Lab-in-Syringe, a Useful Technique for the Analysis and Detection of Pollutants of Emerging Concern in Environmental and Food Samples
Abstract
:1. Introduction
2. Results
2.1. Lab-in-Syringe for Extracting Solvent Lighter than Water
2.2. Lab in a Syringe-Fully Automated Dispersive Liquid-Liquid Microextraction with Integrated Spectrophotometric Detection
2.3. Lab-in-Syringe with Magnetic Stirring Assisted Dispersive Liquid–Liquid Microextraction (MSA-DLLME)
2.3.1. In-Syringe Magnetic Stirring Assisted Using an Extraction Solvent Lighter than Water
2.3.2. In-Syringe Magnetic 1 Stirring Assisted Using an Extraction Solvent Denser than Water
2.4. In-Syringe Dispersive Microsolid Phase Extraction Using Magnetic-Metal Organic Frameworks
2.5. Hyphenation Lab-in-Syringe with Big Instruments
How to Couple Flow Techniques
- Prepare the high-resolution instrument to do its task using computer 2, but leaving it in standby waiting to be triggered by the multisyringe.
- Use computer 1 with the aid of the program AutoAnalysis [41] to perform all pre-treatment tasks by means of the LIS system, such as pre-concentration, clean-up, derivatization, etc.
- Once finished the pre-treatment tasks, trigger the computer 2 of the high-resolution instrument in order to run its program and make the analytical measures.
- Whereas the high-resolution instrument is working, the LIS system works simultaneously preparing the next sample using computer 1.
2.6. Hyphenated Technique of LIS with Chromatographic Techniques
3. Conclusions
- -
- Has proven to be a very powerful for pre-concentration, cleaning and elimination of interferences in the determination of very different types of samples, both organic and inorganic.
- -
- It can be applied in liquid-liquid or liquid-solid extraction with good results.
- -
- May be coupled with great instrumentation is especially interesting, such as chromatographic techniques (HPLC, MSC, CG and GC/MS) and atomic spectroscopy (graphic camera, ICP_OES, ICP-MS, atomic fluorescence), which give it great selectivity and sensitivity in the determinations.
- -
- Therefore, LIS may be very useful for the determination of emerging pollutants both in environmental and food samples at very low determination limits.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saraji, M.; Boroujeni, M.K. Recent developments in dispersive liquid–liquid microextraction. Anal. Bioanal. Chem. 2014, 406, 2027–2066. [Google Scholar] [CrossRef]
- Rezaee, M.; Assadi, Y.; Hosseinia, M.R.M.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid–liquid microextraction. J. Chromatogr. A 2006, 1116, 1–9. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Bahram, M.; Jonsson, J.A. Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography-diode array detection as an efficient and sensitive technique for determination of antioxidants. Anal. Chim. Acta 2007, 591, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Xu, J.; Li, Q. Application of dispersive liquid-liquid microextraction and high-performance liquid chromatography for the determination of three phthalate esters in water samples. Anal. Chim. Acta 2008, 609, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Fattahi, N.; Assadi, Y.; Hosseini, M.R.M.; Jahromi, E.Z. Determination of chlorophenols in water samples using simultaneous dispersive liquid-liquid microextraction and derivatization followed by gas chromatography-electron-capture detection. J. Chromatogr. A 2007, 1157, 23–29. [Google Scholar] [CrossRef]
- Nagaraju, D.; Huang, S.D. Determination of triazine herbicides in aqueous samples by dispersive liquid-liquid microextraction with gas chromatography-ion trap mass spectrometry. J. Chromatogr. A 2007, 1161, 89–97. [Google Scholar] [CrossRef]
- Rezaee, M.; Yamini, Y.; Faraji, M. Evolution of dispersive liquid-liquid microextraction method. J. Chromatogr. A 2010, 1217, 2342–2357. [Google Scholar] [CrossRef] [PubMed]
- Ruzicka, J.; Marshall, G.D. Sequential injection: A new concept for chemical sensors, process analysis and laboratory assays. Anal. Chim. Acta 1990, 237, 329–343. [Google Scholar] [CrossRef]
- Economou, A. Sequential-injection analysis (SIA): A useful tool for on-line sample-handling and pre-treatment. Trends Anal. Chem. 2005, 24, 416–425. [Google Scholar] [CrossRef]
- Anthemidis, A.N.; Ioannou, K.I.G. On-line sequential injection dispersive liquid–liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples. Talanta 2009, 79, 86–91. [Google Scholar] [CrossRef]
- Anthemidis, A.N.; Ioannou, K.I.G. Development of a sequential injection dispersive liquid–liquid microextraction system for electrothermal atomic absorption spectrometry by using a hydrophobic sorbent material: Determination of lead and cadmium in natural waters. Anal. Chim. Acta 2010, 668, 35–40. [Google Scholar] [CrossRef]
- Horstkotte, B.; Solich, P. The automation technique Lab-in-Syringe: A practical guide. Molecules 2020, 25, 1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maya, F.; Estela, J.M.; Cerdà, V. Completely automated dispersive liquid-liquid microextraction using solvents lighter than water. Anal. Bioanal. Chem. 2012, 40, 1383–1388. [Google Scholar] [CrossRef]
- Maya, F.; Estela, J.M.; Cerdà, V. Interfacing on-line solid phase extraction with monolithic column multisyringe chromatography and chemiluminescence detection: An effective tool for fast, sensitive and selective determination of thiazide diuretics. Talanta 2010, 80, 1333–1340. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, C.; Larrechi, M.S.; Forteza, R.; Cerdà, V.; Callao, M.P. Multisyringe chromatography (MSC) using a monolithic column for the determination of sulphonated azo dyes. Talanta 2010, 82, 137–142. [Google Scholar] [CrossRef]
- Björklund, E.; Maya, F.; Bak, S.A.; Hansen, M.; Estela, J.M.; Cerdà, V. Possibilities and limitations of the sequential injection chromatography technique for the determination of anticoccidial agents in water, pharmaceutical formulations and feed. Microchem. J. 2011, 98, 190–199. [Google Scholar] [CrossRef]
- Infante, C.M.C.; Urio, R.D.; Masini, J.C. Improving the Detectability of Sequential Injection Chromatography (SIC): Determination of Triazines by Exploiting Liquid Core Waveguide (LCW) Detection. Anal. Lett. 2011, 44, 503–513. [Google Scholar] [CrossRef]
- Maya, F.; Horstkotte, B.; Estela, J.M.; Cerdà, V. Lab in a syringe—Fully automated dispersive liquid-liquid microextraction with integrated spectrophotometric detection. Anal. Bioanal. Chem. 2012, 404, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.; Yamini, Y.; Faraji, M.; Rezaee, M.; Ghambarian, M. Ultrasound-assisted emulsification microextraction method based on applying low density organic solvents followed by gas chromatography analysis for the determination of polycyclic aromatic hydrocarbons in water samples. J. Chromatogr. A 2009, 1216, 6673–6679. [Google Scholar] [CrossRef] [PubMed]
- Farajzadeh, M.A.; Mogaddam, M.R.A. Air-assisted liquid–liquid microextraction method as a novel microextraction technique; Application in extraction and preconcentration of phthalate esters in aqueous sample followed by gas chromatography–flame ionization detection. Anal. Chim. Acta 2012, 728, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lee, H.K. Determination of ultraviolet filters in water samples by vortex-assisted dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry. J. Chromatogr. A 2012, 1249, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.P.; Shi, Z.G.; Yu, Q.W.; Feng, Y.Q. A new device for magnetic stirring-assisted dispersive liquid–liquid microextraction of UV filters in environmental water samples. Talanta 2011, 83, 1711–1715. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Chang, Q.; Wu, C.; Rao, H.; Zeng, X.; Wang, C.; Wang, Z. Ultrasound-assisted surfactant-enhanced emulsification microextraction for the determination of carbamate pesticides in water samples by high performance liquid chromatography. J. Chromatogr. A 2010, 1217, 1773–1778. [Google Scholar] [CrossRef]
- Sarafraz-Yazdi, A.; Amiri, A. Liquid-phase microextraction. Trends Anal. Chem. 2010, 29, 1–14. [Google Scholar] [CrossRef]
- Herrera-Herrera, A.V.; Asensio-Ramos, M.; Hernandez-Borges, J.; Rodriguez-Delgado, M.A. Dispersive liquid-liquid microextraction for determination of organic analytes. Trends Anal. Chem. 2010, 29, 728–751. [Google Scholar] [CrossRef]
- Anthemidis, A.N.; Ioannou, K.I.G. Recent developments in homogeneous and dispersive liquid–liquid extraction for inorganic elements determination. A review. Talanta 2009, 80, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Horstkotte, B.; Suarez, R.; Solich, P.; Cerdà, V. In-syringe-stirring: A novel approach for magnetic stirring-assisted dispersive liquid–liquid microextraction. Anal. Chim. Acta 2013, 788, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Suarez, R.; Horstkotte, B.; Duarte, C.M.; Cerdà, V. Fully-automated fluorimetric determination of aluminum in seawater by in-syringe dispersive liquid-liquid microextraction using lumogallion. Anal. Chem. 2012, 84, 9462–9469. [Google Scholar] [CrossRef]
- Hydes, D.J.; Liss, P.S. Fluorimetric method for the determination of low concentrations of dissolved aluminium in natural waters. Analyst 1976, 101, 922–931. [Google Scholar] [CrossRef]
- Horstkotte, B.; Alexovic, M.; Maya, F.; Duarte, C.M.; Andruch, V.; Cerdà, V. Automatic determination of copper by in-syringe dispersive liquid–liquid microextraction of its bathocuproine-complex using long path-length spectrophotometric detection. Talanta 2012, 99, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Horstkotte, B.; Maya, F.; Duarte, C.M.; Cerda, V. Determination of ppb-level phenol index using in-syringe dispersive liquid-liquid microextraction and liquid waveguide capillary cell spectrophotometry. Mikrochim. Acta 2012, 179, 91. [Google Scholar] [CrossRef]
- Abdolmohammad-Zadeh, H.; Sadeghi, G.H. Combination of ionic liquid-based dispersive liquid–liquid micro-extraction with stopped-flow spectrofluorometry for the pre-concentration and determination of aluminum in natural waters, fruit juice and food samples. Talanta 2010, 81, 778–785. [Google Scholar] [CrossRef]
- Rezaee, M.; Yamini, Y.; Khanchi, A.; Faraji, M.; Saleh, A. A simple and rapid new dispersive liquid–liquid microextraction based on solidification of floating organic drop combined with inductively coupled plasma-optical emission spectrometry for preconcentration and determination of aluminium in water samples. J. Hazard. Mater. 2010, 178, 766–770. [Google Scholar] [CrossRef]
- Sereshti, H.; Bakhtiari, S.; Khojeh, V. Simultaneous determination of aluminum, copper, iron and zinc in Oscillatoria, Juncus littoralis tissues and wetland water samples by ultrasound-assisted emulsification-microextraction combined with ICP-OES. Anal. Methods 2011, 3, 2936. [Google Scholar] [CrossRef]
- Ghasemi, J.B.; Zolfonoun, E. Ultrasound-assisted ionic liquid-based microextraction combined with least squares support vector machines regression for the simultaneous determination of aluminum, gallium, and indium in water and coal samples. Environ. Monit. Assess. 2012, 184, 3971. [Google Scholar] [CrossRef]
- Sereshti, H.; Entezari Heravi, Y.; Samadi, S. Optimized ultrasound-assisted emulsification microextraction for simultaneous trace multielement determination of heavy metals in real water samples by ICP-OES. Talanta 2012, 97, 235. [Google Scholar] [CrossRef]
- Horstkotte, B.; Suárez, R.; Cerdà, V. In-syringe magnetic stirring assisted dispersive liquid-liquid micro-extraction with solvent denser than water applied to automated determination of cationic surfactants. Anal. Methods 2014, 6, 9601–9609. [Google Scholar] [CrossRef]
- Maya, F.; Palomino, C.; Estela, J.M.; Cerdà, V.; Turnes, G. Automatic In-Syringe Dispersive Microsolid Phase Extraction Using Magnetic Metal−Organic Frameworks. Anal. Chem. 2015, 87, 7545–7549. [Google Scholar] [CrossRef]
- Gemuh, C.V.; Macháček, M.; Solich, P.; Horstkotte, B. Renewable sorbent dispersive solid phase extraction automated by Lab-In-Syringe using magnetite-functionalized hydrophilic-lipophilic balanced sorbent coupled online to HPLC for determination of surface water contaminants. Anal. Chim. Acta 2022, 1210, 339874. [Google Scholar] [CrossRef]
- Phansi, P.; Danchana, K.; Cerdà, V. Hyphenation of flow analysis with spectrometric techniques. Appl. Spectrosc. Rev. 2018, 53, 854–876. [Google Scholar] [CrossRef]
- Becerra, E.; Cladera, A.; Cerdà, V. Design of a very versatile software program for automating analytical methods. Lab. Robot. Autom. 1999, 11, 131–140. [Google Scholar] [CrossRef]
- Salvador, A.; Chisvert, A. Sunscreen analysis: A critical survey on UV filters determination. Anal. Chim. Acta 2005, 537, 1–14. [Google Scholar] [CrossRef]
- Tarazona, I.; Chisvert, A.; León, Z.; Salvador, A. Determination of hydroxylated benzophenone UV filters in sea water samples by dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. J. Chromat. A 2010, 1217, 4771–4778. [Google Scholar] [CrossRef]
- Gago-Ferrero, P.; Díaz-Cruz, M.S.; Barceló, D. Fast pressurized liquid extraction with in-cell purification and analysis by liquid chromatography tandem mass spectrometry for the determination of UV filters and their degradation products in sediments. Anal. Bioanal. Chem. 2011, 400, 2195–2204. [Google Scholar] [CrossRef]
- Pedrouzo, M.; Borrull, F.; Marcé, R.M.; Pocurull, E. Stir-bar-sorptive extraction and ultra-high-performance liquid chromatography–tandem mass spectrometry for simultaneous analysis of UV filters and antimicrobial agents in water samples. Anal. Bioanal. Chem. 2010, 397, 2833–2839. [Google Scholar] [CrossRef]
- Nguyen, K.T.N.; Scapolla, C.; Di Carro, M.; Magi, E. Rapid and selective determination of UV filters in seawater by liquid chromatography–tandem mass spectrometry combined with stir bar sorptive extraction. Talanta 2011, 85, 2375–2384. [Google Scholar] [CrossRef]
- Suárez, R.; Clavijo, S.; Avivar, J.; Cerdà, V. On-line in-syringe magnetic stirring assisted dispersive liquid-liquid microextraction HPLC—UV method for UV filters determination using 1-hexyl-3-methylimidazolium hexafluorophosphate as extractant. Talanta 2016, 148, 589–595. [Google Scholar] [CrossRef]
- Clavijo, S.; Brunetto, M.R.; Cerdà, V. In syringe assisted dispersive liquid—Liquid microextraction coupled to gas chromatography—Mass spectrometry for the determination of six phthalates in water samples. J. Sep. Sci. 2014, 37, 974–981. [Google Scholar] [CrossRef]
- Gemuh, C.V.; Horstkotte, B.; Solich, P. Lab-In-Syringe with Bead Injection Coupled Online to High-Performance Liquid Chromatography as Versatile Tool for Determination of Nonsteroidal Anti-Inflammatory Drugs in Surface Waters. Molecules 2021, 17, 5358. [Google Scholar] [CrossRef]
- Vargas-Muñoz, M.A.; Cerdà, V.; Cadavid-Rodríguez, L.S.; Palacio, E. Automated method for volatile fatty acids determination in anaerobic processes using in-syringe magnetic stirring assisted liquid-liquid microextraction and gas chromatography. J. Chromat. A 2021, 1643, 462034. [Google Scholar] [CrossRef]
- Fikarová, K.; Horstkotte, B.; Machián, D.; Sklenářová, H.; Solich, P. Lab-In-Syringe for automated double-stage sample preparation by coupling salting out liquid-liquid extraction with online solid-phase extraction and liquid chromatographic separation for sulfonamide antibiotics from urine. Talanta 2021, 221, 121427. [Google Scholar] [CrossRef]
- Yıldırım, S.; Cocovi-Solberg, D.J.; Uslu, B.; Solich, P.; Horstkotte, B. Lab-In-Syringe automation of deep eutectic solvent-based direct immersion single drop microextraction coupled online to high-performance liquid chromatography for the determination of fluoroquinolones. Talanta 2022, 246, 123476. [Google Scholar] [CrossRef]
- González, A.; Avivar, J.; Cerdà, V. Determination of priority phenolic pollutants exploiting an in-syringe dispersive liquid–liquid microextraction–multisyringe chromatography system. Anal. Bioanal. Chem. 2015, 407, 2013–2022. [Google Scholar] [CrossRef]
- González, A.; Avivar, J.; Cerdà, V. Estrogens determination in wastewater samples by automatic in-syringe dispersive liquid-liquid microextraction prior gas chromatography. J. Chromat. A 2015, 1413, 1–8. [Google Scholar] [CrossRef]
- Horstkotte, B.; Atochero, N.L.; P Solich, P. Lab-In-Syringe automation of stirring-assisted room-temperature headspace extraction coupled online to gas chromatography with flame ionization detection for determination of benzene, toluene, ethylbenzene, and xylenes in surface waters. J. Chromat. A 2018, 1555, 1–9. [Google Scholar] [CrossRef]
- González, A.; Avivar, J.; Maya, F.; Palomino, C.; Turnes, G.; Cerdà, V. In-syringe dispersive μ-SPE of estrogens using magnetic carbons obtained from zeolitic imidazolate frameworks. Anal. Bioanal. Chem. 2017, 409, 225–234. [Google Scholar] [CrossRef]
- Suárez, R.; Clavijo, S.; González, A.; Cerdà, V. Determination of herbicides in environmental water samples by means of a simultaneous in-syringe magnetic stirring-assisted dispersive liquid–liquid microextraction and silylation followed by GC-MS. J. Sep. Sci. 2018, 41, 1096–1103. [Google Scholar] [CrossRef]
- Vargas-Muñoz, M.A.; Cerdà, V.; Turnes, G.; Palacio, E. Determination of long-chain fatty acids in anaerobic digester supernatant a nd olive mill wastewater exploiting an in-syringe dispersive liquid-liquid microextraction and derivatization-free GC-MS method. Anal. Bioanal. Chem. 2021, 413, 3833–3845. [Google Scholar] [CrossRef]
- Clavijo, S.; Avivar, J.; Suárez, R.; Cerdà, V. In-syringe magnetic stirring-assisted dispersive liquid–liquid microextraction and silylation prior gas chromatograpy-mass spectrometry for ultraviolet filters determination in environmental water samples. J. Chromat. A 2016, 1443, 26–34. [Google Scholar] [CrossRef]
- Fernández, M.; Clavijo, S.; Forteza, R.; Cerdà, V. Determination of polycyclic aromatic hydrocarbons using lab on valve dispersive liquid-liquid microextraction coupled to high performance chromatography. Talanta 2015, 138, 190–195. [Google Scholar] [CrossRef]
Volume of Extraction Solvent μL | RSD % | LOD ppb | URL ppb | Sample mL | Time min | Extraction | Detection | Ref. |
---|---|---|---|---|---|---|---|---|
600 | 1.7 | 0.05 | −15 | 25 | <10 | IL-DLLME | FL | [32] |
132 | 4.5 | 0.8 | −250 | 20 | >8 | DLLME-SFO | ICP-OES | [33] |
48 | 2.6–5.3 | 0.6–0.9 | −1000 | 10 | >11 | US-DLLME | ICP-OES | [34] |
75 | 3.2 | 1.7 | n.g. | 10 | >15 | USILDLLME | UV-Vis | [35] |
98 | 1.87 | 0.13 | −1000 | 10 | >10 | US-DLLME | ICP-OES | [36] |
950 | <5 | 0.22 | −27 | 3.9 | 4.4 | In-syringe DSA-DLLME | FL | [28] |
150 | 3.3–4.4 | 0.16 | −33 | 4.1 | 3.5 | In-syringe DSA-DLLME | FL | [27] |
Sample | RSD % | LOD | Working Range | Method | Detection | Ref. |
---|---|---|---|---|---|---|
UV filters | 6 & 8 | 0.08 & 12 μg L−1 | up to 500 μg L−1 | IS-MSA | HPLC | [47] |
Nonsteroidal Anti-Inflammatory Drugs | 3.2 & 7.6 | 0.06 & 1.98 µg L−1 | up to 200 µg L−1 | IS-MSA | HPLC | [49] |
Volatile fatty acids | 0.7 | 0.1 & 1.3 mg L−1 | up to 1000 mg L−1 | IS-MSA | HPLC | [50] |
Sulfonamide antibiotics from urine | ≤5 | 7.5 μg L−1 | 50–5000 μg/L | IS-MSA | HPLC | [51] |
fluoroquinolones | <3 | 20 ng L−1 to 30 ng L−1 | n.g. | SDE | [52] | |
Priority phenolic pollutants | 4.4 | 40 μg L−1 | 20,000 μg L−1 | IS-MSA | MSC | [53] |
Estrogens in wastewater | ≤7.06 | 112 ng L−1 | up to 50,000 ng L−1 | IS-MSA | GC | [54] |
Four hydrocarbons waters | <4 | 1–2 μg L−1 | 0.016–1 mg L−1 | HS | GC | [55] |
Estrogens | <6 | 11 ng L−1 | Up to 1000 μg L−1 | MC | GC/MS | [56] |
Six phthalates in water | <5 | 0.03 & 0.10 g L−1 | 0.5–120 μg L−1 | DLLME | GC/MS | [48] |
Herbicides in waters | 6.6 & 7.4 | 0.045 & 0.03 μg L−1 | up to 200 μg L−1 | IS-MSA | GC/MS | [57] |
Long-chain fatty acids | ≤7.9 | 0.01 & 0.05 mg L−1 | up to 100 mg L−1 | DLLME | GC/MS | [58] |
Ultraviolet filters in water | 5.5 & 17 | 0.023 & 0.16 μg L−1 | up to 500 μg L−1 | IS-MSA | GC/MS | [59] |
polycyclic aromatic hydrocarbons | 1.6–4 | 0.02–0.6 μg L−1 | 0.2–600 μg L−1 | DLLME | HPLC | [60] |
Compound | Retention Order | tret (min) | R2 | EF | RSD% (n = 5) | LOQ (μg L−1) | |
---|---|---|---|---|---|---|---|
Inter Day | Intraday | ||||||
Nap | 1 | 4.2 | 0.9989 | 87.56 | 4.69 | 4.34 | 0.61 |
Acp | 2 | 6.0 | 0.9997 | 86.93 | 4.13 | 3.82 | 0.52 |
Flu | 3 | 6.2 | 0.9999 | 92.06 | 3.84 | 2.61 | 0.09 |
PA | 4 | 7.4 | 0.9998 | 92.36 | 4.72 | 5.31 | 0.16 |
Ant | 5 | 8.7 | 0.9997 | 95.61 | 1.67 | 2.89 | 0.04 |
FL | 6 | 10.0 | 0.9997 | 86.08 | 4.23 | 4.73 | 0.41 |
Pyr | 7 | 10.7 | 0.9999 | 87.62 | 3.74 | 4.51 | 0.26 |
BaA | 8 | 12.9 | 0.9995 | 90.51 | 3.48 | 3.86 | 0.08 |
Chr | 9 | 13.3 | 0.9998 | 88.05 | 3.01 | 2.95 | 0.07 |
BbFl | 10 | 14.8 | 0.9997 | 89.78 | 2.58 | 3.74 | 0.08 |
BkFl | 11 | 15.4 | 0.9999 | 95.45 | 1.63 | 2.13 | 0.02 |
BaP | 12 | 16.0 | 0.9999 | 90.87 | 2.35 | 3.46 | 0.05 |
DBA | 13 | 17.5 | 0.9999 | 88.35 | 4.37 | 3.86 | 0.14 |
BghiP | 14 | 18.1 | 0.9997 | 91.83 | 2.96 | 3.59 | 0.09 |
IP | 15 | 16.9 | 0.9998 | 91.24 | 2.85 | 2.97 | 0.06 |
Analytes | Tap Water | Rain Water | Stream Surface Waters | |||
---|---|---|---|---|---|---|
Content | RR% ± RSD | Content | RR% ± RSD | Content | RR% ± RSD | |
Nap | nd | 93 ± 4 | 0.38 | 89 ± 4 | 0.41 | 92 ± 3 |
Acp | nd | 96 ± 3 | nd | 97 ± 2 | 0.13 | 96 ± 2 |
Flu | nd | 98 ± 2 | nd | 95 ± 3 | nd | 97 ± 3 |
PA | nd | 93 ± 2 | 0.43 | 98 ± 3 | 0.35 | 95 ± 2 |
Ant | nd | 98 ± 2 | 0.46 | 106 ± 3 | 0.52 | 99 ± 3 |
FL | nd | 96 ± 4 | 0.51 | 96 ± 3 | 0.29 | 94 ± 2 |
Pyr | nd | 94 ± 2 | 0.42 | 95 ± 3 | 0.29 | 97 ± 1 |
BaA | nd | 97 ± 3 | nd | 98 ± 2 | nd | 96 ± 3 |
Chr | nd | 98 ± 2 | nd | 96 ± 2 | 0.48 | 99 ± 2 |
BbFl | nd | 96 ± 3 | nd | 97 ± 2 | nd | 100 ± 4 |
BkFl | nd | 102 ± 2 | nd | 99 ± 4 | nd | 97 ± 3 |
BaP | nd | 97 ± 4 | nd | 95 ± 3 | nd | 98 ± 2 |
DBA | nd | 99 ± 1 | nd | 102 ± 3 | nd | 103 ± 2 |
BghiP | nd | 97 ± 4 | nd | 94 ± 3 | nd | 96 ± 3 |
IP | nd | 92 ± 3 | nd | 95 ± 2 | 0.31 | 96 ± 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerdà, V.; Ferreira, S.L.C.; Phansi, P. Lab-in-Syringe, a Useful Technique for the Analysis and Detection of Pollutants of Emerging Concern in Environmental and Food Samples. Molecules 2022, 27, 7279. https://doi.org/10.3390/molecules27217279
Cerdà V, Ferreira SLC, Phansi P. Lab-in-Syringe, a Useful Technique for the Analysis and Detection of Pollutants of Emerging Concern in Environmental and Food Samples. Molecules. 2022; 27(21):7279. https://doi.org/10.3390/molecules27217279
Chicago/Turabian StyleCerdà, Víctor, Sergio L. C. Ferreira, and Piyawan Phansi. 2022. "Lab-in-Syringe, a Useful Technique for the Analysis and Detection of Pollutants of Emerging Concern in Environmental and Food Samples" Molecules 27, no. 21: 7279. https://doi.org/10.3390/molecules27217279
APA StyleCerdà, V., Ferreira, S. L. C., & Phansi, P. (2022). Lab-in-Syringe, a Useful Technique for the Analysis and Detection of Pollutants of Emerging Concern in Environmental and Food Samples. Molecules, 27(21), 7279. https://doi.org/10.3390/molecules27217279