Valorization of Phenolic and Carotenoid Compounds of Sechium edule (Jacq. Swartz) Leaves: Comparison between Conventional, Ultrasound- and Microwave-Assisted Extraction Approaches
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals
2.2. Material
2.3. Experimental Design
2.3.1. Selection of Variables
2.3.2. BBD Optimization and Validation
2.4. Preparation of Chayote Leaves Extracts
2.4.1. Ultrasound-Assisted Extraction (UAE)
2.4.2. Maceration Extraction (ME)
2.4.3. Microwave-Assisted Extraction (MAE)
2.5. Characterization of Chayote Leaf Extracts
2.5.1. Total Phenolic Content (TPC)
2.5.2. Total Carotenoids Content (TC)
2.5.3. ABTS Radical Scavenging Activity (ABTS-RSA)
2.5.4. Ferric Reducing Antioxidant Power (FRAP)
2.5.5. HPLC Phenolic Composition Profile
2.5.6. HPLC Vitamin A, Vitamin E, Carotenoids, and Chlorophylls Composition Profile
2.6. Statistical Analysis
3. Results and Discussion
3.1. Single-Factor Experimental Analysis
3.2. Analysis of Response Surface Methodology
3.2.1. Model Fitting
3.2.2. Analyses of Response Surfaces
3.2.3. Validation of the BBD Model
3.3. Comparison between UAE, ME, and MAE
3.3.1. TC, TPC and Antioxidant Activity
3.3.2. Phenolic Composition Profile
3.3.3. Vitamin A, Vitamin E, Carotenoid, and Chlorophyll Composition Profile
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Vieira, E.F.; Pinho, O.; Ferreira, I.M.L.V.O.; Delerue-Matos, C. Chayote (Sechium edule): A review of nutritional composition, bioactivities and potential applications. Food Chem. 2019, 275, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Lim, T. Sechium edule. In Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2012; pp. 384–391. [Google Scholar]
- Cadena-Iñiguez, J.; Arévalo-Galarza, L.; Avendaño-Arrazate, C.H.; Soto-Hernández, M.; Ruiz-Posadas, L.D.M.; Santiago-Osorio, E.; Acosta-Ramos, L.; Cisneros-Solano, V.M.; Aguirre-Medina, J.F.; Ochoa-Martínez, D. Production, genetics, postharvest management and pharmacological characteristics of Sechium edule (Jacq.) Sw. Fresh Prod. 2007, 1, 41–53. [Google Scholar]
- Chang, K.A.; Ley, S.L.; Lee, M.Y.; Yaw, H.Y.; Lee, S.W.; Chew, L.Y.; Neo, P.N.; Kong, K.W. Determination of nutritional constituents, antioxidant properties, and α-amylase inhibitory activity of Sechium edule (chayote) shoot from different extraction solvents and cooking methods. LWT 2021, 151, 112177. [Google Scholar] [CrossRef]
- Sriwichai, W.; Berger, J.; Picq, C.; Avallone, S. Determining factors of lipophilic micronutrient bioaccessibility in several leafy vegetables. J. Agric. Food Chem. 2016, 64, 1695–1701. [Google Scholar] [CrossRef]
- Siciliano, T.; De Tommasi, N.; Morelli, I.; Braca, A. Study of flavonoids of Sechium edule (Jacq) Swartz (Cucurbitaceae) different edible organs by liquid chromatography photodiode array mass spectrometry. J. Agric. Food Chem. 2004, 52, 6510–6515. [Google Scholar] [CrossRef]
- Chao, P.-Y.; Lin, S.-Y.; Lin, K.-H.; Liu, Y.-F.; Hsu, J.-I.; Yang, C.-M.; Lai, J.-Y. Antioxidant activity in extracts of 27 indigenous Taiwanese vegetables. Nutrients 2014, 6, 2115–2130. [Google Scholar] [CrossRef] [Green Version]
- Loizzo, M.R.; Bonesi, M.; Menichini, F.; Tenuta, M.C.; Leporini, M.; Tundis, R. Antioxidant and carbohydrate-hydrolysing enzymes potential of Sechium edule (Jacq.) Swartz (Cucurbitaceae) peel, leaves and pulp fresh and processed. Plant Foods Hum. Nutr. 2016, 71, 381–387. [Google Scholar] [CrossRef]
- Kim, M.J.; Hyun, J.M.; Kim, S.S.; Seong, K.C.; Lim, C.K.; Kang, J.-S.; Yun, S.H.; Park, K.J.; Na, H.J.; Park, K.S.; et al. In vitro screening of subtropical plants cultivated in Jeju Island for cosmetic ingredients. Orient. J. Chem. 2016, 32, 807. [Google Scholar] [CrossRef] [Green Version]
- Barba, F.J.; Grimi, N.; Vorobiev, E. Evaluating the potential of cell disruption technologies for green selective extraction of antioxidant compounds from Stevia rebaudiana Bertoni leaves. J. Food Eng. 2015, 149, 222–228. [Google Scholar] [CrossRef]
- Chen, Y.H.; Yang, C.Y. Ultrasound-assisted extraction of bioactive compounds and antioxidant capacity for the valorization of Elaeocarpus serratus L. leaves. Processes 2020, 8, 1218. [Google Scholar] [CrossRef]
- Lv, J.M.; Gouda, M.; Zhu, Y.Y.; Ye, X.Q.; Chen, J.C. Ultrasound-assisted extraction optimization of proanthocyanidins from kiwi (actinidia chinensis) leaves and evaluation of its antioxidant activity. Antioxidants 2021, 10, 1317. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, F.; Tan, J.K.; Faudzi, S.M.M.; Rahman, M.B.A.; Ashari, S.E. Ultrasound-assisted extraction conditions optimisation using response surface methodology from Mitragyna speciosa (Korth.) Havil leaves. Ultrason. Sonochem. 2021, 81, 105851. [Google Scholar] [CrossRef] [PubMed]
- Frohlich, P.C.; Santos, K.A.; Hasan, S.D.M.; da Silva, E.A. Evaluation of the ethanolic ultrasound-assisted extraction from clove (Syzygium aromaticum) leaves and chemical characterization of the extracts. Food Chem. 2022, 373, 131351. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vit. 1965, 16, 144–158. [Google Scholar]
- Paz, M.; Gúllon, P.; Barroso, M.F.; Carvalho, A.P.; Domingues, V.F.; Gomes, A.M.; Becke, H.; Longhinotti, E.; Delerue-Matos, C. Brazilian fruit pulps as functional foods and additives: Evaluation of bioactive compounds. Food Chem. 2015, 172, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Gião, M.S.; González-Sanjosé, M.L.; Rivero-Pérez, M.D.; Pereira, C.I.; Pintado, M.E.; Malcata, F.X. Infusions of Portuguese medicinal plants: Dependence of final antioxidant capacity and phenol content on extraction features. J. Sci. Food Agric. 2017, 87, 2638–2647. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.M.; Barroso, M.F.; Boeykens, A.; Withouck, H.; Morais, S.; Delerue-Matos, C. Valorization of apple tree wood residues by polyphenols extraction: Comparison between conventional and microwave-assisted extraction. Ind. Crops Prod. 2017, 104, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Cruz, R.; Casal, S. Direct analysis of vitamin A, vitamin E, carotenoids, chlorophylls and free sterols in animal and vegetable fats in a single normal-phase liquid chromatographic run. J. Chromatogr. A 2018, 1565, 81–88. [Google Scholar] [CrossRef]
- Saini, R.K.; Kuem, Y. Carotenoid extraction methods: A review of recent developments. Food Chem. 2018, 240, 90–103. [Google Scholar] [CrossRef]
- Singh, J.; Singh, V.; Shukla, S.; Rai, A.K. Phenolic content and antioxidant capacity of selected cucurbit fruits extracted with different solvents. Nutr. Food Sci. 2016, 6, 6565. [Google Scholar] [CrossRef]
- d’Alessandro, G.L.; Kriaa, K.; Nikov, I.; Dimitrov, K. Ultrasound assisted extraction of polyphenols from black chokeberry. Sep. Purif. Technol. 2012, 93, 42–47. [Google Scholar] [CrossRef]
- Ćujić, N.; Šavikin, K.; Janković, T.; Pljevljakušić, D.; Zdunić, G.; Ibrić, S. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chem. 2016, 194, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Zahari, N.A.A.R.; Chong, G.H.; Abdullah, L.C.; Chua, B.L. Ultrasonic-assisted extraction (UAE) process on thymol concentration from Plectranthus amboinicus leaves: Kinetic modeling and optimization. Processes 2020, 8, 322. [Google Scholar] [CrossRef] [Green Version]
- Goula, A.M.; Ververi, M.; Adamopoulou, A.; Kaderides, K. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrason. Sonochem. 2017, 34, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Pudziuvelyte, L.; Jakštas, V.; Ivanauskas, L.; Laukevičienė, A.; Ibe, C.F.D.; Kursvietiene, L.; Bernatoniene, J. Different extraction methods for phenolic and volatile compounds recovery from elsholtzia ciliata fresh and dried herbal materials. Ind. Crops Prod. 2018, 120, 286–294. [Google Scholar] [CrossRef]
- Agraharam, G.; Girigoswami, A.; Girigoswami, K. Myricetin: A multifunctional flavonol in biomedicine. Curr. Pharmacol. Rep. 2022, 8, 48–61. [Google Scholar] [CrossRef]
- Fuloria, S.; Sekar, M.; Khattulanuar, F.S.; Gan, S.H.; Rani, N.N.I.M.; Ravi, S.; Subramaniyan, V.; Jeyabalan, S.; Begum, M.Y.; Chidambaram, K.; et al. Chemistry, Biosynthesis and Pharmacology of Viniferin: Potential Resveratrol-Derived Molecules for New Drug Discovery, Development and Therapy. Molecules 2022, 27, 5072. [Google Scholar] [CrossRef]
- Mashiane, P.; Shoko, T.; Manhivi, V.; Slabbert, R.; Sultanbawa, Y.; Sivakumar, D. A Comparison of Bioactive Metabolites, Antinutrients, and Bioactivities of African Pumpkin Leaves (Momordica balsamina L.) Cooked by Different Culinary Techniques. Molecules 2022, 27, 1901. [Google Scholar] [CrossRef]
- Pereira, C.; Dias, M.I.; Petropoulos, S.A.; Plexida, S.; Chrysargyris, A.; Tzortzakis, N.; Calhelha, R.C.; Ivanov, M.; Stojković, D.; Soković, M.; et al. The Effects of Biostimulants, Biofertilizers and Water-Stress on Nutritional Value and Chemical Composition of Two Spinach Genotypes (Spinacia oleracea L.). Molecules 2019, 24, 4494. [Google Scholar] [CrossRef]
Extraction Method | Extraction Parameters | Extraction Yield (%) | TPC (/g DW of Extract) | Carotenoids (/g DW of Extract) | Antioxidant Activity (/g DW of Extract) | Reference |
---|---|---|---|---|---|---|
Ultrasound (leaves) | Ethanol/water (50:50) 1:30 g/mL 30 min, 55 °C, 224 W | 11.8 ± 1.32% | 5.38 ± 0.28 mg GAE/g DW | TC: 0.85 ± 0.02 mg/g DW ∑ β-carotene equivalents 0.20 ± 0.01 mg/g DW | ABTS: 4.23 mg AAE/g DW FRAP: 5.25 mg AAE/g DW | Present study |
Ultrasound (leaves) | 70% Ethanol | 10.7% | 26.5 mg GAE/g DW | ND | [9] | |
Microwave (leaves) | Ethanol/water (50:50) 1:30 g/mL 30 min, 55 °C, 300 W | 9.01 ± 1.70% | 5.20 ± 0.05 mg GAE/g DW | TC: 0.76 ± 0.05 mg/g DW ∑ β-carotene equivalents 0.16 ± 0.01 mg/g DW | ABTS: 3.71 mg AAE/g DW FRAP: 4.77 mg AAE/g DW | Present study |
Maceration (leaves) | Ethanol/water (50:50) 1:30 g/mL 30 min, 55 °C | 7.18 ± 1.02% | 4.24 ± 0.41 mg GAE/g DW | TC: 0.61 ± 0.01 mg/g DW ∑ β-carotene equivalents 0.19 ± 0.02 mg/g DW | ABTS: 3.54 mg AAE/g DW FRAP: 4.01 mg AAE/g DW | Present study |
Maceration (shoots-leaves, tendrils and stem) | hexane ethyl acetate methanol water 5:100 g/mL 2 h, room temperature | 0.67% (hexane)– 24.04% (water) | TPC, mg GAE/g DW: Hexane: 0.14 ± 0.02 Ethyl acetate: 0.68 ± 0.02 Methanol: 5.16 ± 0.09 Water: 5.75 ± 0.44 | β-carotene content, mg/g DW: Hexane: 0.06 ± 0.01 Ethyl acetate: 0.07 ± 0.01 Methanol: 0.16 ± 0.01 Water: ND | [4] | |
Maceration (leaves) | Methanol | 2.5% | 89.3 ± 2.3 mg CAE/g DW | TC: 0.05 ± 0.01 mg/g DW | FRAP: 1.24 mg Fe(II)/g DW | [8] |
Maceration (leaves) | Methanol (1.2 N HCl), 75 °C, 1:10 g/mL | NI | Green variety: 2.62 ± 0.52 mg GAE/g DW Myricetin: 75.61 ± 4.99 mg/100 g DW; Quercetin: ND; Kaempferol: ND; Morin: 19.50 ± 0.69 mg/100 g DW Yellow variety: 0.63 ± 0.18 mg GAE/g DW Myricetin: 101.05 ± 3.10 mg/100 g DW; Quercetin: 6.48 ± 0.28 mg/100 g DW; Kaempferol: 3.64 ± 0.58 mg/100 g DW; Morin: 40.44 ± 8.23 mg/100 g DW | ND | Green variety: ABTS (ethanolic extract): 0.58 ± 0.07 mg TE/g DW Yellow variety: ABTS (ethanolic extract): 0.32 mg ± 0.06 TE/g DW | [7] |
Independent Variables | Investigated Responses | ||||||||
---|---|---|---|---|---|---|---|---|---|
Run | X1 Time (min) | X2 Temperature (°C) | X3 Power (%) | Y1-TC (mg/g DW) | Y2-TPC (mg GAE/g DW) | Y3-ABTS (mg AAE/g DW) | |||
Exp.a | Pred.b | Exp.a | Pred.b | Exp.a | Pred.b | ||||
1 | 55 | 55 | 60 | 0.71 | 0.74 | 4.21 | 4.25 | 3.54 | 3.74 |
2 | 55 | 35 | 60 | 0.51 | 0.59 | 3.28 | 3.43 | 2.14 | 2.59 |
3 | 80 | 35 | 80 | 0.67 | 0.63 | 3.90 | 3.95 | 3.18 | 2.97 |
4 | 55 | 55 | 100 | 0.66 | 0.72 | 4.70 | 4.56 | 3.22 | 3.55 |
5 | 55 | 45 | 80 | 0.67 | 0.64 | 4.56 | 4.43 | 3.33 | 3.14 |
6 | 80 | 45 | 100 | 0.56 | 0.51 | 4.09 | 4.08 | 2.78 | 2.60 |
7 | 55 | 45 | 80 | 0.59 | 0.64 | 4.00 | 4.43 | 3.01 | 3.14 |
8 | 30 | 45 | 100 | 0.81 | 0.74 | 4.99 | 5.18 | 4.01 | 3.63 |
9 | 30 | 55 | 80 | 0.87 | 0.90 | 5.60 | 5.55 | 4.12 | 4.35 |
10 | 55 | 35 | 100 | 0.41 | 0.52 | 3.50 | 3.46 | 2.10 | 2.68 |
11 | 55 | 45 | 80 | 0.57 | 0.64 | 4.27 | 4.43 | 2.67 | 3.14 |
12 | 30 | 35 | 80 | 0.49 | 0.48 | 3.67 | 3.52 | 2.32 | 2.30 |
13 | 80 | 45 | 60 | 0.71 | 0.69 | 4.55 | 4.36 | 3.34 | 3.30 |
14 | 30 | 45 | 60 | 0.69 | 0.65 | 4.55 | 4.56 | 3.26 | 3.02 |
15 | 55 | 45 | 80 | 0.77 | 0.64 | 4.78 | 4.43 | 3.77 | 3.14 |
16 | 80 | 55 | 80 | 0.55 | 0.56 | 3.67 | 3.82 | 2.91 | 2.94 |
17 | 55 | 45 | 80 | 0.72 | 0.29 | 4.56 | 4.43 | 3.67 | 3.14 |
Source | Mean Square | F Value | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Y1 | Y2 | Y3 | Y1 | Y2 | Y3 | Y1 | Y2 | Y3 | |
Model | 0.028 | 0.562 | 0.642 | 4.09 | 7.33 | 3.26 | 0.025 * | 0.008 * | 0.048 * |
X1-Time (min) | 0.017 | 0.845 | 0.281 | 2.54 | 11,03 | 1.43 | 0.142 | 0.013 * | 0.259 |
X2-T (°C) | 0.063 | 1.837 | 2.040 | 9.34 | 23.99 | 10.38 | 0.013 * | 0.002 ** | 0.009 ** |
X3-Power (%) | 0.004 | 0.059 | 0.004 | 0.60 | 0.77 | 0.02 | 0.456 | 0.410 | 0.889 |
X1.X2 | 0.063 | 1.166 | 1.082 | 9.27 | 15.23 | 5.50 | 0.012 * | 0.006 ** | 0.041 * |
X1.X3 | 0.018 | 0.203 | 0.423 | 2.70 | 2.64 | 2.15 | 0.131 | 0.148 | 0.173 |
X2.X3 | 0.001 | 0.018 | 0.020 | 0.09 | 0.23 | 0.10 | 0.767 | 0.646 | 0.759 |
X12 | 0.166 | 2.17 | 0.184 | ||||||
X22 | 0.752 | 9.82 | 0.017 * | ||||||
X32 | 0.032 | 0.42 | 0.536 | ||||||
Residual | 0.007 | 0.077 | 0.197 | ||||||
Lack-of-fit | 0.007 | 0.056 | 0.188 | 0.92 | 0.62 | 0.90 | 0.561 | 0.640 | 0.571 |
Pure error | 0.007 | 0.092 | 0.210 | ||||||
R2 pred (Y1)-0.9105; R2 adjust (Y1)-0.7367; Adeq. Precision (Y1)-8.11 R2 pred (Y2)-0.9041; R2 adjust (Y2)-0.7808; Adeq. Precision (Y2)-10.03 R2 pred (Y3)-0.8591; R2 adjust (Y3)-0.7619; Adeq. Precision (Y3)-7.21 |
Compounds | UAE (mg/100 g DW) | ME (mg/100 g DW) | MAE (mg/100 g DW) |
---|---|---|---|
Gallic acid | 1.01 ± 0.05 | 0.77 ± 0.15 | 1.97 ± 0.67 |
Protocatechuic acid | 0.81 ± 0.04 | 0.84 ± 0.06 | 0.61 ± 0.02 |
4-hydroxyphenilacetic acid | ND | ND | ND |
4-hydroxybenzoic acid | 1.92 ± 0.10 | 1.23 ± 0.96 | 1.97 ± 0.09 |
4-hydroxybenzaldehyde | 2.51 ± 0.13 | 2.45 ± 0.15 | 2.87 ± 0.09 |
Chlorogenic acid | 21.25 ± 1.06 | 15.25 ± 1.00 | 22.52 ± 0.87 |
Vanillic acid | ND | ND | ND |
Caffeic acid | 2.69 ± 0.13 | 2.55 ± 0.21 | 2.85 ± 0.11 |
Syringic acid | ND | ND | ND |
p-coumaric acid | 3.12 ± 0.16 | 4.99 ± 0.19 | 5.13 ± 0.22 |
Ferulic acid | 23.73 ± 1.19 | 16.70 ± 1.15 | 22.73 ± 1.08 |
Sinapic acid | 3.12 ± 0.16 | 3.10 ± 0.13 | 3.12 ± 0.12 |
Cinnamic acid | 5.86 ± 0.29 | 5.59 ± 0.23 | 8.86 ± 0.32 |
∑ Phenolic acids | 66.02 ± 3.30 | 53.47 ± 4.25 | 72.63 ± 3.60 |
(+)-Catechin | 18.02 ± 0.90 | 16.99 ± 1.90 | 15.02 ± 1.07 |
(-)Epicatechin | 3.93 ± 0.20 | 2.56 ± 0.17 | 3.01 ± 0.22 |
∑ Flavanols | 21.95 ± 1.10 | 19.55 ± 2.07 | 18.03 ± 1.29 |
Naringin | 5.98 ± 0.30 | 6.79 ± 0.42 | 3.66 ± 0.29 |
Naringenin | 1.06 ± 0.05 | 2.26 ± 0.30 | 2.13 ± 0.08 |
Pinocenbrin | 2.13 ± 0.11 | 1.98 ± 0.05 | 1.15 ± 0.04 |
∑ Flavanones | 9.16 ± 0.46 | 11.03 ± 0.77 | 6.93 ± 0.41 |
Rutin | 5.73 ± 0.29 | 5.45 ± 0.25 | 5.73 ± 0.66 |
Quercetin-3-O-glucopyranoside | ND | ND | ND |
Quercetin-3-O-galactoside | 1.41 ± 0.07 | 0.99 ± 0.03 | 1.05 ± 0.05 |
Myricetin | 94.93 ± 4.75 | 81.93 ± 5.07 | 84.96 ± 4.01 |
Kaempferol-3-O-glucoside | 3.28 ± 0.16 | 3.84 ± 0.18 | 3.28 ± 0.22 |
Kaempferol-3-O-rutinoside | 12.01 ± 0.60 | 9.06 ± 0.42 | 10.01 ± 0.62 |
Quercetin | 3.98 ± 0.20 | 3.06 ± 0.35 | 2.98 ± 0.19 |
Tiliroside | 2.28 ± 0.11 | 2.05 ± 0.14 | 2.78 ± 0.14 |
Kaempferol | 5.33 ± 0.27 | 3.69 ± 0.18 | 4.23 ± 0.18 |
∑ Flavonols | 128.96 ± 6.45 | 110.06 ± 6.62 | 115.04 ± 6.06 |
∑ Stilbenes (Resveratrol) | 4.69 ± 0.23 | 5.65 ± 0.17 | 4.69 ± 0.35 |
Phloridzin | 2.55 ± 0.13 | 2.43 ± 0.23 | 2.85 ± 0.18 |
Phloretin | 1.11 ± 0.06 | 1.69 ± 0.15 | 1.45 ± 0.05 |
∑ Others | 3.66 ± 0.18 | 4.12 ± 0.37 | 4.30 ± 0.23 |
∑ All phenolic compounds | 234.45 ± 11.72 | 203.88 ± 14.25 | 221.63 ± 11.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, E.F.; Souza, S.; Moreira, M.M.; Cruz, R.; Silva, A.B.d.; Casal, S.; Delerue-Matos, C. Valorization of Phenolic and Carotenoid Compounds of Sechium edule (Jacq. Swartz) Leaves: Comparison between Conventional, Ultrasound- and Microwave-Assisted Extraction Approaches. Molecules 2022, 27, 7193. https://doi.org/10.3390/molecules27217193
Vieira EF, Souza S, Moreira MM, Cruz R, Silva ABd, Casal S, Delerue-Matos C. Valorization of Phenolic and Carotenoid Compounds of Sechium edule (Jacq. Swartz) Leaves: Comparison between Conventional, Ultrasound- and Microwave-Assisted Extraction Approaches. Molecules. 2022; 27(21):7193. https://doi.org/10.3390/molecules27217193
Chicago/Turabian StyleVieira, Elsa F., Suene Souza, Manuela M. Moreira, Rebeca Cruz, Aline Boatto da Silva, Susana Casal, and Cristina Delerue-Matos. 2022. "Valorization of Phenolic and Carotenoid Compounds of Sechium edule (Jacq. Swartz) Leaves: Comparison between Conventional, Ultrasound- and Microwave-Assisted Extraction Approaches" Molecules 27, no. 21: 7193. https://doi.org/10.3390/molecules27217193
APA StyleVieira, E. F., Souza, S., Moreira, M. M., Cruz, R., Silva, A. B. d., Casal, S., & Delerue-Matos, C. (2022). Valorization of Phenolic and Carotenoid Compounds of Sechium edule (Jacq. Swartz) Leaves: Comparison between Conventional, Ultrasound- and Microwave-Assisted Extraction Approaches. Molecules, 27(21), 7193. https://doi.org/10.3390/molecules27217193