Experimental and Theoretical Study on the Homodimerization Mechanism of 3-Acetylcoumarin
Abstract
:1. Introduction
2. Results and Discussions
2.1. Experimental Conditions—Elucidation and Modification of the Homodimerization Reaction
2.2. Activation Effect of the Solvent
2.3. Ionic Mechanism
2.4. Radical Mechanisms
3. Materials and Methods
3.1. General Procedure for the Preparation of 3,3′-Diacetyl-[4,4′-Bichroman]-2,2′-Dione, 5 Using Metals and Metallic Salts
3.2. Procedure for Optimization of the Used Amount of Zinc in the Reaction
3.3. Procedure for Optimization of the Used Amount of Zn(CH3COO)2 × 2H2O for the Reaction
3.4. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Riveiro, M.E.; De Kimpe, N.; Moglioni, A.; Vázquez, R.; Monczor, F.; Shayo, C.; Davio, C. Coumarins: Old compounds with novel promising therapeutic perspectives. Curr. Med. Chem. 2010, 17, 1325–1338. [Google Scholar] [CrossRef]
- Koleva, A.I.; Petkova-Yankova, N.I.; Nikolova, R.D. Synthesis and Chemical Properties of 3-Phosphonocoumarins and 1,2-Benzoxaphosphorins as Precursors for Bioactive Compounds. Molecules 2019, 24, 2030. [Google Scholar] [CrossRef] [Green Version]
- Hussain, H.; Hussain, J.; Al-Harrasi, A.; Krohn, K. The chemistry and biology of bicoumarins. Tetrahedron 2012, 68, 2553–2578. [Google Scholar] [CrossRef]
- Horner, L.; Franz Ch., Z. Studien zum Vorgang der Wasserstoffübertragung, 76 [1]. Der anomale Verlauf der Elektroreduktion von Cumarin mit Lithium als Leitsalzkation: Versuche zur Reaktionslenkung durch Mediatoren. Naturforsch 1985, 40, 822–825. [Google Scholar] [CrossRef]
- Kise, N. Density functional theory study of electroreductive hydrocoupling of α,β-unsaturated carbonyl compounds. J. Org. Chem. 2006, 71, 9203–9207. [Google Scholar] [CrossRef]
- Pfoertner, K.-H. Photoreaktionen von 3-substituierten cumarinen. Helv. Chim. Acta. 1976, 59, 834–840. [Google Scholar] [CrossRef]
- Petkova-Yankova, N.I.; Nikolova, R.D. Substituted coumarins as ambident nucleophiles in one-pot hydrogenation/alkylation reaction. Chem. Pap. 2020, 74, 2627–2634. [Google Scholar] [CrossRef]
- Petkov, I.; Bojilova, A.; Markov, P. Photochemical dehydrogenation of 3-acetyl-3,4-dihydrocoumarin. Mon. Fur Chem. 1990, 121, 85–87. [Google Scholar] [CrossRef]
- Kawata, H.; Ichikawa, S.; Kumagai, T.; Niizuma, S. A new type of photodimerization reaction for coumarin derivatives. Tetrahedron Lett. 2002, 43, 5161–5163. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H. Electrochemical Reduction of Coumarins at a Film-Modified Electrode and Determination of Their Levels in Essential Oils and Traditional Chinese Herbal Medicines. Molecules 2009, 14, 3538–3550. [Google Scholar] [CrossRef]
- Kise, N.; Hamada, Y.; Sakurai, T. Electroreductive Intermolecular Coupling of Coumarins with Benzophenones: Synthesis of 4-(2-Hydroxyphenyl)-5,5-diaryl-γ-butyrolactones, 2-(2,2-Diaryl-2,3-dihydrobenzofuran-3-yl)acetic Acids, and 4-(Diarylmethyl)coumarins. J. Org. Chem. 2016, 81, 11043–11056. [Google Scholar] [CrossRef]
- Tuğral, S.; Berkemb, M.L. Electrochemical behavior of some ethylenedioxycoumarins: Cathodic dimerization. J. Mol. Liq. 2014, 196, 363–369. [Google Scholar] [CrossRef]
- Gustafsson, B. Case of radical formation in the reactions between ethyl 3-coumarincarboxylate and Grignard reagents. Finn. Chem. Lett. 1975, 2, 49–50. [Google Scholar]
- Nikolova, R.D.; Vayssilov, G.N.; Rodios, N.; Bojilova, A. Regio- and stereoselective [2+2] photodimerization of 3-substituted 2-alkoxy-2-oxo-2H-1,2-benzoxaphosphorines. Molecules 2002, 7, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Panichayupakaranant, P.; Noguchi, H.; Ke-Eknamkul, W. A new biscoumarin from Impatiens balsamina root cultures. Planta Med. 1998, 64, 774–775. [Google Scholar] [CrossRef]
- Lei, J.G.; Xu, M.H.; Lin, G.Q. Nickel-Catalyzed Cross-Coupling Reactions of 4-Mesylcoumarins with Aryl Halides: Facile Synthesis of 4-Substituted Coumarins. Synlett 2004, 13, 2364–2368. [Google Scholar] [CrossRef]
- Koleva, A.I.; Petkova, N.I.; Nikolova, R.D. Ultrasound-Assisted Metal-Mediated Method for the Formation of Tetrahydro-3,3′-Disubstituted Biscoumarins. Molecules 2018, 23, 2810. [Google Scholar] [CrossRef] [Green Version]
- Pasciak, E.M.; Rittichier, J.T.; Chen, C.; Mubarak, M.S.; VanNieuwenhze, M.S.; Peters, D.G.J. Electroreductive dimerization of coumarin and coumarin analogues at carbon cathodes. J. Org. Chem. 2015, 80, 274–280. [Google Scholar] [CrossRef]
- Patil, S.A.; Patil, S.A.; Patil, R. Microwave-assisted synthesis of chromenes: Biological and chemical importance. Future Med. Chem. 2015, 7, 893–909. [Google Scholar] [CrossRef]
- Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity. Curr. Med. Chem. 2005, 12, 887–916. [Google Scholar] [CrossRef]
- Kancheva, V.D.; Boranova, P.V.; Nechev, J.T.; Manolov, I.I. Structure-activity relationships of new 4-hydroxy bis-coumarins as radical scavengers and chain-breaking antioxidants. Biochimie 2010, 92, 1138–1146. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, B.K.; Sharma, N.K.; Gyanda, K.; Jain, S.K.; Tyagi, Y.K.; Baghel, A.S.; Pandey, M.; Sharma, S.K.; Prasad, A.K.; et al. Specificities of acetoxy derivatives of coumarins, biscoumarins, chromones, flavones, isoflavones and xanthones for acetoxy drug: Protein transacetylase. Eur. J. Med. Chem. 2007, 42, 447–455. [Google Scholar] [CrossRef]
- Dutta, P.K.; Majumder, P.C.; Dutta, N.L. Synthetic approaches towards bicoumarins: Synthesis of euphorbetin and isoeuphorbetin. Tetrahedron 1975, 31, 1167–1170. [Google Scholar] [CrossRef]
- Spencer, R.R.; Witt, S.C.; Lundin, R.E.; Bickoff, E.M. Bicoumol, a new bicoumarinyl, from ladino clover. J. Agr. Food Chem. 1967, 3, 536–538. [Google Scholar] [CrossRef]
- Petkova, N.I.; Vayssilov, G.N.; Nikolova, R.D.; Bojilova, A.G. Theoretical elucidation of the regioselectivity in a tandem 1,4-hydride addition/acylation of diethylphosphonocoumarin. J. Mol. Struct. THEOCHEM 2006, 759, 177–187. [Google Scholar] [CrossRef]
- Nathaniel, R.; Mineva, T.; Nikolova, R.; Bojilova, A. Density functional study of the interaction of 3-(ω-bromoacetyl) coumarin with phosphites. Int. J. Quant. Chem. 2006, 106, 1357–1366. [Google Scholar] [CrossRef]
- Petkova, N.I.; Nikolova, R.D.; Kostov, K.L.; Mineva, T.; Vayssilov, G.N. Theoretical and Experimental Local Reactivity Parameters of 3-Substituted Coumarin Derivatives. J. Phys. Chem. A 2014, 118, 11062−11073. [Google Scholar] [CrossRef]
- Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction. Chem. Rev. 2002, 102, 1359–1469. [Google Scholar] [CrossRef]
- Lin, H.; Sun, D. Recent Synthetic Developments and Applications of the Ullmann Reaction. A Review. Org. Prep. Proced. Int. 2013, 45, 341–394. [Google Scholar] [CrossRef]
- Sambiagio, C.; Marsden, S.P.; Blacker, A.J.; McGowan, P.C. Copper catalysed Ullmann type chemistry: From mechanistic aspects to modern development. Chem. Soc. Rev. 2014, 43, 3525–3550. [Google Scholar] [CrossRef]
- Ohno, T.; Sakai, M.; Ishino, Y.; Shibata, T.; Maekawa, H.; Nishiguchi, I. Mg-Promoted Regio- and Stereoselective C-Acylation of Aromatic α,β-Unsaturated Carbonyl Compounds. Org. Lett. 2001, 3, 3439–3442. [Google Scholar] [CrossRef]
- Itoh, K.; Odate, F.; Karikomi, T.; Obe, K.; Miyamori, T.; Kamiya, H.; Yoza, K.; Nagai, K.; Fujii, H.; Suga, H.; et al. Novel asymmetric photodimerization reaction of coumarin derivatives bearing a chiral 2-oxazolidinone auxiliary. RSC Adv. 2019, 9, 12365–12369. [Google Scholar] [CrossRef] [Green Version]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Parr, R.G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford Univ. Press: Oxford, UK, 1989. [Google Scholar]
- Salahub, D.R.; Zerner, M.C. The Challenge of d and f Electrons; ACS: Washington, DC, USA, 1989. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scal-mani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. 1988, B37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef] [Green Version]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3093. [Google Scholar] [CrossRef]
- Frisch, M.J.; Head-Gordon, M.; People, J.A. Direct MP2 gradient method. Chem. Phys. Lett. 1990, 166, 275–280. [Google Scholar] [CrossRef]
- Frisch, M.J.; Head-Gordon, M.; People, J.A. Semi-direct algorithms for the MP2 energy and gradient. Chem. Phys. Lett. 1990, 166, 281–289. [Google Scholar] [CrossRef]
- Head-Gordon, M.; People, J.A.; Frisch, M.J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 1988, 153, 503–506. [Google Scholar] [CrossRef]
- Saebø, S.; Almlöf, J. Avoiding the integral storage bottleneck in LCAO calculations of electron correlation. Chem. Phys. Lett. 1989, 154, 83–89. [Google Scholar] [CrossRef]
- Head-Gordon, M.; Head-Gordon, T. Analytic MP2 Frequencies Without Fifth Order Storage: Theory and Application to Bifurcated Hydrogen Bonds in the Water Hexamer. Chem. Phys. Lett. 1994, 220, 122–128. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
Reaction Conditions | Reaction Time | Yield |
---|---|---|
Ratio Coumarin 4:(ClCH2CO)2O | ||
1:0.5 | 45 min | 66% |
1:1 | 35 min | 77% |
1:1.5 | 10–15 min | 90% |
1:2.4 * | 10 min | 92% |
1:3 | 5 min | 82% |
37 kHz, Sweep Mode | 80 kHz, Sweep Mode | ||||
---|---|---|---|---|---|
Amplitude | Reaction Time | Yield | Amplitude | Reaction Time | Yield |
100% | 20 min | 74% | 100% | 60 min | 71% |
60% | 10 min | 88% | 60% | 150 min | 85% |
30% | 5–10 min | 90% | 30% | 90 min | 70% |
Method | Metal | MX | Reaction Time | Yield | Ratio meso- to d/l | |
---|---|---|---|---|---|---|
Initiator | Amount | |||||
A * | Zn | (ClCH2CO)2O | 2.4 eqv. | 10 min | 92% | 1:0.65 |
B.1 | Zn | ZnCl2 | 1.5 eqv. | 60 min | 57% | 1:0.58 |
B.2 | Zn | ZnCl2 | 3.0 eqv. | 30 min | 63% | 1:0.61 |
B.3 | Zn | Zn(OAc)2 × 2H2O | 1.5 eqv. | 60 min | 89% | 1:0.54 |
B.4 | Zn | Zn(OAc)2 × 2H2O | 3.0 eqv. | 30 min | 97% | 1:0.55 |
B.5 | Zn | Cu(OAc)2 × H2O | 5.6 eqv. | 60 min | - | |
B.6 | Zn | CuBr2 | 1.0 eqv. | 4 days | - | |
B.7 | Zn | Co(OAc)2 | 1.5 eqv. | 60 min | - | |
B.8 | Zn | CoCl2 | 1.5 eqv. | 1 day | 60% | 1:0.53 |
B.9 | Zn | Zn(OAc)2 × 2H2O/K2S2O8 | 3.0 eqv./1.5 eqv. | 390 min | 86% | |
B.10 | Zn | ZnO | 3.0 eqv. | 120 min | - | |
B.11 | Cu | Zn(OAc)2 × 2H2O | 1.5 eqv. | 240 min | - | |
B.12 | Cu | Cu(OAc)2 × H2O | 1.5 eqv. | 120 min | - | |
B.13 | Fe | Zn(OAc)2 × 2H2O | 1.5 eqv. | 360 min | - | |
B.14 | Mg | MgCl2 | 3.0 eqv. | 120 min | - |
Solvent | Reaction Time | Yield |
---|---|---|
THF:Et2O (3.5:5) | 30 min | 97% |
C6H6 | 120 min | N/A |
CH2Cl2 | 80 min | Complexed mixture |
THF | 10 min | 62% |
Et2O | 135 min | N/A |
Method C | Reaction Conditions | Reaction Time | Yield |
---|---|---|---|
Ratio Coumarin 4:Zn * | |||
C.1 | 1:1 | 90 min | 65% |
C.2 | 1:2 | 90 min | 64% |
C.3 | 1:3 | 10–15 min | 71% |
C.4 | 1:4 | 10 min | 77% |
C.5 | 1:5 | 10 min | 69% |
C.6 | 1:5.6 | 10 min | 62% |
C.7 | 1:6 | 10 min | 67% |
Method D | Reaction Conditions | Reaction Time | Yield |
---|---|---|---|
Ratio Coumarin 4:Zn(OAc)2 × 2H2O * | |||
D.1 | 1:1 | 65 min | - |
D.2 | 1:2 | 30–40 min | 66% |
D.3 | 1:3 | 10–15 min | 77% |
D.4 | 1:4 | 10 min | 72% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simeonova, K.B.; Koleva, A.I.; Zlatanova, A.-M.R.; Petkova-Yankova, N.I.; Aleksandrov, H.A.; Petkov, P.S.; Nikolova, R.D. Experimental and Theoretical Study on the Homodimerization Mechanism of 3-Acetylcoumarin. Molecules 2022, 27, 7228. https://doi.org/10.3390/molecules27217228
Simeonova KB, Koleva AI, Zlatanova A-MR, Petkova-Yankova NI, Aleksandrov HA, Petkov PS, Nikolova RD. Experimental and Theoretical Study on the Homodimerization Mechanism of 3-Acetylcoumarin. Molecules. 2022; 27(21):7228. https://doi.org/10.3390/molecules27217228
Chicago/Turabian StyleSimeonova, Kristina B., Ana I. Koleva, Anna-Mariya R. Zlatanova, Nevena I. Petkova-Yankova, Hristiyan A. Aleksandrov, Petko St. Petkov, and Rositca D. Nikolova. 2022. "Experimental and Theoretical Study on the Homodimerization Mechanism of 3-Acetylcoumarin" Molecules 27, no. 21: 7228. https://doi.org/10.3390/molecules27217228
APA StyleSimeonova, K. B., Koleva, A. I., Zlatanova, A. -M. R., Petkova-Yankova, N. I., Aleksandrov, H. A., Petkov, P. S., & Nikolova, R. D. (2022). Experimental and Theoretical Study on the Homodimerization Mechanism of 3-Acetylcoumarin. Molecules, 27(21), 7228. https://doi.org/10.3390/molecules27217228