Compositional Study of Phospholipids from the Dried Big Head and Opossum Shrimp, Mussel, and Sea Cucumber Using 31P NMR Spectroscopy: Content and Fatty Acid Composition of Plasmalogen
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Lipid Extraction
3.3. Hydrolysis with Phospholipase A1
3.4. Phospholipid Analysis Using HPLC-ELSD
3.5. Phospholipid Analysis Using 31P-NMR and Neutral Lipid Analysis Using 1H-NMR
3.6. Isolation of Phospholipids Using Solid Phase Extraction Column
3.7. Thin-Layer Chromatography (TLC)
3.8. Fatty Acid Analysis Using Gas Chromatography
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
PL | Phospholipid |
PtdCho | Phosphatidyl choline |
PtdEtn | Phosphatidyl ethanolamine |
PtdSer | Phosphatidyl serine |
PtdIns | Phosphatidyl inositol |
PtdGro | Phosphatidyl glycerol |
LPC | Lysophosphatidyl choline |
PlsCho | Plasmalogen choline |
PlsEtn | Plasmalogen ethanolamine |
PLA1 | Phospholipase A1 |
References
- Panevska, A.; Skočaj, M.; Križaj, I.; Maček, P.; Sepčić, K. Ceramide phosphoethanolamine, an enigmatic cellular membrane sphingolipid. Biochim. Biophys. Acta Biomembr. 2019, 1861, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Lordan, R.; Tsoupras, A.; Zabetakis, I. Phospholipids of animal and marine origin: Structure, function, and anti-inflammatory properties. Molecules 2017, 22, 1964. [Google Scholar] [CrossRef] [PubMed]
- Goldfine, H. The appearance, disappearance and reappearance of plasmalogens in evolution. Prog. Lipid Res. 2010, 49, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Lessig, J.; Fuchs, B. Plasmalogens in biological systems: Their role in oxidative processes in biological membranes, their contribution to pathological processes and aging and plasmalogen analysis. Curr. Med. Chem. 2009, 16, 2021–2041. [Google Scholar] [CrossRef]
- Yamashita, S.; Kiko, T.; Fujiwara, H.; Hashimoto, M.; Nakagawa, K.; Kinoshita, M.; Furukawa, K.; Arai, H.; Miyazawa, T. Alterations in the levels of amyloid-β, phospholipid hydroperoxide, and plasmalogen in the blood of patients with Alzheimer’s disease: Possible interactions between amyloid-β and these lipids. J. Alzheimer’s Dis. 2016, 50, 527–537. [Google Scholar] [CrossRef]
- Yamashita, S.; Abe, A.; Nakagawa, K.; Kinoshita, M.; Miyazawa, T. Separation and detection of plasmalogen in marine invertebrates by high-performance liquid chromatography with evaporative light-scattering detection. Lipids 2014, 49, 1261–1273. [Google Scholar] [CrossRef]
- Duan, B.; Hong, E.-S.; Shin, J.-A.; Qin, Y.; Lee, J.-H.; Lee, C.-W.; Lee, K.-T. Correlations of fat content in human milk with fat droplet size and phospholipid species. Molecules 2021, 26, 1596. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, F.; Wu, S.; Yang, B.; Liang, X. Facile preparation of polyvinyl alcohol coated SiO2 stationary phases for high performance liquid chromatography. Analyst 2014, 139, 5594–5599. [Google Scholar] [CrossRef]
- Mawatari, S.; Hazeyama, S.; Morisaki, T.; Fujino, T. Enzymatic measurement of ether phospholipids in human plasma after hydrolysis of plasma with phospholipase A1. Pract. Lab. Med. 2018, 10, 44–51. [Google Scholar] [CrossRef]
- Yamashita, S.; Honjo, A.; Aruga, M.; Nakagawa, K.; Miyazawa, T. Preparation of marine plasmalogen and selective identification of molecular species by LC-MS/MS. J. Oleo Sci. 2014, 63, 423–430. [Google Scholar] [CrossRef]
- Contarini, G.; Povolo, M. Phospholipids in milk fat: Composition, biological and technological significance, and analytical strategies. Int. J. Mol. Sci. 2013, 14, 2808–2831. [Google Scholar] [CrossRef]
- Burri, L.; Hoem, N.; Banni, S.; Berge, K. Marine omega-3 phospholipids: Metabolism and biological activities. Int. J. Mol. Sci. 2012, 13, 15401–15419. [Google Scholar] [CrossRef]
- Mecheta, A.; Hanachi, A.; Jeandel, C.; Arab-Tehrany, E.; Bianchi, A.; Velot, E.; Mezali, K.; Linder, M. Physicochemical properties and liposomal formulations of hydrolysate fractions of four sea cucumbers (Holothuroidea: Echinodermata) from the Northwestern Algerian Coast. Molecules 2020, 25, 2972. [Google Scholar] [CrossRef]
- Facchini, L.; Losito, I.; Cataldi, T.R.; Palmisano, F. Seasonal variations in the profile of main phospholipids in Mytilus galloprovincialis mussels: A study by hydrophilic interaction liquid chromatography–electrospray ionization fourier transform mass spectrometry. J. Mass Spectrom. 2018, 53, 1–20. [Google Scholar] [CrossRef]
- Hanuš, L.O.; Levitsky, D.O.; Shkrob, I.; Dembitsky, V.M. Plasmalogens, fatty acids and alkyl glyceryl ethers of marine and freshwater clams and mussels. Food Chem. 2009, 116, 491–498. [Google Scholar] [CrossRef]
- Burri, L.; Hoem, N.; Monakhova, Y.B.; Diehl, B.W. Fingerprinting krill oil by 31P, 1H and 13C NMR spectroscopies. JAOCS 2016, 93, 1037–1049. [Google Scholar] [CrossRef]
- Goodenowe, D.B.; Cook, L.L.; Liu, J.; Lu, Y.; Jayasinghe, D.A.; Ahiahonu, P.W.; Heath, D.; Yamazaki, Y.; Flax, J.; Krenisky, K.F.; et al. Peripheral ethanolamine plasmalogen deficiency: A logical causative factor in Alzheimer’s disease and dementia. J. Lipid Res. 2007, 48, 2485–2498. [Google Scholar] [CrossRef]
- The LipidWeb. Available online: https://lipidmaps.org (accessed on 15 November 2021).
- Kraffe, E.; Soudant, P.; Marty, Y. Fatty acids of serine, ethanolamine, and choline plasmalogens in some marine bivalves. Lipids 2004, 39, 59–66. [Google Scholar] [CrossRef]
- Amminger, G.P.; Schäfer, M.R.; Klier, C.M.; Slavik, J.-M.; Holzer, I.; Holub, M.; Goldstone, S.; Whitford, T.J.; McGorry, P.D.; Berk, M. Decreased nervonic acid levels in erythrocyte membranes predict psychosis in help-seeking ultra-high-risk individuals. Mol. Psychiatry 2012, 17, 1150–1152. [Google Scholar] [CrossRef]
- Takamasa, K. Lipid contents and fatty acid composition of total lipid of sea cucumber Stichopus japonicus and Konowata (salted sea cucumber entrails). Food Sci. Technol. Res. 2003, 9, 45–48. [Google Scholar]
- Ouraji, H.; Fereidouni, A.E.; Shayegan, M.; Asil, S.M. Comparison of fatty acid composition between farmed and wild Indian white shrimps, Fnneropenaeus indicus. Food Nutr. Sci. 2011, 2, 824–829. [Google Scholar]
- Saglik, S.; Imre, S. Fatty acid composition and cholesterol content of mussel and shrimp consumed in Turkey. J. Black Sea/Medit. 1997, 3, 179–189. [Google Scholar]
- Yu, H.-B.; Gao, Q.-F.; Dong, S.-L.; Wen, B. Changes in fatty acid profiles of sea cucumber Apostichopus japonicus (Selenka) induced by terrestrial plants in diets. Aquaculture 2015, 442, 119–124. [Google Scholar] [CrossRef]
- Monroig, Ó.; Tocher, D.R.; Navarro, J.C. Biosynthesis of polyunsaturated fatty acids in marine invertebrates: Recent advances in molecular mechanisms. Mar. Drugs 2013, 11, 3998–4018. [Google Scholar] [CrossRef]
- Russell, N.J.; Nichols, D.S. Polyunsaturated fatty acids in marine bacteria—A dogma rewritten. Microbiology 1999, 145, 767–779. [Google Scholar] [CrossRef]
- Lin, H.; Jiang, J.; Xue, C.H.; Zhang, B.; Xu, J.-C. Seasonal changes in phospholipids of mussel (Mytilus edulis Linne). J. Sci. Food Agric. 2003, 83, 133–135. [Google Scholar] [CrossRef]
- Fleming, P.J.; Hajra, A.K. 1-Alky l-sn-glycero-3-phosphate: Acyl-CoA acyltransferase in rat brain microsomes. J. Biol. Chem. 1977, 252, 1663–1672. [Google Scholar] [CrossRef]
- Yamashita, A.; Hayashi, Y.; Matsumoto, N.; Nemoto-Sasaki, Y.; Oka, S.; Tanikawa, T.; Sugiura, T. Glycerophosphate/acylglycerophosphate acyltransferases. Biology 2014, 3, 801–830. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Hatzakis, E.; Koidis, A.; Boskou, D.; Dais, P. Determination of phospholipids in olive oil by 31P NMR spectroscopy. J. Agric. Food Chem. 2008, 56, 6232–6240. [Google Scholar] [CrossRef] [PubMed]
- Duan, B.; Shin, J.-A.; Qin, Y.; Kwon, J.-I.; Lee, K.-T. A study on the relationship of fat content in human milk on carotenoids content and fatty acid compositions in Korea. Nutrients 2019, 11, 2072. [Google Scholar] [CrossRef] [PubMed]
PL Concentration (mg/100 g of Sample) 1) | ||||||
---|---|---|---|---|---|---|
Infant Formula | Dried Big Head Shrimp | |||||
PLs | HPLC-ELSD | 31P-NMR | RSD 2) | PLs | HPLC-ELSD | 31P-NMR |
PtdCho | 147.7 ± 6.0 3) | 136.3 ± 1.1 | 5.7 | PtdCho | Not measurable | 1677.9 ± 273.6 |
SM | 76.4 ± 7.8 | 68.8 ± 5.0 | 7.4 | SM | Not measurable | 147.2 ± 15.2 |
PtdEtn | 104.2 ± 4.3 | 80.8 ± 13.8 | 17.9 | PtdEtn | Not measurable | 169.3 ± 20.7 |
PLs (mg/100 g of Sample) 1) | Mussel | Sea Cucumber | Big Head Shrimp | Opossum Shrimp |
---|---|---|---|---|
Mytilus galloprovincialis | Apostichopus japonicus | Solenocera melantho | Neomysis awatschensis | |
PtdCho | 1661.6 ± 63.6 | 64.3 ± 25.5 | 1677.9 ± 273.6 | 1603.0 ± 186.8 |
PlsCho | 379.0 ± 16.8 | 206.9 ± 88.5 | 262.3 ± 43.0 | 245.6 ± 29.4 |
LPC | 190.3 ± 12.1 | 37.1 ± 14.4 | 67.6 ± 7.9 | 683.7 ± 42.1 |
SM | 198.8 ± 9.5 | 26.8 ± 13.2 | 147.2 ± 15.2 | 102.2 ± 11.8 |
PtdEtn | 345.1 ± 3.0 | 17.6 ± 9.4 | 169.3 ± 20.7 | 121.2 ± 17.8 |
PlsEtn | 675.4 ± 7.7 | 51.5 ± 27.9 | 629.5 ± 53.4 | 217.9 ± 27.9 |
Total lipid content (wt %) | 10.1 ± 0.4 | 1.2 ± 0.4 | 8.5 ± 0.2 | 6.7 ± 0.4 |
PLs (w/w %) 2) | Mussel | Sea Cucumber | Big Head Shrimp | Opossum Shrimp |
Mytilus galloprovincialis | Apostichopus japonicus | Solenocera melantho | Neomysis awatschensis | |
PtdCho | 32.6 ± 0.2 | 11.5 ± 0.5 | 50.7 ± 2.6 | 41.0 ± 0.8 |
PlsCho | 7.4 ± 0.1 | 36.4 ± 0.2 | 8.1 ± 2.2 | 6.3 ± 0.1 |
LPC | 3.7 ± 0.1 | 6.7 ± 0.3 | 2.1 ± 0.1 | 17.6 ± 0.6 |
SM | 3.9 ± 0.1 | 4.6 ± 0.4 | 4.5 ± 0.1 | 2.6 ± 0.0 |
PtdEtn | 6.8 ± 0.2 | 2.9 ± 0.4 | 5.2 ± 0.1 | 3.1 ± 0.1 |
PlsEtn | 13.3 ± 0.6 | 8.5 ± 1.2 | 19.1 ± 0.5 | 5.6 ± 1.3 |
Others 3) (e.g., neutral lipid, unknowns) | 32.3 | 29.4 | 10.3 | 23.8 |
PlsCho | ||||
---|---|---|---|---|
Fatty Acids | Big Head Shrimp | Opossum Shrimp | Mussel | Sea Cucumber |
Solenocera melantho | Neomysis awatschensis | Mytilus galloprovincialis | Apostichopus japonicus | |
Myristic acid (C14:0) | 0.11 ± 0.01 (1.2%) | 0.09 ± 0.00 (0.9%) | 0.45 ± 0.05 (3.4%) | 0.12 ± 0.00 (2.5%) |
Palmitic acid (C16:0) | 0.12 ± 0.00 (1.3%) | 0.55 ± 0.05 (5.9%) | 0.55 ± 0.01 (4.1%) | 0.05 ± 0.00 (1.0%) |
Palmitoleic acid (C16:1, n-7) | 0.12 ± 0.00 (1.3%) | 1.00 ± 0.00 (10.8%) | ND | ND |
Stearic acid (C18:0) | 0.10 ± 0.01 (1.1%) | 0.30 ± 0.04 (3.2%) | 0.52 ± 0.05 (3.9%) | 0.06 ± 0.00 (1.1%) |
Oleic acid (C18:1, n-9) | 0.87 ± 0.09 (9.4%) | 0.79 ± 0.07 (8.6%) | 0.27 ± 0.01 (2.1%) | 0.08 ± 0.01 (1.6%) |
Vaccenic acid (C18:1, n-7) | 0.31 ± 0.01 (3.4%) | 0.41 ± 0.04 (4.5%) | 0.17 ± 0.01 (1.3%) | 0.17 ± 0.00 (3.5%) |
Linoleic acid (C18:2, n-6) | ND | 0.10 ± 0.00 (1.0%) | 0.14 ± 0.00 (1.1%) | ND |
Arachidic acid (C20:0) | ND | ND | ND | ND |
cis-11-Eicosenoic acid (C20:1, n-9) | ND | 0.09 ± 0.00 (0.9%) | 0.13 ± 0.01 (1.0%) | 0.02 ± 0.00 (0.5%) |
α-Linolenic acid (C18:3, n-3) | ND | 0.07 ± 0.00 (0.7%) | ND | ND |
Eicosadienoic acid (C20:2, n-6) | 0.24 ± 0.01 (2.6%) | 0.07 ± 0.00 (0.8%) | ND | 0.02 ± 0.00 (4.1%) |
Behenic acid (C22:0) | ND | 0.04 ± 0.00 (0.5%) | ND | ND |
cis-8, 11, 14-Eicosatrienoic acid (C20:3, n-6) | ND | 0.04 ± 0.00 (0.4%) | ND | ND |
Erucic acid (C22:1, n-9) | 0.22 ± 0.00 (2.4%) | 0.04 ± 0.01 (0.5%) | ND | ND |
Arachidonic acid (AA, C20:4, n-6) | 0.26 ± 0.01 (2.8%) | 0.16 ± 0.00 (1.8%) | 0.18 ± 0.00 (1.3%) | 0.40 ± 0.00 (8.3%) |
Docosadienoic acid (C22:2, n-6) | 0.61 ± 0.05 (6.6%) | 0.89 ± 0.02 (9.6%) | 1.00 ± 0.00 (7.5%) | 0.52 ± 0.00 (10.7%) |
Lignoceric acid (C24:0) | ND | 0.05 ± 0.01 (0.6%) | ND | ND |
Eicosapentaenoic acid (EPA, C20:5, n-3) | 1.00 ± 0.00 (10.9%) | 0.55 ± 0.04 (6.0%) | 0.87 ± 0.06 (6.6%) | 1.00 ± 0.00 (20.5%) |
Nervonic acid (C24:1, n-9) | ND | 0.08 ± 0.01 (0.8%) | ND | 0.05 ± 0.00 (1.1%) |
Docosapentaenoic acid (DPA, C22:5, n-3) | 0.77 ± 0.03 (8.4%) | ND | 0.13 ± 0.00 (1.0%) | ND |
Docosahexaenoic acid (DHA, C22:6, n-3) | 0.40 ± 0.02 (4.4%) | 0.32 ± 0.01 (3.5%) | 0.54 ± 0.03 (4.0%) | ND |
Unknowns | 5.03 ± 0.33 (54.7%) | 3.98 ± 0.12 (43.0%) | 11.42 ± 0.48 (87.0%) | 2.57 ± 0.10 (52.7%) |
PtdCho | ||||
---|---|---|---|---|
Fatty Acid | Big Head Shrimp | Opossum Shrimp | Mussel | Sea Cucumber |
Solenocera melantho | Neomysis awatschensis | Mytilus galloprovincialis | Apostichopus japonicus | |
Myristic acid (C14:0) | ND | 0.12 ± 0.00 (3.5%) | 0.10 ± 0.00 (2.9%) | ND |
Palmitic acid (C16:0) | 1.00 ± 0.00 (21.0%) | 1.00 ± 0.00 (28.3%) | 1.00 ± 0.00 (30.7%) | 0.25 ± 0.01 (7.7%) |
Palmitoleic acid (C16:1, n-7) | 0.61 ± 0.01 (12.7%) | 0.17 ± 0.00 (4.7%) | 0.16 ± 0.00 (4.8%) | ND |
cis-10-Hetadeccenoic acid (C17:1) | 0.10 ± 0.00 (2.0%) | ND | ND | ND |
Stearic acid (C18:0) | 0.22 ± 0.01 (4.6%) | 0.15 ± 0.00 (4.2%) | 0.16 ± 0.00 (4.8%) | 0.35 ± 0.02 (10.7%) |
Oleic acid (C18:1, n-9) | 0.77 ± 0.02 (16.2%) | 0.35 ± 0.00 (9.8%) | 0.06 ± 0.00 (1.8%) | 0.17 ± 0.01 (5.3%) |
Vaccenic acid (C18:1, n-7) | 0.32 ± 0.01 (6.7%) | 0.05 ± 0.00 (2.6%) | 0.13 ± 0.00 (4.1%) | 0.13 ± 0.00 (4.0%) |
Linoleic acid (C18:2, n-6) | 0.10 ± 0.00 (2.1%) | 0.08 ± 0.00 (2.1%) | 0.04 ± 0.00 (1.1%) | ND |
Arachidic acid (C20:0) | ND | 0.02 ± 0.00 (0.5%) | ND | ND |
γ-Linolenic acid (C18:3, n-6) | 0.03 ± 0.00 (0.7%) | 0.05 ± 0.00 (1.4%) | 0.06 ± 0.00 (1.8%) | 0.26 ± 0.00 (7.9%) |
cis-11-Eicosenoic acid (C20:1, n-9) | 0.04 ± 0.00 (0.8%) | 0.03 ± 0.00 (1.0%) | 0.04 ± 0.00 (1.1%) | ND |
α-Linolenic acid (C18:3, n-3) | 0.03 ± 0.00 (0.6%) | 0.08 ± 0.00 (2.1%) | 0.03 ± 0.00 (0.9%) | ND |
Eicosadienoic acid (C20:2, n-6) | 0.03 ± 0.00 (0.7%) | ND | ND | ND |
Erucic acid (C22:1, n-9) | ND | 0.02 ± 0.00 (0.6%) | 0.02 ± 0.00 (0.7%) | 0.16 ± 0.00 (4.9%) |
Arachidonic acid (AA, C20:4, n-6) | 0.14 ± 0.00 (2.9%) | 0.05 ± 0.00 (1.5%) | 0.05 ± 0.00 (1.5%) | 0.29 ± 0.01 (8.8%) |
Docosadienoic acid (C22:2, n-6) | ND | 0.02 ± 0.00 (0.5%) | ND | ND |
Eicosapentaenoic acid (EPA, C20:5, n-3) | 0.51 ± 0.01 (10.6%) | 0.54 ± 0.00 (15.3%) | 0.58 ± 0.01 (17.7%) | 1.00 ± 0.01 (30.6%) |
Docosapentaenoic acid (DPA, C22:5, n-3) | 0.05 ± 0.00 (1.1%) | ND | ND | ND |
Docosahexaenoic acid (DHA, C22:6, n-3) | 0.39 ± 0.01 (8.3%) | 0.38 ± 0.01 (10.8%) | 0.28 ± 0.00 (8.5%) | ND |
Unknowns | 0.53 ± 0.00 (11.2%) | 0.39 ± 0.01 (11.0%) | 0.58 ± 0.01 (19.0%) | 0.66 ± 0.01 (20.1%) |
Total Fatty Acid Composition | ||||
---|---|---|---|---|
Fatty Acid | Big Head Shrimp | Opossum Shrimp | Mussel | Sea Cucumber |
Solenocera melantho | Neomysis awatschensis | Mytilus galloprovincialis | Apostichopus japonicus | |
Butyric acid (C4:0) | ND | trace (0.0%) | trace (0.0%) | trace (0.0%) |
Capric acid (C10:0) | trace (0.0%) | trace (0.0%) | ND | ND |
Lauric acid (C12:0) | 0.02 ± 0.00 (0.3%) | 0.01 ± 0.00 (0.2%) | trace (0.0%) | trace (0.0%) |
Myristic acid (C14:0) | 0.19 ± 0.00 (2.7%) | 0.30 ± 0.00 (6.7%) | 0.25 ± 0.00 (4.6%) | 0.05 ± 0.00 (1.4%) |
Myristoleic acid (C14:1) | 0.02 ± 0.00 (0.2%) | trace (0.0%) | trace (0.0%) | trace (0.0%) |
Palmitic acid (C16:0) | 1.00 ± 0.00 (14.3%) | 1.00 ± 0.00 (21.9%) | 1.00 ± 0.00 (18.6%) | 0.09 ± 0.00 (2.3%) |
Palmitoleic acid (C16:1, n-7) | 0.88 ± 0.01 (12.5%) | 0.30 ± 0.00 (6.6%) | 0.55 ± 0.01 (10.2%) | 0.14 ± 0.00 (3.7%) |
Stearic acid (C18:0) | 0.33 ± 0.00 (4.8%) | 0.21 ± 0.00 (4.5%) | 0.22 ± 0.00 (4.1%) | 0.12 ± 0.00 (3.1%) |
Oleic acid (C18:1, n-9) | 0.80 ± 0.00 (11.4%) | 0.27 ± 0.01 (5.9%) | 0.15 ± 0.00 (2.9%) | 0.05 ± 0.00 (1.2%) |
Vaccenic acid (C18:1, n-7) | 0.42 ± 0.00 (5.9%) | 0.11 ± 0.00 (2.3%) | 0.08 ± 0.12 (3.1%) | 0.09 ± 0.00 (2.5%) |
Linoleic acid (C18:2, n-6) | 0.05 ± 0.00 (0.7%) | 0.10 ± 0.00 (2.2%) | 0.15 ± 0.00 (2.8%) | 0.01 ± 0.00 (0.4%) |
Arachidic acid (C20:0) | 0.03 ± 0.00 (0.4%) | 0.01 ± 0.00 (0.3%) | 0.01 ± 0.00 (0.2%) | 0.04 ± 0.00 (1.1%) |
γ-Linolenic acid (C18:3, n-6) | trace (0.0%) | 0.01 ± 0.00 (0.2%) | trace (0.0%) | trace (0.0%) |
cis-11-Eicosenoic acid (C20:1, n-9) | 0.07 ± 0.00 (1.0%) | 0.03 ± 0.00 (0.6%) | 0.13 ± 0.00 (2.5%) | 0.02 ± 0.00 (0.5%) |
α-Linolenic acid (C18:3, n-3) | 0.09 ± 0.00 (1.3%) | 0.09 ± 0.00 (1.9%) | 0.14 ± 0.00 (2.6%) | 0.03 ± 0.00 (0.7%) |
Eicosadienoic acid (C20:2, n-6) | 0.04 ± 0.00 (0.5%) | 0.07 ± 0.09 (0.2%) | 0.01 ± 0.00 (0.3%) | 0.02 ± 0.00 (0.6%) |
cis-8, 11, 14-Eicosatrienoic acid (C20:3, n-6) | 0.01 ± 0.00 (0.1%) | trace (0.0%) | trace (0.0%) | trace (0.0%) |
Erucic acid (C22:1, n-9) | 0.01 ± 0.00 (0.1%) | ND | 0.01 ± 0.00 (0.1%) | 0.03 ± 0.00 (0.7%) |
cis-11, 14, 17-Eicosatrienoic acid (C20:3, n-3) | ND | ND | 0.01 ± 0.00 (0.1%) | 0.08 ± 0.00 (2.0%) |
Arachidonic acid (C20:4, n-6) | 0.23 ± 0.00 (2.9%) | 0.07 ± 0.00 (1.6%) | 0.09 ± 0.00 (1.6%) | 0.38 ± 0.00 (9.8%) |
Docosadienoic acid (C22:2, n-6) | trace (0.0%) | ND | ND | 0.47 ± 0.00 (12.1%) |
Eicosapentaenoic acid (EPA, C20:5, n-3) | 0.73 ± 0.00 (10.4%) | 0.60 ± 0.00 (13.2%) | 0.71 ± 0.01 (13.2%) | 1.00 ± 0.00 (26.0%) |
Nervonic acid (C24:1, n-9) | 0.02 ± 0.00 (0.3%) | 0.02 ± 0.00 (0.4%) | ND | 0.04 ± 0.00 (0.9%) |
Docosapentaenoic acid (DPA, C22:5, n-3) | 0.07 ± 0.00 (1.1%) | 0.02 ± 0.00 (0.5%) | 0.05 ± 0.00 (1.0%) | 0.01 ± 0.00 (0.2%) |
Docosahexaenoic acid (DHA, C22:6, n-3) | 0.78 ± 0.00 (11.1%) | 0.64 ± 0.00 (14.0%) | 0.43 ± 0.01 (8.0%) | 0.02 ± 0.00 (0.4%) |
Unknowns | 1.24 ± 0.00 (17.7%) | 0.80 ± 0.00 (17.6%) | 1.28 ± 0.01 (23.8%) | 1.16 ± 0.00 (30.1%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, E.-S.; Kim, J.-H.; So, H.-J.; Park, E.-A.; Park, Y.-L.; Lee, J.-H.; Shin, J.-A.; Lee, K.-T. Compositional Study of Phospholipids from the Dried Big Head and Opossum Shrimp, Mussel, and Sea Cucumber Using 31P NMR Spectroscopy: Content and Fatty Acid Composition of Plasmalogen. Molecules 2022, 27, 6250. https://doi.org/10.3390/molecules27196250
Hong E-S, Kim J-H, So H-J, Park E-A, Park Y-L, Lee J-H, Shin J-A, Lee K-T. Compositional Study of Phospholipids from the Dried Big Head and Opossum Shrimp, Mussel, and Sea Cucumber Using 31P NMR Spectroscopy: Content and Fatty Acid Composition of Plasmalogen. Molecules. 2022; 27(19):6250. https://doi.org/10.3390/molecules27196250
Chicago/Turabian StyleHong, Eun-Sik, Ji-Hyun Kim, Hee-Jin So, Eun-Ah Park, Ye-Lim Park, Jeung-Hee Lee, Jung-Ah Shin, and Ki-Teak Lee. 2022. "Compositional Study of Phospholipids from the Dried Big Head and Opossum Shrimp, Mussel, and Sea Cucumber Using 31P NMR Spectroscopy: Content and Fatty Acid Composition of Plasmalogen" Molecules 27, no. 19: 6250. https://doi.org/10.3390/molecules27196250
APA StyleHong, E.-S., Kim, J.-H., So, H.-J., Park, E.-A., Park, Y.-L., Lee, J.-H., Shin, J.-A., & Lee, K.-T. (2022). Compositional Study of Phospholipids from the Dried Big Head and Opossum Shrimp, Mussel, and Sea Cucumber Using 31P NMR Spectroscopy: Content and Fatty Acid Composition of Plasmalogen. Molecules, 27(19), 6250. https://doi.org/10.3390/molecules27196250