Effect of Hydrophilic Polymers on the Release Rate and Pharmacokinetics of Acyclovir Tablets Obtained by Wet Granulation: In Vitro and In Vivo Assays
Abstract
:1. Introduction
2. Results and Discussion
Pharmacokinetic Parameters | Type of Formulation | |
---|---|---|
Developed Sustained-Release Tablets (F-2) | Immediate-Release Tablets (IR) | |
AUC0-t c (ng.h/mL) | 11,870.69 ± 1190.02 | 10,118.54 ± 1151.16 |
AUC0-∞ c (ng.h/mL) | 13,194.90 ± 1305.39 | 10,929.35 ± 1249.17 |
Cmax c (ng/mL) | 1852.51 ± 78.04 | 2029.29 ± 104.24 |
Tmax c (h) | 5.00 ± 1.10 | 2.42 ± 0.20 |
kel c (h−1) | 0.11 ± 0.00 | 0.24 ± 0.01 |
t1/2 c (h) | 6.20 ± 0.12 | 2.92 ± 0.07 |
3. Materials and Methods
3.1. Materials
3.2. Drug–Polymer Interactions
3.3. Preparation of Polymeric Granules and Tablets
Code | G-1 | G-2 | G-3 | G-4 | G-5 | G-6 | G-7 | G-8 | G-9 | G-10 | G-11 | G-12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acyclovir | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 |
HPMC | 15 | 30 | 45 | 60 | - | - | - | - | 7.5 | 15 | 22.5 | 30 |
Carbopol | - | - | - | - | 15 | 30 | 45 | 60 | 7.5 | 15 | 22.5 | 30 |
PVP-K-30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Code | F-1 | F-2 | F-3 | F-4 | F-5 | F-6 | F-7 | F-8 | F-9 | F-10 | F-11 | F-12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Granules | G-1 | G-2 | G-3 | G-4 | G-5 | G-6 | G-7 | G-8 | G-9 | G-10 | G-11 | G-12 |
Avicel PH101 | 137 | 122 | 107 | 92 | 137 | 122 | 107 | 92 | 137 | 122 | 107 | 92 |
Mg stearate | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
Talc | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
Total weight | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 |
3.4. Evaluation of Granules
3.4.1. Angle of Repose
3.4.2. Bulk Density
3.4.3. Compressibility Index
3.4.4. Hausner’s Factor (HF)
3.5. Physicochemical Properties of Tablets
3.5.1. Thickness
3.5.2. Mass Uniformity Test
3.5.3. Resistance to Crushing Test
3.5.4. Friability Test
3.5.5. Content Uniformity Test
3.5.6. In Vitro Dissolution and Release Kinetics Assay
3.5.7. Stability Studies
3.6. Bioavailability Studies
3.6.1. Design of the Study
3.6.2. Chromatographic Conditions
3.6.3. Pharmacokinetics
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- O’Brien, J.J.; Campoli-Richards, D.M. Acyclovir. An updated review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs 1989, 37, 233–309. [Google Scholar] [CrossRef] [PubMed]
- Arnal, J.; Gonzalez-Alvarez, I.; Bermejo, M.; Amidon, G.L.; Junginger, H.E.; Kopp, S.; Midha, K.K.; Shah, V.P.; Stavchansky, S.; Dressman, J.B.; et al. Biowaiver monographs for immediate release solid oral dosage forms: Aciclovir. J. Pharm. Sci. 2008, 97, 5061–5073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristl, A.; Srčič, S.; Vrečer, F.; Šuštar, B.; Vojnovic, D. Polymorphism and pseudopolymorphism: Influencing the dissolution properties of the guanine derivative acyclovir. Int. J. Pharm. 1996, 139, 231–235. [Google Scholar] [CrossRef]
- Wagstaff, A.J.; Faulds, D.; Goa, K.L. Aciclovir. A reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs 1994, 47, 153–205. [Google Scholar] [CrossRef] [PubMed]
- Vergin, H.; Kikuta, C.; Mascher, H.; Metz, R. Pharmacokinetics and bioavailability of different formulations of aciclovir. Arzneimittelforschung 1995, 45, 508–515. [Google Scholar] [PubMed]
- de Miranda, P.; Blum, M.R. Pharmacokinetics of acyclovir after intravenous and oral administration. J. Antimicrob. Chemother. 1983, 12 (Suppl. B), 29–37. [Google Scholar] [CrossRef]
- Hosny, E.A.; al-Helw, A.R.; al-Dardiri, M.A. Comparative study of in-vitro release and bioavailability of sustained release diclofenac sodium from certain hydrophilic polymers and commercial tablets in beagle dogs. Pharm. Acta Helv. 1997, 72, 159–164. [Google Scholar] [CrossRef]
- El-Sayed, Y.M.; Niazy, E.M.; Khidr, S.H. In vivo evaluation of sustained release microspheres of metoclopramide hydrochloride in beagle dogs. Int. J. Pharm. 1995, 123, 113–118. [Google Scholar] [CrossRef]
- Shin, S.; Kim, T.H.; Jeong, S.W.; Chung, S.E.; Lee, D.Y.; Kim, D.-H.; Shin, B.S. Development of a gastroretentive delivery system for acyclovir by 3D printing technology and its in vivo pharmacokinetic evaluation in Beagle dogs. PLoS ONE 2019, 14, e0216875. [Google Scholar] [CrossRef]
- Fuertes, I.; Miranda, A.; Millán, M.; Caraballo, I. Estimation of the percolation thresholds in acyclovir hydrophilic matrix tablets. Eur. J. Pharm. Biopharm. 2006, 64, 336–342. [Google Scholar] [CrossRef]
- Garg, R.; Gupta, G. Development and evaluation of gastro retentive floating drug delivery system for acyclovir. Asian J. Pharm. 2007, 1, 219–222. [Google Scholar]
- Lordi, G.N. Sustained release dosage forms. In The Theory and Practice of Industrial Pharmacy, 3rd ed.; Lachman, L., Lieberman, A.H., Kanig, L.J., Eds.; Varghese Publishing: Bombay, India, 1987; pp. 430–456. [Google Scholar]
- Melia, C.D. Hydrophilic matrix sustained release systems based on polysaccharide carriers. Crit. Rev. Ther. Drug Carrier Syst. 1991, 8, 395–421. [Google Scholar] [PubMed]
- Alderman, D.A. A review of cellulose ethers in hydrophilic matrices for oral controlled release dosage forms. Int. J. Pharm. Tech. Prod. 1984, 5, 1–9. [Google Scholar]
- Gupta, B.; Mishra, V.; Gharat, S.; Momin, M.; Omri, A. Cellulosic Polymers for Enhancing Drug Bioavailability in Ocular Drug Delivery Systems. Pharmaceuticals 2021, 14, 1201. [Google Scholar] [CrossRef] [PubMed]
- Nagasamy Venkatesh, D.; Meyyanathan, S.N.; Shanmugam, R.; Kamatham, S.S.; Campos, J.R.; Dias-Ferreira, J.; Sanchez-Lopez, E.; Cardoso, J.C.; Severino, P.; Souto, E.B. Physicochemical, pharmacokinetic, and pharmacodynamic characterization of isradipine tablets for controlled release. Pharm. Dev. Technol. 2021, 26, 92–100. [Google Scholar] [CrossRef]
- Sweetman, S.C. (Ed.) Martindale: The Complete Drug Reference; Pharmaceutical Press: London, UK, 2004. [Google Scholar]
- Kurakula, M.; Rao, G.S.N.K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J. Drug Deliv. Sci. Technol. 2020, 60, 102046. [Google Scholar] [CrossRef]
- Viera-Herrera, C.; Santamaría-Aguirre, J.; Vizuete, K.; Debut, A.; Whitehead, D.C.; Alexis, F. Microcrystalline Cellulose Extracted from Native Plants as an Excipient for Solid Dosage Formulations in Drug Delivery. Nanomaterials 2020, 10, 975. [Google Scholar] [CrossRef]
- Halder, S.; Islam, A.; Shuma, M.L.; Bachar, S.C. Development and evaluation of Water dispersible tablets of Acyclovir. Int. J. Adv. Res. Biol. Sci. 2014, 1, 17–24. [Google Scholar]
- Venkatesh, D.N.; Meyyanathan, S.N.; Shanmugam, R.; Zielinska, A.; Campos, J.R.; Ferreira, J.D.; Souto, E.B. Development, in vitro release and in vivo bioavailability of sustained release nateglinide tablets. J. Drug Deliv. Sci. Technol. 2020, 55, 101355. [Google Scholar] [CrossRef]
- European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2019; ISBN 9789287189127.
- Nagasamy Venkatesh, D.; Sankar, S.; Meyyanathan, S.N.; Elango, K.; Suresh, B.; Santhi, K. Design and Development of Prochlorperazine Maleate Sustained Release Tablets: Influence of Hydrophilic Polymers on the Release rate and In vitro Evaluation. Int. J. Pharm. Sci. Nanotechnol. 2010, 3, 965–977. [Google Scholar] [CrossRef]
- Meyyanathan, S.N.; Rajan, S.; Muralidharan, S.; Mahesh Kumar, S.; Krishnaraj, K.; Suresh, B. Formulation and Evaluation of Dextromethorphan Hydrobromide Sustained Release Tablets. Drug Deliv. 2008, 15, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 1963, 52, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.R. Elaborations on the Higuchi model for drug delivery. Int. J. Pharm. 2011, 418, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanism of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Peppas, N.A. Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv. 1985, 60, 110–111. [Google Scholar]
- Peppas, N.A.; Sahlin, J.J. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm. 1989, 57, 169–172. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Wadher, K.J.; Kakde, R.B.; Umekar, M.J. Study on sustained-release metformin hydrochloride from matrix tablet: Influence of hydrophilic polymers and in vitro evaluation. Int. J. Pharm. Investig. 2011, 1, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Reza, M.S.; Quadir, M.A.; Haider, S.S. Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery. J. Pharm. Pharm. Sci. 2003, 6, 282–291. [Google Scholar]
- Travers, D.N. Powder flow and compaction. In Cooper and Gunn’s Tutorial Pharmacy, 6th ed.; Carter, J.S., Ed.; CBS Publishers and Distributors: New Delhi, India, 1986; pp. 211–233. [Google Scholar]
- Shah, D.; Shah, Y.; Pradhan, R. Development and Evaluation of Controlled-Release Diltiazem HCl Microparticles Using Cross-Linked Poly(Vinyl Alcohol). Drug Dev. Ind. Pharm. 1997, 23, 567–574. [Google Scholar] [CrossRef]
- Lachman, L.; Liberman, H.A.; Kanig, J.L. The Theory and Practice of Industrial Pharmacy, 3rd ed.; Varghese Publishing House: Bombay, India, 1987. [Google Scholar]
- ICH Q2A. Harmonised Tripartite Guideline: Text on Validation of Analytical Procedures; International Council on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use: Geneva, Switzerland, 1994. [Google Scholar]
- Ritschel, W.A. Handbook of Basic Pharmacokinetics including Clinical Applications, 4th ed.; Drug Intelligence Publications: Hamilton, IL, USA, 1992. [Google Scholar]
Code | Angle of Repose (°) | Tapped Bulk Density (gm/cm3) | Loose Bulk Density (gm/cm3) | Carr’s Index (%) | Hausner’s Factor |
---|---|---|---|---|---|
G-1 | 23.05 ± 0.05 | 0.40 ± 0.05 | 0.33 ± 0.04 | 16.68 ± 0.08 | 1.200 |
G-2 | 23.34 ± 0.06 | 0.38 ± 0.04 | 0.32 ± 0.07 | 16.12 ± 0.05 | 1.192 |
G-3 | 22.38 ± 0.09 | 0.42 ± 0.09 | 0.33 ± 0.03 | 20.01 ± 0.07 | 1.250 |
G-4 | 22.79 ± 0.04 | 0.43 ± 0.05 | 0.32 ± 0.02 | 25.80 ± 0.05 | 1.348 |
G-5 | 23.05 ± 0.06 | 0.42 ± 0.03 | 0.32 ± 0.05 | 22.58 ± 0.08 | 1.292 |
G-6 | 23.58 ± 0.03 | 0.38 ± 0.06 | 0.33 ± 0.05 | 13.34 ± 0.07 | 1.154 |
G-7 | 22.01 ± 0.07 | 0.40 ± 0.04 | 0.34 ± 0.06 | 13.80 ± 0.06 | 1.160 |
G-8 | 22.55 ± 0.05 | 0.42 ± 0.06 | 0.32 ± 0.04 | 22.58 ± 0.04 | 1.292 |
G-9 | 23.70 ± 0.06 | 0.43 ± 0.05 | 0.33 ± 0.04 | 23.34 ± 0.09 | 1.305 |
G-10 | 23.05 ± 0.04 | 0.40 ± 0.09 | 0.33 ± 0.06 | 16.68 ± 0.08 | 1.200 |
G-11 | 23.09 ± 0.03 | 0.40 ± 0.08 | 0.32 ± 0.06 | 19.35 ± 0.06 | 1.240 |
G-12 | 21.99 ± 0.05 | 0.43 ± 0.07 | 0.32 ± 0.07 | 25.80 ± 0.05 | 1.348 |
Code | Mass Uniformity (g) n = 20 | Hardness (kg/cm3) n = 6 | Friability (%) n = 6 | Thickness (mm) n = 10 | Drug Content Uniformity (%) n = 5 |
---|---|---|---|---|---|
F-1 | 0.6036 ± 0.006 | 5.50 ± 0.30 | 0.412 ± 0.009 | 5.21 ± 0.04 | 96.22 ± 1.4 |
F-2 | 0.6017 ± 0.009 | 5.68 ± 0.19 | 0.472 ± 0.015 | 5.23 ± 0.10 | 97.87 ± 1.6 |
F-3 | 0.6022 ± 0.005 | 5.62 ± 0.22 | 0.419 ± 0.017 | 5.22 ± 0.07 | 96.45 ± 1.5 |
F-4 | 0.6010 ± 0.007 | 5.59 ± 0.16 | 0.422 ± 0.018 | 5.25 ± 0.06 | 98.21 ± 1.9 |
F-5 | 0.5997 ± 0.004 | 5.48 ± 0.15 | 0.466 ± 0.010 | 5.30 ± 0.08 | 97.68 ± 1.3 |
F-6 | 0.5992 ± 0.007 | 5.16 ± 0.22 | 0.484 ± 0.012 | 5.29 ± 0.05 | 98.33 ± 1.2 |
F-7 | 0.6011 ± 0.006 | 5.82 ± 0.47 | 0.492 ± 0.015 | 5.27 ± 0.07 | 97.66 ± 1.1 |
F-8 | 0.6032 ± 0.008 | 5.77 ± 0.27 | 0.477 ± 0.017 | 5.26 ± 0.09 | 97.54 ± 1.9 |
F-9 | 0.6041 ± 0.010 | 5.71 ± 0.33 | 0.480 ± 0.019 | 5.28 ± 0.08 | 97.22 ± 1.6 |
F-10 | 0.6020 ± 0.012 | 5.75 ± 0.39 | 0.460 ± 0.027 | 5.27 ± 0.04 | 98.94 ± 1.8 |
F-11 | 0.6031 ± 0.009 | 5.66 ± 0.37 | 0.450 ± 0.022 | 5.29 ± 0.05 | 98.11 ± 1.3 |
F-12 | 0.6038 ± 0.008 | 5.54 ± 0.26 | 0.470 ± 0.030 | 5.30 ± 0.05 | 98.17 ± 1.7 |
Code | Zero Order (r2) | First Order (r2) | Higuchi (r2) | Peppas | MDT (Hours) | |
---|---|---|---|---|---|---|
n | (r2) | |||||
F-1 | 0.9468 | 0.9600 | 0.9901 | 0.5994 | 0.9852 | 0.245 |
F-2 | 0.8777 | 0.9400 | 0.9412 | 0.5011 | 0.9799 | 1.820 |
F-3 | 0.9542 | 0.9950 | 0.9897 | 0.5112 | 0.9892 | 2.300 |
F-4 | 0.9264 | 0.9911 | 0.9838 | 0.5084 | 0.9901 | 2.080 |
F-5 | 0.8653 | 0.9487 | 0.9738 | 0.1048 | 0.9571 | 0.231 |
F-6 | 0.8602 | 0.9584 | 0.9732 | 0.1571 | 0.9728 | 0.291 |
F-7 | 0.8652 | 0.9829 | 0.9715 | 0.2300 | 0.9714 | 0.352 |
F-8 | 0.8378 | 0.9939 | 0.9545 | 0.3305 | 0.9538 | 0.487 |
F-9 | 0.9167 | 0.9010 | 0.9940 | 0.1110 | 0.9929 | 0.231 |
F-10 | 0.8716 | 0.9516 | 0.9774 | 0.1645 | 0.9733 | 0.300 |
F-11 | 0.8554 | 0.9758 | 0.9754 | 0.2249 | 0.9644 | 0.350 |
F-12 | 0.8185 | 0.9978 | 0.9484 | 0.2835 | 0.9558 | 0.469 |
Parameter | Initial a | Real Time a | Accelerated a |
---|---|---|---|
Thickness (mm); (n = 10) | 5.28 ± 0.11 | 5.27 ± 0.12 | 5.29 ± 0.14 |
Hardness (kg/cm2); (n = 6) | 5.30 ± 0.05 | 5.29 ± 0.10 | 5.29 ± 0.20 |
Friability (%); (n = 6) | 0.45 ± 0.09 | 0.44 ± 0.08 | 0.47 ± 0.09 |
Drug content (%); (n = 5) | 99.64 ± 1.10 | 97.84 ± 1.90 | 98.41 ± 1.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venkatesh, D.N.; Meyyanathan, S.N.; Kovacevic, A.; Zielińska, A.; Fonseca, J.; Eder, P.; Dobrowolska, A.; Souto, E.B. Effect of Hydrophilic Polymers on the Release Rate and Pharmacokinetics of Acyclovir Tablets Obtained by Wet Granulation: In Vitro and In Vivo Assays. Molecules 2022, 27, 6490. https://doi.org/10.3390/molecules27196490
Venkatesh DN, Meyyanathan SN, Kovacevic A, Zielińska A, Fonseca J, Eder P, Dobrowolska A, Souto EB. Effect of Hydrophilic Polymers on the Release Rate and Pharmacokinetics of Acyclovir Tablets Obtained by Wet Granulation: In Vitro and In Vivo Assays. Molecules. 2022; 27(19):6490. https://doi.org/10.3390/molecules27196490
Chicago/Turabian StyleVenkatesh, D. Nagasamy, Subramanianainar N. Meyyanathan, Andjelka Kovacevic, Aleksandra Zielińska, Joel Fonseca, Piotr Eder, Agnieszka Dobrowolska, and Eliana B. Souto. 2022. "Effect of Hydrophilic Polymers on the Release Rate and Pharmacokinetics of Acyclovir Tablets Obtained by Wet Granulation: In Vitro and In Vivo Assays" Molecules 27, no. 19: 6490. https://doi.org/10.3390/molecules27196490
APA StyleVenkatesh, D. N., Meyyanathan, S. N., Kovacevic, A., Zielińska, A., Fonseca, J., Eder, P., Dobrowolska, A., & Souto, E. B. (2022). Effect of Hydrophilic Polymers on the Release Rate and Pharmacokinetics of Acyclovir Tablets Obtained by Wet Granulation: In Vitro and In Vivo Assays. Molecules, 27(19), 6490. https://doi.org/10.3390/molecules27196490