pujolà, M. Influence of the frying process and potato cultivar on acrylamide formation in French fries. Food Control 2016, 62, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Stadler, R.H.; Studer, A. Chapter 1—Acrylamide formation mechanisms. In Acrylamide in Food. Analysis, Content and Potential Health Effect; Gökmen, V., Ed.; Academic Press: Cambridge, MA, USA; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 1–17. [Google Scholar] [CrossRef]
- Heeba, S.; Navami, M.M.; Billu, A.; Nayana, N.; Prakasan, N. Influence of coating material and processing parameters on acrylamide formation in potato patties. Int. J. Food Eng. 2022, 18, 399–409. [Google Scholar] [CrossRef]
- Beatrice, S.; Gianluca, V.; Maurizio, S.; Sonia, E.; Roberto, S.; Antonietta, L.; Agnese, T. A quanti-qualitative study of a phenolic extract as a natural antioxidant in the frying processes. Food Chem. 2019, 279, 426–434. [Google Scholar]
- AOAC. Official Methods of Analysis of the AOAC International. In Method 972.15, 20th ed.; Horwitz, W., Latimer, G.W., Jr., Eds.; AOAC: Maryland, MD, USA, 2016; Volume II. [Google Scholar]
- Arapoglou, D.; Varzakas, T.; Vlyssides, A.; Israilides, C.J.W.M. Ethanol production from potato peel waste (PPW). Waste Manag. 2010, 30, 1898–1902. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Ojha, A.; Upadhyay, A.; Singh, R.; Kumar, S. Effect of active chitosan-pullulan composite edible coating enrich with pomegranate peel extract on the storage quality of green bell pepper. LWT 2021, 138, 110435. [Google Scholar] [CrossRef]
- Ebrahimzadeh, M.A.; Pourmorad, F.; Hafezi, S. Antioxidant Activities of Iranian Corn Silk. Turk. J. Biol. 2008, 32, 43–49. [Google Scholar]
- Mohdaly, A.A.A.; Mohamed, F.R. Characteristics, composition and functional properties of seeds, seed cake and seed oil from different Brassica carinata genotypes. Food Biosci. 2022, 48, 100752. [Google Scholar] [CrossRef]
- Mohdaly, A.A.A.; Sarhan, M.A.; Mahmoud, A.; Ramadan, M.F.; Smetanska, I. Antioxidant efficacy of potato peels and sugar beet pulp extracts in vegetable oils protection. Food Chem. 2010, 123, 1019–1026. [Google Scholar] [CrossRef]
- Bellah, O.P.; Nelson, T. Determination of Acrylamide in Cooking Oil by Agilent SampliQ QuEChERS Acrylamide Kit and HPLC-DAD.; Agilent Technologies, Inc.: Santa Clara, CA, USA, 2010. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Igor, J.; Saša, K.; Dragan, G.; Sandra, J.; Biljana, A. Validation of an HPLC method for the determination of amino acids in feed. J. Serb. Chem. Soc. 2013, 78, 839–850. [Google Scholar]
Parameter | Lemon Peels | Potato Peels | Pomegranate Peels | Olive Leaves |
---|---|---|---|---|
Moisture | 73.00 ± 0.22 | 82.00 ± 0.17 | 74.00 ± 0.19 | 59.00 ± 0.54 |
Ash | 7.42 ± 0.28 | 4.34 ± 0.34 | 3.03 ± 0.82 | 5.85 ± 0.44 |
Crude fat | 3.70 ± 0.24 | 2.07 ± 0.32 | 2.50 ± 0.46 | 4.20 ± 0.23 |
Crude protein | 1.89 ± 0.22 | 2.33 ± 0.38 | 1.41 ± 0.40 | 2.28 ± 0.44 |
Carbohydrate ** | 13.99 ± 1.32 | 9.26 ± 0.96 | 19.05 ± 1.12 | 28.67 ± 1.41 |
Yield extract %(DW) | 24.85 ± 1.93 | 14.50 ± 1.14 | 63.29 ± 0.83 | 32.98 ± 0.94 |
TPC mg GAE/g (DW) | 162 ± 0.93 | 157 ± 0.88 | 54.84 ± 0.96 | 62.08 ± 1.12 |
TFC (mg QE/g DW) | 528.00 ±1.08 | 552.03 ± 1.27 | 615.48 ± 1.27 | 512.62 ± 1.24 |
DPPH Radical scavenging activity (%) | 91.80 ± 0.88 | 87.80 ± 1.08 | 71.40 ± 0.74 | 20 ± 1.32 |
EC50 (mg/mL) | 2.60 ± 1.88 | 2.77 ± 1.24 | 3.10 ± 1.08 | 10.85 ± 1.32 |
ABTS Radical scavenging activity (%) | 94.12 ± 0.48 | 90.82 ± 0.80 | 78.24 ± 0.68 | 49.46 ± 0.72 |
Phenolic Compound | Lemon Peels | Potato Peels | Olive Leaves | Pomegranate Peels |
---|---|---|---|---|
Gallic acid | 82.08 | 67.83 | 157.44 | 15,329.66 |
Chlorogenic acid | 1614.21 | 2067.63 | nd | 633.86 |
Catechin | nd | 169.81 | 293.92 | 5684.66 |
Methyl gallate | 13.86 | 0.99 | 6.84 | 267.33 |
Caffeic acid | 20.11 | 270.28 | 6.03 | 43.97 |
Syringic acid | 67.06 | 21.28 | 70.26 | 82.34 |
Pyrocatechol | 531.67 | nd | nd | nd |
Rutin | 355.32 | 9.36 | 73.78 | nd |
Ellagic acid | 205.73 | 44.23 | 53.06 | 2262.34 |
Coumaric acid | 7.76 | 1.55 | 117.31 | nd |
Vanillin | 89.06 | 4.23 | 429.68 | 48.45 |
Ferulic acid | 224.42 | 61.70 | 273.28 | 146.89 |
Naringenin | 1881.80 | 31.83 | 147.99 | 442.38 |
Daidzein | 210.64 | 26.48 | nd | 7.21 |
Querectin | 35.17 | 1.18 | 162.41 | 93.02 |
Cinnamic acid | 1.08 | 2.24 | 33.95 | nd |
Apigenin | 2.83 | nd | 232.42 | nd |
Kaempferol | 12.42 | nd | nd | nd |
Hesperetin | 20.50 | nd | nd | nd |
Reducing Sugars Content (mg/Kg) | Asparagine Content (mg/Kg) | |||||||
---|---|---|---|---|---|---|---|---|
Treatment | After Soaking | After Frying | Reduction % after Soaking | Depletion Rates after Frying | After Soaking | After Frying | Reduction % after Soaking | Depletion Rates after Frying |
Control | 690 ± 0.86 | 90 ± 0.97 | 00.00 | 86.96% | 37.70 ± 0.76 | 7.73 ± 0.82 | 00.00 | 79.50 |
Water | 442 ± 0.76 | 112 ± 0.88 | 35.94 | 74.66% | 26.80 ± 0.96 | 11.25 ± 0.88 | 28.91 | 58.02 |
Lemon peels | 430 ± 0.88 | 242 ± 1.46 | 37.68 | 43.72% | 26.86 ± 0.98 | 19.07 ± 1.22 | 28.75 | 29.00 |
Potato peels | 492 ± 0.96 | 192 ± 0.89 | 28.70 | 60.98% | 28.44 ± 0.86 | 23.68 ± 1.18 | 24.56 | 16.74 |
Pomegranate peels | 492 ± 0.83 | 142 ± 0.86 | 28.70 | 71.14% | 29.14 ± 1.13 | 13.24 ± 0.98 | 22.71 | 54.56 |
Olive leaves | 417 ± 1.08 | 129 ± 1.13 | 39.57 | 69.06% | 26.56 ± 1.18 | 12.70 ± 1.24 | 29.55 | 52.18 |
Parameter | Control | Lemon Peels | Potato Peels | Pomegranate Peels | Olive Leaves |
---|---|---|---|---|---|
Color | 8.4 ± 0.70 | 8.7 ± 0.48 | 8.5 ± 0.79 | 5.6 ± 0.97 | 8.5 ± 0.53 |
Taste | 8.0 ± 0.94 | 8.6 ± 0.52 | 8.1 ± 1.32 | 6.8 ± 0.92 | 8.5 ± 0.71 |
Odor | 8.1 ± 1.29 | 7.5 ± 1.08 | 8.1 ± 1.29 | 7.5 ± 1.08 | 8.3 ± 0.67 |
Appearance | 8.5 ± 0.53 | 8.6 ± 0.52 | 8.4 ± 0.70 | 6.0 ± 1.01 | 8.6 ± 0.52 |
Texture | 8.4 ± 0.70 | 8.2 ± 0.63 | 8.5 ± 0.71 | 7.6 ± 1.26 | 8.7 ± 0.48 |
Overall acceptability | 8.3 ± 0.82 | 8.5 ± 0.53 | 8.0 ± 1.05 | 6.3 ± 0.67 | 8.5 ± 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohdaly, A.A.A.; Roby, M.H.H.; Sultan, S.A.R.; Groß, E.; Smetanska, I. Potential of Low Cost Agro-Industrial Wastes as a Natural Antioxidant on Carcinogenic Acrylamide Formation in Potato Fried Chips. Molecules 2022, 27, 7516. https://doi.org/10.3390/molecules27217516
Mohdaly AAA, Roby MHH, Sultan SAR, Groß E, Smetanska I. Potential of Low Cost Agro-Industrial Wastes as a Natural Antioxidant on Carcinogenic Acrylamide Formation in Potato Fried Chips. Molecules. 2022; 27(21):7516. https://doi.org/10.3390/molecules27217516
Chicago/Turabian StyleMohdaly, Adel Abdelrazek Abdelazim, Mohamed H. H. Roby, Seham Ahmed Rabea Sultan, Eberhard Groß, and Iryna Smetanska. 2022. "Potential of Low Cost Agro-Industrial Wastes as a Natural Antioxidant on Carcinogenic Acrylamide Formation in Potato Fried Chips" Molecules 27, no. 21: 7516. https://doi.org/10.3390/molecules27217516
APA StyleMohdaly, A. A. A., Roby, M. H. H., Sultan, S. A. R., Groß, E., & Smetanska, I. (2022). Potential of Low Cost Agro-Industrial Wastes as a Natural Antioxidant on Carcinogenic Acrylamide Formation in Potato Fried Chips. Molecules, 27(21), 7516. https://doi.org/10.3390/molecules27217516