Fabrication of pH-Responsive Zn2+-Releasing Glass Particles for Smart Antibacterial Restoratives
Abstract
:1. Introduction
2. Results
2.1. Characterization of Glass Particles
2.2. Solubility and Ion Release Property of Glass Particles in pH-Adjusted Media
2.3. MICs and MBCs of Zn2+, SiO32−, and F− for S. mutans
2.4. Antibacterial Activity of Glass Particles against S. mutans
3. Discussion
4. Materials and Methods
4.1. Fabrication of Glass Particles
4.2. Characterization of Glass Particles
4.3. Solubility and Ion Release Evaluation of Glass Particles in pH-Adjusted Media
4.4. Measurement of MICs and MBCs of Zn2+, SiO32−, and F− for Streptococcus mutans NCTC10449
4.5. Evaluation of Antibacterial Activity of Glass Particles
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Paiva, L.; Fidalgo, T.K.S.; da Costa, L.P.; Maia, L.C.; Balan, L.; Anselme, K.; Ploux, L.; Thiré, R.M.S. Antibacterial properties and compressive strength of new one-step preparation silver nanoparticles in glass ionomer cements (NanoAg-GIC). J. Dent. 2018, 69, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Wang, H.; Liang, K.; Tay, F.; Weir, M.D.; Melo, M.; Wang, L.; Wu, Y.; Oates, T.W.; Ding, Y.; et al. Novel multifunctional nanocomposite for root caries restorations to inhibit periodontitis-related pathogens. J. Dent. 2018, 81, 17–26. [Google Scholar] [CrossRef]
- Ozer, F.; Patel, R.; Yip, J.; Yakymiv, O.; Saleh, N.; Blatz, M.B. Five-year clinical performance of two fluoride-releasing giomer resin materials in occlusal restorations. J. Esthet. Restor. Dent. 2022. [Google Scholar] [CrossRef]
- Kitagawa, H.; Miki-Oka, S.; Mayanagi, G.; Abiko, Y.; Takahashi, N.; Imazato, S. Inhibitory effect of resin composite containing S-PRG filler on Streptococcus mutans glucose metabolism. J. Dent. 2018, 70, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Aponso, S.; Ummadi, J.; Davis, H.; Ferracane, J.; Koley, D. A Chemical Approach to Optimizing Bioactive Glass Dental Composites. J. Dent. Res. 2018, 98, 194–199. [Google Scholar] [CrossRef]
- Kitagawa, H.; Takeda, K.; Kitagawa, R.; Izutani, N.; Miki, S.; Hirose, N.; Hayashi, M.; Imazato, S. Development of sustained antimicrobial-release systems using poly(2-hydroxyethyl methacrylate)/trimethylolpropane trimethacrylate hydrogels. Acta Biomater. 2014, 10, 4285–4295. [Google Scholar] [CrossRef] [PubMed]
- Imazato, S.; Kitagawa, H.; Tsuboi, R.; Kitagawa, R.; Thongthai, P.; Sasaki, J.-I. Non-biodegradable polymer particles for drug delivery: A new technology for “bio-active” restorative materials. Dent. Mater. J. 2017, 36, 524–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitagawa, H.; Kitagawa, R.; Tsuboi, R.; Hirose, N.; Thongthai, P.; Sakai, H.; Ueda, M.; Ono, S.; Sasaki, J.-I.; Ooya, T.; et al. Development of endodontic sealers containing antimicrobial-loaded polymer particles with long-term antibacterial effects. Dent. Mater. 2021, 37, 1248–1259. [Google Scholar] [CrossRef] [PubMed]
- Imazato, S.; Kohno, T.; Tsuboi, R.; Thongthai, P.; Xu, H.H.; Kitagawa, H. Cutting-edge filler technologies to release bio-active components for restorative and preventive dentistry. Dent. Mater. J. 2020, 39, 69–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamont, R.J.; Koo, H.; Hajishengallis, G. The oral microbiota: Dynamic communities and host interactions. Nat. Rev. Microbiol. 2018, 16, 745–759. [Google Scholar] [CrossRef]
- Radaic, A.; Kapila, Y.L. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput. Struct. Biotechnol. J. 2021, 19, 1335–1360. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.S.; Balhaddad, A.A.; Garcia, I.M.; Collares, F.M.; Weir, M.D.; Xu, H.H.; Melo, M.A.S. pH-responsive calcium and phosphate-ion releasing antibacterial sealants on carious enamel lesions In Vitro. J. Dent. 2020, 97, 103323. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Song, J.; Dong, H.; Huo, Z.; Gao, Y.; Zhou, Z.; Tian, Y.; Li, Y.; Cao, Y. Fabrication of pH-responsive nanoparticles for high efficiency pyraclostrobin delivery and reducing environmental impact. Sci. Total Environ. 2021, 787, 147422. [Google Scholar] [CrossRef] [PubMed]
- Namen, F.M.; Galan, J.; De Deus, G.; Cabreira, R.D.; Filho, F.C.E.S. Effect of pH on the Wettability and Fluoride Release of an Ion-releasing Resin Composite. Oper. Dent. 2008, 33, 571–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Kohno, T.; Tsuboi, R.; Kitagawa, H.; Imazato, S. Acidity-induced release of zinc ion from BioUnionTM filler and its inhibitory effects against Streptococcus mutans. Dent. Mater. J. 2020, 39, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Kohno, T.; Liu, Y.; Tsuboi, R.; Kitagawa, H.; Imazato, S. Evaluation of ion release and the recharge ability of glass-ionomer cement containing BioUnion filler using an In Vitro saliva-drop setting assembly. Dent. Mater. 2021, 37, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kohno, T.; Tsuboi, R.; Thongthai, P.; Fan, D.; Sakai, H.; Kitagawa, H.; Imazato, S. Antibacterial effects and physical properties of a glass ionomer cement containing BioUnion filler with acidity-induced ability to release zinc ion. Dent. Mater. J. 2021, 40, 1418–1427. [Google Scholar] [CrossRef] [PubMed]
- Dawes, C. What Is the Critical pH and Why Does a Tooth Dissolve in Acid? J. Can. Dent. Assoc. 2003, 69, 722–724. [Google Scholar]
- Bowen, W.H. The Stephan Curve revisited. Odontology 2012, 101, 2–8. [Google Scholar] [CrossRef]
- Golub, L.M.; Borden, S.M.; Kleinberg, I. Urea content of gingival crevicular fluid and its relation to periodonal disease in humans. J. Periodontal Res. 1971, 6, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Kaneshiro, A.V.; Imazato, S.; Ebisu, S.; Tanaka, S.; Tanaka, Y.; Sano, H. Effects of a self-etching resin coating system to prevent demineralization of root surfaces. Dent. Mater. 2008, 24, 1420–1427. [Google Scholar] [CrossRef] [PubMed]
- Burne, R.A.; Marquis, R.E. Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol. Lett. 2000, 193, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.-N.; Buckner, T.; Sheng, J.; Baldeck, J.D.; Marquis, R.E. Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms. Oral Microbiol. Immunol. 2004, 19, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.; Sheng, J.; Nguyen, P.T.M.; Marquis, R.E. Co-operative inhibition by fluoride and zinc of glucosyl transferase production and polysaccharide synthesis by mutans streptococci in suspension cultures and biofilms. FEMS Microbiol. Lett. 2006, 254, 134–140. [Google Scholar] [CrossRef]
- Wiegand, A.; Buchalla, W.; Attin, T. Review on fluoride-releasing restorative materials—Fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent. Mater. 2007, 23, 343–362. [Google Scholar] [CrossRef]
- Takahashi, N.; Washio, J. Metabolomic Effects of Xylitol and Fluoride on Plaque Biofilm In Vivo. J. Dent. Res. 2011, 90, 1463–1468. [Google Scholar] [CrossRef] [Green Version]
- Neel, E.A.A.; Aljabo, A.; Strange, A.; Ibrahim, S.; Coathup, M.; Young, A.M.; Bozec, L.; Mudera, V. Demineralization—Remineralization dynamics in teeth and bone. Int. J. Nanomed. 2016, 11, 4743–4763. [Google Scholar] [CrossRef]
- Dietzel, A. Strukturchemie des Glases. Die Naturwissenschaften 1941, 29, 537–547. [Google Scholar] [CrossRef]
- Blochberger, M.; Hupa, L.; Brauer, D.S. Influence of zinc and magnesium substitution on ion release from Bioglass 45S5 at physiological and acidic pH. Biomed. Glas. 2015, 1, 93–107. [Google Scholar] [CrossRef]
- Chen, X.; Brauer, D.; Karpukhina, N.; Waite, R.; Barry, M.; McKay, I.; Hill, R. ‘Smart’ acid-degradable zinc-releasing silicate glasses. Mater. Lett. 2014, 126, 278–280. [Google Scholar] [CrossRef]
- Connick, R.E.; Paul, A.D. The Fluoride Complexes of Zinc, Copper and Lead Ions in Aqueous Solution. J. Am. Chem. Soc. 1958, 80, 2069–2071. [Google Scholar] [CrossRef]
- Billington, R.; Hadley, P.; Williams, J.; Pearson, G. Kinetics of fluoride release from zinc oxide-based cements. Biomaterials 2001, 22, 2507–2513. [Google Scholar] [CrossRef]
- Pradiptama, Y.; Purwanta, M.; Notopuro, H. Antibacterial effects of fluoride in Streptococcus mutans growth in vitro. Biomol. Health Sci. J. 2019, 2, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Sierra, J.F.; Ruiz, F.; Pena, D.C.C.; Martínez-Gutiérrez, F.; Martínez, A.E.; Guillén, A.D.J.P.; Tapia-Pérez, H.; Castañón, G.M. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomed. Nanotechnol. Biol. Med. 2008, 4, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhang, W.; Li, Y.; Wang, G.; Yang, L.; Jin, J.; Chen, Q.; Huang, M. Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial. Biomed. Mater. 2014, 10, 015001. [Google Scholar] [CrossRef]
- Almoudi, M.M.; Hussein, A.S.; Abu Hassan, M.I.; Zain, N. A systematic review on antibacterial activity of zinc against Streptococcus mutans. Saudi Dent. J. 2018, 30, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Sawa, N. The Effect of Filler Shape and Size of Resin Composite on Fracture Toughness. Jpn. J. Conserv. Dent. 1993, 36, 507–518. [Google Scholar]
- Crisp, S.; Lewis, B.; Wilson, A. Characterization of glass-ionomer cements 1. Long term hardness and compressive strength. J. Dent. 1976, 4, 162–166. [Google Scholar] [CrossRef]
Glass Composition | Cont. | PG-1 | PG-2 | PG-3 |
---|---|---|---|---|
Si | 70.8 | 42.9 | 33.4 | 29.2 |
Zn | 0 | 25.3 | 34.6 | 42.7 |
F | 15.1 | 17 | 16 | 10.5 |
Others | 14.2 | 14.8 | 16 | 17.6 |
Zn2+ | SiO32− | F− | |
---|---|---|---|
MIC | 125 | >500 | 125 |
MBC | 250 | >500 | >500 |
Glass Content | Cont. | PG-1 | PG-2 | PG-3 |
---|---|---|---|---|
SiO2 | 68.7 | 45.7 | 35.5 | 30.5 |
ZnO | 0 | 23 | 33.2 | 38.2 |
F | 18.7 | 18.7 | 18.7 | 18.7 |
Others | 12.6 | 12.6 | 12.6 | 12.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, F.; Sakai, H.; Kitagawa, H.; Kohno, T.; Thongthai, P.; Liu, Y.; Kitagawa, R.; Abe, G.L.; Sasaki, J.-i.; Imazato, S. Fabrication of pH-Responsive Zn2+-Releasing Glass Particles for Smart Antibacterial Restoratives. Molecules 2022, 27, 7202. https://doi.org/10.3390/molecules27217202
Deng F, Sakai H, Kitagawa H, Kohno T, Thongthai P, Liu Y, Kitagawa R, Abe GL, Sasaki J-i, Imazato S. Fabrication of pH-Responsive Zn2+-Releasing Glass Particles for Smart Antibacterial Restoratives. Molecules. 2022; 27(21):7202. https://doi.org/10.3390/molecules27217202
Chicago/Turabian StyleDeng, Fan, Hirohiko Sakai, Haruaki Kitagawa, Tomoki Kohno, Pasiree Thongthai, Yuhan Liu, Ranna Kitagawa, Gabriela L. Abe, Jun-ichi Sasaki, and Satoshi Imazato. 2022. "Fabrication of pH-Responsive Zn2+-Releasing Glass Particles for Smart Antibacterial Restoratives" Molecules 27, no. 21: 7202. https://doi.org/10.3390/molecules27217202
APA StyleDeng, F., Sakai, H., Kitagawa, H., Kohno, T., Thongthai, P., Liu, Y., Kitagawa, R., Abe, G. L., Sasaki, J. -i., & Imazato, S. (2022). Fabrication of pH-Responsive Zn2+-Releasing Glass Particles for Smart Antibacterial Restoratives. Molecules, 27(21), 7202. https://doi.org/10.3390/molecules27217202