Trapping of Ag+ into a Perfect Six-Coordinated Environment: Structural Analysis, Quantum Chemical Calculations and Electrochemistry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Structural Features
2.2. Quantum Chemical Calculations
2.3. Electrochemistry
•−E° = −1.48 V (vs. RHE)
3. Materials and Methods
3.1. General Information
3.2. Synthesis of (Bu4N)2[{Ag(dpp-bian)}2Mo8O26] (1)
3.3. SCXRD
3.4. Quantum Chemical Calculations
3.5. Electrochemistry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- McGlone, T.; Streb, C.; Busquets-Fité, M.; Yan, J.; Gabb, D.; Long, D.-L.L.; Cronin, L. Silver Linked Polyoxometalate Open Frameworks (Ag-POMOFs) for the Directed Fabrication of Silver Nanomaterials. Cryst. Growth Des. 2011, 11, 2471–2478. [Google Scholar] [CrossRef]
- McGlone, T.; Streb, C.; Long, D.L.; Cronin, L. Assembly of Pure Silver-Tungsten-Oxide Frameworks from Nanostructured Solution Processable Clusters and Their Evolution into Materials with a Metallic Component. Adv. Mater. 2010, 22, 4275–4279. [Google Scholar] [CrossRef] [PubMed]
- Streb, C.; Tsunashima, R.; MacLaren, D.A.; McGlone, T.; Akutagawa, T.; Nakamura, T.; Scandurra, A.; Pignataro, B.; Gadegaard, N.; Cronin, L. Supramolecular Silver Polyoxometalate Architectures Direct the Growth of Composite Semiconducting Nanostructures. Angew. Chem.—Int. Ed. 2009, 48, 6490–6493. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.F.; Abbas, H.; Duncombe, B.J.; Streb, C.; Long, D.-L.; Cronin, L. Probing the Self-Assembly of Inorganic Cluster Architectures in Solution with Cryospray Mass Spectrometry: Growth of Polyoxomolybdate Clusters and Polymers Mediated by Silver(I) Ions. J. Am. Chem. Soc. 2008, 130, 13876–13884. [Google Scholar] [CrossRef]
- Abbas, H.; Pickering, A.L.; Long, D.-L.; Kögerler, P.; Cronin, L. Controllable Growth of Chains and Grids from Polyoxomolybdate Building Blocks Linked by Silver(I) Dimers. Chem.—A Eur. J. 2005, 11, 1071–1078. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, D.; Tian, A.; Ying, J. Three 3D Silver-Bis(Triazole) Metal–Organic Frameworks Stabilized by High-Connected Wells–Dawson Polyoxometallates. Dalt. Trans. 2014, 43, 5211. [Google Scholar] [CrossRef]
- Yang, H.X.; Zhu, W.J.; Jin, L.Y.; Bai, Y.; Dang, D.B. Synthesis, Crystal Structure, and Electrochemical Properties of One Polyoxometalate-Based Silver(I) Compound with Keggin-Type [PW12O40]3− Anions. Russ. J. Coord. Chem. 2018, 44, 466–472. [Google Scholar] [CrossRef]
- Hu, T.-P.; Zhao, Y.-Q.; Mei, K.; Lin, S.-J.; Wang, X.-P.; Sun, D. A Novel Silver(I)-Keggin-Polyoxometalate Inorganic–Organic Hybrid: A Lewis Acid Catalyst for Cyanosilylation Reaction. CrystEngComm 2015, 17, 5947–5952. [Google Scholar] [CrossRef]
- Xie, A.; Wang, Z.; Cheng, L.-P.; Luo, G.-G.; Liu, Q.-Y.; Sun, D. An Extended Ag I Cluster-Based Framework Solid: Silver-Thiolate Cluster Linked Polyoxometalate Including Ag I ···H-C Anagostic Interactions. Eur. J. Inorg. Chem. 2019, 2019, 496–501. [Google Scholar] [CrossRef]
- Wang, Z.; Gupta, R.K.; Luo, G.; Sun, D. Recent Progress in Inorganic Anions Templated Silver Nanoclusters: Synthesis, Structures and Properties. Chem. Rec. 2020, 20, 389–402. [Google Scholar] [CrossRef]
- Zhao, X.-L.; Mak, T.C.W. New Polyoxometalate Species Stabilized in Coordination Networks Constructed with the Multinuclear Silver(I) Ethynediide Aggregate C2@Agn (n = 6 and 7). Inorg. Chem. 2010, 49, 3676–3678. [Google Scholar] [CrossRef]
- Dang, D.; Zheng, Y.; Bai, Y.; Guo, X.; Ma, P.; Niu, J. Assembly of Polyoxometalate-Based Metal–Organic Frameworks with Silver(I)-Schiff Base Coordination Polymeric Chains as Building Blocks. Cryst. Growth Des. 2012, 12, 3856–3867. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, G.-Q.; Dang, D.-B.; Ma, P.-T.; Gao, H.; Niu, J.-Y. Assembly of Polyoxometalate-Based Inorganic–Organic Compounds from Silver–Schiff Base Building Blocks: Synthesis, Crystal Structures and Luminescent Properties. CrystEngComm 2011, 13, 4181. [Google Scholar] [CrossRef]
- Artem’ev, A.V.; Bagryanskaya, I.Y.; Doronina, E.P.; Tolstoy, P.M.; Gushchin, A.L.; Rakhmanova, M.I.; Ivanov, A.Y.; Suturina, A.O. A New Family of Clusters Containing a Silver-Centered Tetracapped [Ag@Ag4(μ3-P)4] Tetrahedron, Inscribed within a N 12 Icosahedron. Dalt. Trans. 2017, 46, 12425–12429. [Google Scholar] [CrossRef] [Green Version]
- Artem’ev, A.V.; Ryzhikov, M.R.; Berezin, A.S.; Kolesnikov, I.E.; Samsonenko, D.G.; Bagryanskaya, I.Y. Photoluminescence of Ag(I) Complexes with a Square-Planar Coordination Geometry: The First Observation. Inorg. Chem. Front. 2019, 6, 2855–2864. [Google Scholar] [CrossRef]
- Artem’ev, A.V.; Shafikov, M.Z.; Schinabeck, A.; Antonova, O.V.; Berezin, A.S.; Bagryanskaya, I.Y.; Plusnin, P.E.; Yersin, H. Sky-Blue Thermally Activated Delayed Fluorescence (TADF) Based on Ag(I) Complexes: Strong Solvation-Induced Emission Enhancement. Inorg. Chem. Front. 2019, 6, 3168–3176. [Google Scholar] [CrossRef]
- Artem’ev, A.V.; Davydova, M.P.; Berezin, A.S.; Samsonenko, D.G. Synthesis and Thermochromic Luminescence of Ag(I) Complexes Based on 4,6-Bis(Diphenylphosphino)-Pyrimidine. Inorganics 2020, 8, 46. [Google Scholar] [CrossRef]
- Rogovoy, M.I.; Berezin, A.S.; Samsonenko, D.G.; Artem’ev, A.V. Silver(I)–Organic Frameworks Showing Remarkable Thermo-, Solvato- And Vapochromic Phosphorescence As Well As Reversible Solvent-Driven 3D-to-0D Transformations. Inorg. Chem. 2021, 60, 6680–6687. [Google Scholar] [CrossRef]
- Rogovoy, M.I.; Frolova, T.S.; Samsonenko, D.G.; Berezin, A.S.; Bagryanskaya, I.Y.; Nedolya, N.A.; Tarasova, O.A.; Fedin, V.P.; Artem’ev, A.V. 0D to 3D Coordination Assemblies Engineered on Silver(I) Salts and 2-(Alkylsulfanyl)Azine Ligands: Crystal Structures, Dual Luminescence, and Cytotoxic Activity. Eur. J. Inorg. Chem. 2020, 2020, 1635–1644. [Google Scholar] [CrossRef]
- Awaleh, M.O.; Badia, A.; Brisse, F.; Bu, X.-H. Synthesis and Characterization of Silver(I) Coordination Networks Bearing Flexible Thioethers: Anion versus Ligand Dominated Structures. Inorg. Chem. 2006, 45, 1560–1574. [Google Scholar] [CrossRef]
- Ovsyannikov, A.S.; Ferlay, S.; Solovieva, S.E.; Antipin, I.S.; Konovalov, A.I.; Kyritsakas, N.; Hosseini, M.W. Molecular Tectonics: Silver Coordination Networks Based on Tetramercaptothiacalix[4]Arene in 1,3-Alternate Conformation Bearing Four Nitrile Groups. Russ. Chem. Bull. 2015, 64, 1955–1962. [Google Scholar] [CrossRef]
- Azizzadeh, S.; Nobakht, V.; Carlucci, L.; Proserpio, D.M. Self-Assembly of Three Cationic Silver(I) Coordination Networks with Flexible Bis(Pyrazolyl)-Based Linkers. Polyhedron 2017, 130, 58–66. [Google Scholar] [CrossRef]
- Wang, J.; Soo, H. Sen; Garcia, F. Synthesis, Properties, and Catalysis of p-Block Complexes Supported by Bis(Arylimino)Acenaphthene Ligands. Commun. Chem. 2020, 3, 113. [Google Scholar] [CrossRef]
- Singha Hazari, A.; Ray, R.; Hoque, M.A.; Lahiri, G.K. Electronic Structure and Multicatalytic Features of Redox-Active Bis(Arylimino)Acenaphthene (BIAN)-Derived Ruthenium Complexes. Inorg. Chem. 2016, 55, 8160–8173. [Google Scholar] [CrossRef]
- Stoll, T.; Castillo, C.E.; Kayanuma, M.; Sandroni, M.; Daniel, C.; Odobel, F.; Fortage, J.; Collomb, M.-N. Photo-Induced Redox Catalysis for Proton Reduction to Hydrogen with Homogeneous Molecular Systems Using Rhodium-Based Catalysts. Coord. Chem. Rev. 2015, 304–305, 20–37. [Google Scholar] [CrossRef]
- Luca, O.R.; Crabtree, R.H. Redox-Active Ligands in Catalysis. Chem. Soc. Rev. 2013, 42, 1440–1459. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Maslova, O.V.; Morozov, A.G.; Dechert, S.; Demeshko, S.; Meyer, F. Genuine Redox Isomerism in a Rare-Earth-Metal Complex. Angew. Chemie—Int. Ed. 2012, 51, 10584–10587. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Skatova, A.A.; Chudakova, V.A.; Fukin, G.K. Four-Step Reduction of Dpp-Bian with Sodium Metal: Crystal Structures of the Sodium Salts of the Mono-, Di-, Tri- and Tetraanions of Dpp-Bian. Angew. Chem.—Int. Ed. 2003, 42, 3294–3298. [Google Scholar] [CrossRef]
- Romashev, N.F.; Gushchin, A.L.; Fomenko, I.S.; Abramov, P.A.; Mirzaeva, I.V.; Kompan’kov, N.B.; Kal’nyi, D.B.; Sokolov, M.N. A New Organometallic Rhodium(I) Complex with Dpp-Bian Ligand: Synthesis, Structure and Redox Behaviour. Polyhedron 2019, 173, 114110. [Google Scholar] [CrossRef]
- Gushchin, A.L.; Romashev, N.F.; Shmakova, A.A.; Abramov, P.A.; Ryzhikov, M.R.; Fomenko, I.S.; Sokolov, M.N. Novel Redox Active Rhodium(Iii) Complex with Bis(Arylimino)Acenaphthene Ligand: Synthesis, Structure and Electrochemical Studies. Mendeleev Commun. 2020, 30, 81–83. [Google Scholar] [CrossRef]
- Fomenko, I.S.; Gushchin, A.L.; Shul’pina, L.S.; Ikonnikov, N.S.; Abramov, P.A.; Romashev, N.F.; Poryvaev, A.S.; Sheveleva, A.M.; Bogomyakov, A.S.; Shmelev, N.Y.; et al. New Oxidovanadium(iv) Complex with a BIAN Ligand: Synthesis, Structure, Redox Properties and Catalytic Activity. New J. Chem. 2018, 42, 16200–16210. [Google Scholar] [CrossRef]
- Fomenko, I.S.; Gushchin, A.L. Mono- and Binuclear Complexes of Group 5 Metals with Diimine Ligands: Synthesis, Reactivity and Prospects for Application. Russ. Chem. Rev. 2020, 89, 966–998. [Google Scholar] [CrossRef]
- Romashev, N.F.; Abramov, P.A.; Bakaev, I.V.; Fomenko, I.S.; Samsonenko, D.G.; Novikov, A.S.; Tong, K.K.H.; Ahn, D.; Dorovatovskii, P.V.; Zubavichus, Y.V.; et al. Heteroleptic Pd(II) and Pt(II) Complexes with Redox-Active Ligands: Synthesis, Structure, and Multimodal Anticancer Mechanism. Inorg. Chem. 2022, 61, 2105–2118. [Google Scholar] [CrossRef] [PubMed]
- Bendix, J.; Clark, K.M. Delocalization and Valence Tautomerism in Vanadium Tris(Iminosemiquinone) Complexes. Angew. Chemie Int. Ed. 2016, 55, 2748–2752. [Google Scholar] [CrossRef]
- Abramov, P.A.; Dmitriev, A.A.; Kholin, K.V.; Gritsan, N.P.; Kadirov, M.K.; Gushchin, A.L.; Sokolov, M.N. Mechanistic Study of the [(Dpp-Bian)Re(CO)3Br] Electrochemical Reduction Using in Situ EPR Spectroscopy and Computational Chemistry. Electrochim. Acta 2018, 270, 526–534. [Google Scholar] [CrossRef]
- De Frémont, P.; Clavier, H.; Rosa, V.; Avilés, T.; Braunstein, P. Synthesis, Characterization, and Reactivity of Cationic Gold(I) α-Diimine Complexes. Organometallics 2011, 30, 2241–2251. [Google Scholar] [CrossRef]
- Adams, C.J.; Fey, N.; Harrison, Z.A.; Sazanovich, I.V.; Towrie, M.; Weinstein, J.A. Photophysical Properties of Platinum(II)−Acetylide Complexes: The Effect of a Strongly Electron-Accepting Diimine Ligand on Excited-State Structure. Inorg. Chem. 2008, 47, 8242–8257. [Google Scholar] [CrossRef]
- Lohr, T.L.; Piers, W.E.; Parvez, M. Monomeric Platinum(II) Hydroxides Supported by Sterically Dominant α-Diimine Ligands. Inorg. Chem. 2012, 51, 4900–4902. [Google Scholar] [CrossRef]
- Adams, C.J.; Fey, N.; Weinstein, J.A. Near-Infrared Luminescence from Platinum(II) Diimine Compounds. Inorg. Chem. 2006, 45, 6105–6107. [Google Scholar] [CrossRef]
- Gray, K.; Page, M.J.; Wagler, J.; Messerle, B.A. Iridium(III) Cp* Complexes for the Efficient Hydroamination of Internal Alkynes. Organometallics 2012, 31, 6270–6277. [Google Scholar] [CrossRef]
- Parmene, J.; Krivokapic, A.; Tilset, M. Synthesis, Characterization, and Protonation Reactions of Ar-BIAN and Ar-BICAT Diimine Platinum Diphenyl Complexes. Eur. J. Inorg. Chem. 2010, 2010, 1381–1394. [Google Scholar] [CrossRef]
- Rosa, V.; Santos, C.I.M.; Welter, R.; Aullón, G.; Lodeiro, C.; Avilés, T. Comparison of the Structure and Stability of New α-Diimine Complexes of Copper(I) and Silver(I): Density Functional Theory versus Experimental. Inorg. Chem. 2010, 49, 8699–8708. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Skatova, A.A.; Dodonov, V.A.; Chudakova, V.A.; Bazyakina, N.L.; Piskunov, A.V.; Demeshko, S.V.; Fukin, G.K. Digallane with Redox-Active Diimine Ligand: Dualism of Electron-Transfer Reactions. Inorg. Chem. 2014, 53, 5159–5170. [Google Scholar] [CrossRef]
- Chen, S.; Huang, Y.; Fang, X.; Li, H.; Zhang, Z.; Hor, T.S.A.; Weng, Z. Aryl-BIAN-Ligated Silver(i) Trifluoromethoxide Complex. Dalt. Trans. 2015, 44, 19682–19686. [Google Scholar] [CrossRef]
- Papanikolaou, P.A.; Gdaniec, M.; Wicher, B.; Akrivos, P.D.; Tkachenko, N.V. Bis(Aryl)Acenaphthenequinonediimine Substituent Effect on the Properties and Coordination Environment of Ligands and Their Bis-Chelate Ag I Complexes. Eur. J. Inorg. Chem. 2013, 2013, 5196–5205. [Google Scholar] [CrossRef]
- Chupina, A.V.; Shayapov, V.; Novikov, A.S.; Volchek, V.V.; Benassi, E.; Abramov, P.A.; Sokolov, M.N. [{AgL}2Mo8O26]n– Complexes: A Combined Experimental and Theoretical Study. Dalt. Trans. 2020, 49, 1522–1530. [Google Scholar] [CrossRef]
- Chupina, A.V.; Mukhacheva, A.A.; Abramov, P.A.; Sokolov, M.N. Complexation and Isomerization of [β-Mo8O26]4− in the Presence of Ag+ and DMF. J. Struct. Chem. 2020, 61, 299–308. [Google Scholar] [CrossRef]
- Abramov, P.A.; Komarov, V.Y.; Pischur, D.A.; Sulyaeva, V.S.; Benassi, E.; Sokolov, M.N. Solvatomorphs of (Bu4N)2[{Ag(N2-Py)}2Mo8O26]: Structure, Colouration and Phase Transition. CrystEngComm 2021, 23, 8527–8537. [Google Scholar] [CrossRef]
- Guo, H.; Gong, C.; Zeng, X.; Xu, H.; Zeng, Q.; Zhang, J.; Zhong, Z.; Xie, J. Isopolymolybdate-Based Inorganic–Organic Hybrid Compounds Constructed by Multidentate N-Donor Ligands: Syntheses, Structures and Properties. Dalt. Trans. 2019, 48, 5541–5550. [Google Scholar] [CrossRef]
- Wang, X.; Liu, D.; Lin, H.; Liu, G.; Wang, X.; Le, M.; Rong, X. PH, Solvent and Metal Ion Induced Octamolybdate-Based Metal–Organic Complexes Decorated with a Pyridyl-Carboxylate Ligand Containing an Amide Group. CrystEngComm 2016, 18, 888–897. [Google Scholar] [CrossRef]
- Minakshi, M.; Mitchell, D.R.G.; Munnangi, A.R.; Barlow, A.J.; Fichtner, M. New Insights into the Electrochemistry of Magnesium Molybdate Hierarchical Architectures for High Performance Sodium Devices. Nanoscale 2018, 10, 13277–13288. [Google Scholar] [CrossRef] [Green Version]
- Krisch, D.; Sun, H.; Pellumbi, K.; Faust, K.; Apfel, U.-P.; Schöfberger, W. Tuning the Electronic Properties of Homoleptic Silver(I) Bis-BIAN Complexes towards Efficient Electrocatalytic CO2 Reduction. Catalysts 2022, 12, 545. [Google Scholar] [CrossRef]
- Zakharchuk, N.F.; Meyer, B.; Henning, H.; Scholz, F.; Jaworksi, A.; Stojek, Z. A Comparative Study of Prussian-Blue-Modified Graphite Paste Electrodes and Solid Graphite Electrodes with Mechanically Immobilized Prussian Blue. J. Electroanal. Chem. 1995, 398, 23–35. [Google Scholar] [CrossRef]
- Kinzel, N.W.; Werlé, C.; Leitner, W. Transition Metal Complexes as Catalysts for the Electroconversion of CO2: An Organometallic Perspective. Angew. Chemie Int. Ed. 2021, 60, 11628–11686. [Google Scholar] [CrossRef]
- Gonglach, S.; Paul, S.; Haas, M.; Pillwein, F.; Sreejith, S.S.; Barman, S.; De, R.; Müllegger, S.; Gerschel, P.; Apfel, U.-P.; et al. Molecular Cobalt Corrole Complex for the Heterogeneous Electrocatalytic Reduction of Carbon Dioxide. Nat. Commun. 2019, 10, 3864. [Google Scholar] [CrossRef] [Green Version]
- De, R.; Gonglach, S.; Paul, S.; Haas, M.; Sreejith, S.S.; Gerschel, P.; Apfel, U.; Vuong, T.H.; Rabeah, J.; Roy, S.; et al. Electrocatalytic Reduction of CO2 to Acetic Acid by a Molecular Manganese Corrole Complex. Angew. Chemie Int. Ed. 2020, 59, 10527–10534. [Google Scholar] [CrossRef]
- Kaiser, U.; Heitz, E. Zum Mechanismus Der Elektrochemischen Dimerisierung von CO2 Zu Oxalsäure. Ber. Der Bunsenges. Für Phys. Chem. 1973, 77, 818–823. [Google Scholar] [CrossRef]
- König, M.; Vaes, J.; Klemm, E.; Pant, D. Solvents and Supporting Electrolytes in the Electrocatalytic Reduction of CO2. iScience 2019, 19, 135–160. [Google Scholar] [CrossRef]
- Costentin, C.; Robert, M.; Savéant, J.-M. Catalysis of the Electrochemical Reduction of Carbon Dioxide. Chem. Soc. Rev. 2013, 42, 2423–2436. [Google Scholar] [CrossRef] [PubMed]
- Paulovicova, A.; El-Ayaan, U.; Shibayama, K.; Morita, T.; Fukuda, Y. Mixed-Ligand Copper(II) Complexes with the Rigid Bidentate Bis(N-Arylimino)Acenaphthene Ligand: Synthesis, Spectroscopic-, and X-Ray Structural Characterization. Eur. J. Inorg. Chem. 2001, 2001, 2641–2646. [Google Scholar] [CrossRef]
- Serebrennikova, P.C.; Komarov, V.Y.; Sukhikh, A.S.; Gromilov, S.A. On the accuracy of determining unit cell parameters of single crystals on modern laboratory diffractometers. J. Struct. Chem. 2021, 62, 682–691. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt Graphical User Interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284. [Google Scholar] [CrossRef] [Green Version]
- Yanaia, T.; Tew, D.P.; Handy, N.C. A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Binning, R.C.; Curtiss, L.A. Compact Contracted Basis Sets for Third-Row Atoms: Ga-Kr. J. Comput. Chem. 1990, 11, 1206–1216. [Google Scholar] [CrossRef]
- Blaudeau, J.-P.; McGrath, M.P.; Curtiss, L.A.; Radom, L. Extension of Gaussian-2 (G2) Theory to Molecules Containing Third-Row Atoms K and Ca. J. Chem. Phys. 1997, 107, 5016–5021. [Google Scholar] [CrossRef]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian Basis Sets for Molecular Calculations. I. Second Row Atoms, Z = 11–18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Wachters, A.J.H. Gaussian Basis Set for Molecular Wavefunctions Containing Third-Row Atoms. J. Chem. Phys. 1970, 52, 1033–1036. [Google Scholar] [CrossRef]
- Hay, P.J. Gaussian Basis Sets for Molecular Calculations. The Representation of 3d Orbitals in Transition-metal Atoms. J. Chem. Phys. 1977, 66, 4377–4384. [Google Scholar] [CrossRef]
- Raghavachari, K.; Trucks, G.W. Highly Correlated Systems. Excitation Energies of First Row Transition Metals Sc–Cu. J. Chem. Phys. 1989, 91, 1062–1065. [Google Scholar] [CrossRef]
- McGrath, M.P.; Radom, L. Extension of Gaussian-1 (G1) Theory to Bromine-containing Molecules. J. Chem. Phys. 1991, 94, 511–516. [Google Scholar] [CrossRef]
- Curtiss, L.A.; McGrath, M.P.; Blaudeau, J.; Davis, N.E.; Binning, R.C.; Radom, L. Extension of Gaussian-2 Theory to Molecules Containing Third-row Atoms Ga–Kr. J. Chem. Phys. 1995, 103, 6104–6113. [Google Scholar] [CrossRef]
- Dunning Jr, T.H.; Hay, P.J. Methods of Electronic Structure Theory. In Modern Theoretical Chemistry; Schaefer, H.F., Ed.; Plenum Publishing Company: New York, NY, USA, 1977; pp. 1–28. [Google Scholar]
- Hay, P.J.; Wadt, W.R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283. [Google Scholar] [CrossRef]
- Wadt, W.R.; Hay, P.J. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi. J. Chem. Phys. 1985, 82, 284–298. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. J. Chem. Phys. 1985, 82, 299–310. [Google Scholar] [CrossRef]
- Foster, J.P.; Weinhold, F. Natural Hybrid Orbitals. J. Am. Chem. Soc. 1980, 102, 7211–7218. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinhold, F. Natural Bond Orbital Analysis of Near-Hartree–Fock Water Dimer. J. Chem. Phys. 1983, 78, 4066–4073. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83, 735–746. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinhold, F. Natural Localized Molecular Orbitals. J. Chem. Phys. 1985, 83, 1736–1740. [Google Scholar] [CrossRef]
- Carpenter, J.E.; Weinhold, F. Analysis of the Geometry of the Hydroxymethyl Radical by the “Different Hybrids for Different Spins” Natural Bond Orbital Procedure. J. Mol. Struct. THEOCHEM 1988, 169, 41–62. [Google Scholar] [CrossRef]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Weinhold, F.; Carpenter, J.E. The Natural Bond Orbital Lewis Structure Concept for Molecules, Radicals, and Radical Ions. In The Structure of Small Molecules and Ions; Springer US: Boston, MA, USA, 1988; pp. 227–236. [Google Scholar]
- Bader, R.F.W.; Essén, H. The Characterization of Atomic Interactions. J. Chem. Phys. 1984, 80, 1943–1960. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Clarendon Press: Oxford, UK, 1990; ISBN 9780198558651. [Google Scholar]
- Bader, R.F.W. A Quantum Theory of Molecular Structure and Its Applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Bohórquez, H.J.; Matta, C.F.; Boyd, R.J. The Localized Electrons Detector as an Ab Initio Representation of Molecular Structures. Int. J. Quantum Chem. 2010, 110, 2418–2425. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef] [Green Version]
- Boto, R.A.; Contreras-García, J.; Tierny, J.; Piquemal, J.-P. Interpretation of the Reduced Density Gradient. Mol. Phys. 2016, 114, 1406–1414. [Google Scholar] [CrossRef] [Green Version]
- Andrés, J.; Berski, S.; Contreras-García, J.; González-Navarrete, P. Following the Molecular Mechanism for the NH3 + LiH → LiNH2 + H2 Chemical Reaction: A Study Based on the Joint Use of the Quantum Theory of Atoms in Molecules (QTAIM) and Noncovalent Interaction (NCI) Index. J. Phys. Chem. A 2014, 118, 1663–1672. [Google Scholar] [CrossRef]
- Martin, R.L. Natural Transition Orbitals. J. Chem. Phys. 2003, 118, 4775–4777. [Google Scholar] [CrossRef]
- Biegler-könig, F.W.; Bader, R.F.W.; Tang, T.-H. Calculation of the Average Properties of Atoms in Molecules. II. J. Comput. Chem. 1982, 3, 317–328. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Kokovkin, V.V.; Kal’nyi, D.B.; Korotaev, E.V.; Shakirova, O.G.; Lavrenova, L.G. Electrochemical Studies of Iron(II) Complexeswith 4-amino-1,2,4-triazole Possessing Spin Crossover. Z. Für Anorg. Allg. Chem. 2021, 647, 1620–1624. [Google Scholar] [CrossRef]
- Vinnik, D.A.; Kokovkin, V.V.; Volchek, V.V.; Zhivulin, V.E.; Abramov, P.A.; Cherkasova, N.A.; Sun, Z.; Sayyed, M.I.; Tishkevich, D.I.; Trukhanov, A.V. Electrocatalytic Activity of Various Hexagonal Ferrites in OER Process. Mater. Chem. Phys. 2021, 270, 124818. [Google Scholar] [CrossRef]
- Mukhacheva, A.A.; Komarov, V.Y.; Kokovkin, V.V.; Novikov, A.S.; Abramov, P.A.; Sokolov, M.N. Unusual π–π Interactions Directed by the [{(C6H6)Ru}2W8O30(OH)2]6− Hybrid Anion. CrystEngComm 2021, 23, 4125–4135. [Google Scholar] [CrossRef]
REFCODE | d(Ag-N)/Å | d(Ag-O)/Å | CN |
---|---|---|---|
Group 1—Fixed Geometry Ligands | |||
FOWWIA | 2.316, 2.355 | 2.532–2.641 | 6 |
GIFRIZ | 2.362 | 2.502–2.653 | 6 |
HATSAZ | 2.470 | 2.420, 2.478 | 6 |
IXEFAU | 2.325 | 2.491–2.573 | 6 |
IXEFEY | 2.326 | 2.478. 2.613 | 6 |
QOMQER | 2.324 | 2.558, 2.617 | 6 |
VAZDEF | 2.315 | 2.522, 2.588 | 6 |
Group 2—Crown-Ethers and Cryptands | |||
FAFQUY | 2.483 | 2.923 | 4 |
GOXTAO | 2.275, 2.304 | 2.681–2.745 | 2 |
KISPUZ | 2.437 | 2.558–2.748 | 4 |
PIMCET | 2.219, 2.235 | 2.736, 2.850 | 2 |
QIFPEA | 2.323, 2.342 | 2.564–2.741 | 3 |
QIFPIE | 2.392 | 2.562–2.737 | 3 |
ROQLOY | 2.372 | 2.834 | 2 |
SENJIE | 2.208, 2.721 | 2.498–2.557 | 5 |
TIBQIE | 2.585, 2.694 | 2.478–2.626 | 5 |
YUHDIO | 2.346, 2.395 | 2.608–2.684 | 4 |
Group 3—POM Complexes | |||
PUCYES | 2.262, 2.349 | 2.463, 2.606, 2.678 | 3 |
ODEQOE | 2.389 | 2.564–2.632 | 6 |
XUJSAX | 2.270, 2.360 | 2.385–2.860 | 3 |
ZULXOV (Ag2) | 2.340, 2.359 | 2.530–2.643 | 6 |
Group 4—Other Complexes | |||
PICVII | 2.303, 2.320 | 2.529–2.864 | 6 |
PURZUY | 2.232, 2.283 | 2.547–2.777 | 3 |
CAVWAY | 2.249 | 2.657 | 4 |
FEJFEF | 2.273, 2.301 | 2.517–2.574 | 5 |
HAXFOB | 2.358 | 2.580–2.619 | 6 |
KIJRIG | 2.400 | 2.456–2.633 | 6 |
LADFED | 2.338, 2340 | 2.291–2.736 | 6 |
MEJBAE | 2.270 | 2.548–2.571 | 6 |
MIZAGN | 2.372 | 2.600–2.628 | 6 |
NAKLOB | 2.382 | 2.605–2.619 | 6 |
NELMAT | 2.415 | 2.446–2.790 | 4 |
RAWVER | 2.332 | 2.609–2.625 | 6 |
YIXDAM | 2.402 | 2.508–2.558 | 6 |
Group 5—Questionable Structures | |||
ZULXOV (Ag1) | 1.960–2.097 | 2.586, 2.311 | 6 |
WOKRIY (3d) | 2.176, 2.181 | 2.867, 2.931 | 4 |
SIKJIH (3d) | 2.141, 2.180 | 2.150, 2.108 | 6 |
ELEGIM (Ln) | 2.440, 2.544 | 2.470–2.569 | 9 |
PYRCAG (3d) | 2.086, 2.210 | 2.203–2.542 | 6 |
SEHSAA (Ag2) | 2.159 | 3.010–3.074 | 2 |
SEHSAA (Ag1) | 2.161 | 2.868–3.178 | 2 |
E1/2 (1,1′), V | −1.585 | ΔE, V | 0.400 | quasi-reversible |
Ea, V | −1.390 | Ia, A | −1.7 × 10−5 | |
Ec, V | −1.790 | Ic, A | −2.1 × 10−3 | |
E1/2 (2,2′), V | −1.200 | ΔE, V | 0.400 | quasi-reversible |
Ea, V | −1.000 | Ia, A | 3.4 × 10−4 | |
Ec, V | −1.400 | Ic, A | −1.8 × 10−3 | |
E1/2 (3,3′), V | ΔE, V | irreversible | ||
Ea, V | −0.670 | Ia, A | 5.9 × 10−4 | |
Ec, V | Ic, A | |||
E1/2 (4,4′), V | −0.390 | ΔE, V | 0.520 | quasi-reversible |
Ea, V | −0.130 | Ia, A | 1.0 × 10−3 | |
Ec, V | −0.650 | Ic, A | −1.8 × 10−3 | |
E1/2 (5,5′), V | ΔE, V | irreversible | ||
Ea, V | 0.090 | Ia, A | 1.0 × 10−3 | |
Ec, V | Ic, A | |||
E1/2 (6,6′), V | 0.290 | ΔE, V | 0.780 | quasi-reversible |
Ea, V | 0.680 | Ia, A | 1.6 × 10−3 | |
Ec, V | −0.100 | Ic, A | −1.4 × 10−3 | |
E1/2 (7,7′), V | 0.850 | ΔE, V | 0.640 | quasi-reversible |
Ea, V | 1.170 | Ia, A | 1.7 × 10−3 | |
Ec, V | 0.530 | Ic, A | 6.1 × 10−4 | |
E1/2 (8,8′), V | ΔE, V | irreversible | ||
Ea, V | 1.650 | Ia, A | 2.0 × 10−3 | |
Ec, V | Ic, A |
E1/2 (1,1′), V | ΔE, V | irreversible | ||
Ea, V | Ia, A | |||
Ec, V | −2.050 | Ic, A | −1.9 × 10−3 | |
E1/2 (2,2′), V | ΔE, V | irreversible | ||
Ea, V | Ia, A | |||
Ec, V | −1.62 | Ic, A | −1.8 × 10−3 | |
E1/2 (3,3′), V | −1.085 | ΔE, V | 0.670 | quasi-reversible |
Ea, V | −0.750 | Ia, A | 5.1 × 10−4 | |
Ec, V | −1.420 | Ic, A | −1.8 × 10−3 | |
E1/2 (4,4′), V | −0.218 | ΔE, V | 0.785 | quasi-reversible |
Ea, V | 0.175 | Ia, A | 1.1 × 10−3 | |
Ec, V | −0.610 | Ic, A | −1.2 × 10−3 | |
E1/2 (5,5′), V | ΔE, V | irreversible | ||
Ea, V | 0.430 | Ia, A | 1.3 × 10−3 | |
Ec, V | Ic, A | |||
E1/2 (6,6′), V | ΔE, V | irreversible | ||
Ea, V | 1.140 | Ia, A | 1.45 × 10−3 | |
Ec, V | Ic, A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komlyagina, V.I.; Romashev, N.F.; Kokovkin, V.V.; Gushchin, A.L.; Benassi, E.; Sokolov, M.N.; Abramov, P.A. Trapping of Ag+ into a Perfect Six-Coordinated Environment: Structural Analysis, Quantum Chemical Calculations and Electrochemistry. Molecules 2022, 27, 6961. https://doi.org/10.3390/molecules27206961
Komlyagina VI, Romashev NF, Kokovkin VV, Gushchin AL, Benassi E, Sokolov MN, Abramov PA. Trapping of Ag+ into a Perfect Six-Coordinated Environment: Structural Analysis, Quantum Chemical Calculations and Electrochemistry. Molecules. 2022; 27(20):6961. https://doi.org/10.3390/molecules27206961
Chicago/Turabian StyleKomlyagina, Veronika I., Nikolay F. Romashev, Vasily V. Kokovkin, Artem L. Gushchin, Enrico Benassi, Maxim N. Sokolov, and Pavel A. Abramov. 2022. "Trapping of Ag+ into a Perfect Six-Coordinated Environment: Structural Analysis, Quantum Chemical Calculations and Electrochemistry" Molecules 27, no. 20: 6961. https://doi.org/10.3390/molecules27206961
APA StyleKomlyagina, V. I., Romashev, N. F., Kokovkin, V. V., Gushchin, A. L., Benassi, E., Sokolov, M. N., & Abramov, P. A. (2022). Trapping of Ag+ into a Perfect Six-Coordinated Environment: Structural Analysis, Quantum Chemical Calculations and Electrochemistry. Molecules, 27(20), 6961. https://doi.org/10.3390/molecules27206961