Chemosensing Properties of Coumarin Derivatives: Promising Agents with Diverse Pharmacological Properties, Docking and DFT Investigation
Abstract
:1. Introduction
2. Experimental Section
2.1. General Information
2.2. 3-Acetyl-4-hydroxycoumarine
2.3. General Procedure for the Synthesis of 4-aryl-1,2-dihydro-6-(4-hydroxy-2-oxo-2H-chromen-3-yl)-2-oxopyridin-3-carbonitrile 3
2.4. Preparation of 2-amino-4-hydroxy-6-(4-hydroxy-2-oxo-2H-chromen-3-yl)nicotinonitrile 4
2.5. Antibacterial Activity
2.6. Antioxidant Activity
2.7. Hydroxyl Radical Scavenging Assay
2.8. Anti-Inflammatory Activity
2.9. Photochemical Quantum Yields
2.10. Fluorescence Quantum Yields
2.11. Computational Details
2.12. Molecular Docking
2.13. Preparation of PVA/DHCOC Nanocomposite Films
3. Results and Discussion
3.1. Theoretical Results
3.1.1. Modeling of the Product
3.1.2. Study of the Tautomeric Equilibrium (Imine↔Amine)
3.1.3. Mapped Electrostatic Potential Surface (MEPs) Analysis
3.2. UV Calculations
3.2.1. TD-DFT Absorption UV Spectra Analysis
3.2.2. TD-DFT Fluorescence UV Spectra Analysis
3.3. UV-Visible and Fluorescence Spectra of 2-amino-4-hydroxy-6-(4-hydroxy-2-oxo-2H-chromen-3-yl)nicotinonitrile4
3.4. Photostability
3.5. Effect of Viscosity of the Medium
3.6. Biological Activities
3.6.1. Antibacterial Activities
3.6.2. Antioxidant Activity
3.6.3. Anti-Inflammatory Activity
3.6.4. Antiproliferative Activity
3.7. Docking Result Analysis
3.8. Coumarin 4 as a Chemosensor for Cu2+ and Ni+2 Ions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability Statement
Abbreviations
References
- Slimani, I.; Hamdi, N.; Al-Hazmy, S.M.; Alhagri, I.A.; Ebeid, E.-Z.M.; Okba, E.A. Synthesis and Spectral Characterisation of (E)-3-(3-(4 (Dimethylamino)Phenyl)Acrylo-yl)-4-Hydroxy-2H-Chromen-2-One and Their Antibacterial Activity and Acetylcholinesterase Inhibition. J. Chem. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
- Mangasuli, S.N.; Hosamani, K.M.; Devarajegowda, H.C.; Kurjogi, M.M.; Joshi, S.D. Synthesis of coumarin-theophylline hybrids as a new class of anti-tubercular and anti-microbial agents. Eur. J. Med. Chem. 2018, 146, 747–756. [Google Scholar] [CrossRef]
- Kasperkiewicz, K.; Ponczek, M.B.; Owczarek, J.; Guga, P.; Budzisz, E. Antagonists of Vitamin K—Popular Coumarin Drugs and New Synthetic and Natural Coumarin Derivatives. Molecules 2020, 25, 1465. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, J.; Liu, Y.; Zeng, Y.; Wu, G. A Review on Anti-Tumor Mechanisms of Coumarins. Front. Oncol. 2020, 10, 2720. [Google Scholar] [CrossRef] [PubMed]
- Akkol, E.K.; Genç, Y.; Karpuz, B.; Sobarzo-Sánchez, E.; Capasso, R. Coumarins and Coumarin-Related Compounds in Pharmacotherapy of Cancer. Cancers 2020, 12, 1959. [Google Scholar] [CrossRef]
- Galloway, W.; Isidro-Llobet, A.; Spring, D. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat. Commun. 2010, 1, 80. [Google Scholar] [CrossRef] [PubMed]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Parveen, F.; Patra, T.; Upadhyayula, S. A structure–activity relationship study using DFT analysis of Bronsted–Lewis acidic ionic liquids and synergistic effect of dual acidity in one-pot conversion of glucose to value-added chemicals. New J. Chem. 2017, 42, 1423–1430. [Google Scholar] [CrossRef]
- Casida, M.E. Time-Dependent Density Functional Response Theory for Molecules. In Recent Advances in Density Functional Methods; Chong, D.P., Ed.; World Scientific Publishing Co. Pte. Ltd.: Singapore, 1995; Volume 1. [Google Scholar]
- Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256, 454–464. [Google Scholar] [CrossRef]
- Tozer, D.J.; Handy, N.C. Improving virtual Kohn–Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities. J. Chem. Phys. 1998, 109, 10180–10189. [Google Scholar] [CrossRef]
- Hua, C.-J.; Zhang, K.; Xin, M.; Ying, T.; Gao, J.-R.; Jia, J.-H.; Li, Y.-J. High quantum yield and pH sensitive fluorescence dyes based on coumarin derivatives: Fluorescence characteristics and theoretical study. RSC Adv. 2016, 6, 49221–49227. [Google Scholar] [CrossRef]
- Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov. 2004, 3, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Warrier, S.B.; Kharkar, P.S. A coumarin based chemosensor for selective determination of Cu (II) ions based on fluorescence quenching. J. Lumin 2018, 199, 407–415. [Google Scholar] [CrossRef]
- Inaba, Y.; Nakamura, M.; Zuguchi, M.; Chida, K. Development of Novel Real-Time Radiation Systems Using 4-Channel Sensors. Sensors 2020, 20, 2741. [Google Scholar] [CrossRef]
- Vo, P.P.; Doan, H.N.; Kinashi, K.; Sakai, W.; Tsutsumi, N.; Huynh, D.P. X-ray Visualization and Quantification Using Fibrous Color Dosimeter Based on Leuco Dye. Appl. Sci. 2020, 10, 3798. [Google Scholar] [CrossRef]
- Diffey, B. The Early Days of Personal Solar Ultraviolet Dosimetry. Atmosphere 2020, 11, 125. [Google Scholar] [CrossRef]
- Kržanović, N.; Stanković, K.; Živanović, M.; Đaletić, M.; Ciraj-Bjelac, O. Development and testing of a low cost radiation protection instrument based on an energy compensated Geiger-Müller tube. Radiat. Phys. Chem. 2019, 164, 108358. [Google Scholar] [CrossRef]
- Murray, C.K.; Hospenthal, D.R. Broth Microdilution Susceptibility Testing for Leptospira spp. Antimicrob Agents Chemother. 2004, 48, 1548–1552. [Google Scholar] [CrossRef]
- Jelali, H.; Al Nasr, I.S.; Koko, W.S.; Khan, T.A.; Deniau, E.; Sauthier, M.; Alresheedi, F.; Hamdi, N. Synthesis, characterization and in vitro bioactivity studies of isoindolin-1-3-phosophonate compounds. J. Heterocycl. Chem. 2021, 59, 493–506. [Google Scholar] [CrossRef]
- Güven, K.; Yücel, E.; Cetintaş, F. Antimicrobial Activities of Fruits of Crataegus and Pyrus. Species. Pharm. Biol. 2006, 44, 79–83. [Google Scholar] [CrossRef]
- Sellem, I.; Kaaniche, F.; Chakchouk-Mtibaa, A.; Mellouli, L. Anti-oxidant, antimicrobial and anti-acetylcholinesterase activities of organic extracts from aerial parts of three Tunisian plants and correlation with polyphenols and flavonoids contents. Bangladesh J. Pharmacol. 2016, 11, 531–544. [Google Scholar] [CrossRef]
- Kirby, A.J.; Schmidt, R.J. The antioxidant activity of Chinese herbs for eczema and of placebo herbs—I. J. Ethnopharmacol. 1997, 56, 103–108. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Yarasir, M.N.; Kandaz, M.; Senkal, B.F.; Koca, A.; Salih, B. Metal-ion sensing and aggregation studies on reactive phthalocyanines bearing soft-metal receptor moieties; synthesis, spectroscopy and electrochemistry. Polyhedron 2007, 26, 5235–5242. [Google Scholar] [CrossRef]
- Shinde, U.A.; Kulkarni, K.R.; Phadke, A.S.; Nair, A.M.; Mungantiwar, A.A.; Dikshit, V.J.; Saraf, M.N. Mast cell stabilizing and lipoxygenase inhibitory activity of Cedrus deodara (Roxb.) Loud. wood oil. Ind. J. Exp. Biol. 1999, 371, 258–261. [Google Scholar]
- El-Daly, S.A.; Al-Hazmy, A.S.M.; Ebeid, E.M.; Bhasikuttan, A.C.; Palit, D.K.; Sapre, A.A.V.; Mittal, J.P. Spectral, Acid−Base, and Laser Characteristics of 1,4-Bis[β-(2-quinolyl)vinyl]benzene (BQVB). J. Phys. Chem. 1996, 100, 9732–9737. [Google Scholar] [CrossRef]
- Mnasri, A.; Mejri, A.; Al-Hazmy, S.M.; Arfaoui, Y.; Özdemir, I.; Gürbüz, N.; Hamdi, N. Silver– N -heterocyclic carbene complexes-catalyzed multicomponent reactions: Synthesis, spectroscopic characterization, density functional theory calculations, and antibacterial study. Arch. Pharm. 2021, 354, e2100111. [Google Scholar] [CrossRef]
- Millam, J.M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J.B.; Gaussian, Inc. GaussView 5.0, Wallingford, CT, USA. 2016. Available online: https://gaussian.com/citation/ (accessed on 11 March 2022).
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Zouaghi, M.O.; Doggui, M.Y.; Arfaoui, Y. Regio- and stereoselectivity of the [3 + 2] cycloaddition of nitrones with methyl-acetophenone: A DFT investigation. J. Mol. Graph. Model. 2021, 107, 107960. [Google Scholar] [CrossRef] [PubMed]
- Klamt, A.; Schüürmann, G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2 1993, 799–805. [Google Scholar] [CrossRef]
- Andzelm, J.; Kölmel, C.; Klamt, A. Incorporation of solvent effects into density functional calculations of molecular energies and geometries. J. Chem. Phys. 1995, 103, 9312–9320. [Google Scholar] [CrossRef]
- Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995–2001. [Google Scholar] [CrossRef]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Zouaghi, M.O.; Arfaoui, Y.; Champagne, B. Density functional theory investigation of the electronic and optical properties of metallo-phthalocyanine derivatives. Opt. Mater. 2021, 120, 111315. [Google Scholar] [CrossRef]
- Zutterman, F.; Liégeois, V.; Champagne, B. Simulation of the UV/Visible Absorption Spectra of Fluorescent Protein Chromophore Models. ChemPhotoChem 2017, 1, 281–296. [Google Scholar] [CrossRef]
- Tao, A.; Huang, Y.; Shinohara, Y.; Caylor, M.L.; Pashikanti, S.; Xu, D. ezCADD: A Rapid 2D/3 D Visualization-Enabled Web Modeling Environment for Democratizing Computer-Aided Drug Design. J. Chem. Inf. Model. 2018, 59, 18–24. [Google Scholar] [CrossRef]
- Schmidtke, P.; Le Guilloux, V.; Maupetit, J.; Tuffery, P. fpocket: Online tools for protein ensemble pocket detection and tracking. Nucleic Acids Res. 2010, 38, W582–W589. [Google Scholar] [CrossRef]
- Koes, D.R.; Baumgartner, M.P.; Camacho C., J. Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise. J. Chem. Inf. Model. 2013, 53, 1893–1904. [Google Scholar] [CrossRef] [PubMed]
- Alashrah, S.; El-Ghoul, Y.; Almutairi, F.M.; Omer, M.A.A. Development, Characterization and Valuable Use of Novel Dosimeter Film Based on PVA Polymer Doped Nitro Blue Tetrazolium Dye and AgNO3 for the Accurate Detection of Low X-ray Doses. Polymers 2021, 13, 3140. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, N.; Ben Hsouna, A.; Bruneau, C.; Medyouni, R.; Al-Ayed, A.S.; Soleiman, H.A.; Zaghrouba, F. Synthesis of Novel Antibacterial Metal Free And Metallophthalocyanines Appending With Four Peripheral Coumarin Derivatives And Their Separation Of Structural Isomers. Heterocycles 2013, 87, 2283. [Google Scholar] [CrossRef]
- Jelali, H.; Chakchouk-Mtibaa, A.; Baklouti, L.; Bilel, H.; Bathich, Y.; Mellouli, L.; Hamdi, N. Development of New Multicomponent Reactions in Eco-Friendly Media-Greener Reaction and Expeditious Synthesis of Novel Bioactive Benzylpyranocoumarins. J. Chem. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Dlala, N.A.; Bouazizi, Y.; Ghalla, H.; Hamdi, N. DFT Calculations and Molecular Docking Studies on a Chromene Derivative. J. Chem. 2021, 2021, 1–17. [Google Scholar] [CrossRef]
- Dholakia, V.N.; Parekh, M.G.; Trivedi, N.K. Improved and rapid synthesis of new coumarinyl chalcone derivatives and their antiviral activity. Aust. J. Chem. 1968, 22, 345–2347. [Google Scholar]
- Hamdi, M.; Sakellariou, R.; Speziale, V. Synthesis of N-substituted α-amino acids from 4-hydroxycoumarin. J. Heterocycl. Chem. 1992, 29, 1817. [Google Scholar] [CrossRef]
- Hamdi, M.; Granier, P.; Sakellariou, R.; Spéziale, V. Reaction of amines on 3-ureidomethylenecoumarins. A new route to N-(methylene-4-oxocoumarinyl)amines. J. Heterocycl. Chem. 1993, 30, 1155–1157. [Google Scholar] [CrossRef]
- Steinführer, T.; Hantschmann, A.; Pietsch, M.; Weißenfels, M. Heterocyclisch [c]-anellierte cumarine aus 4-azido-3-cumarincarbaldehyden. Liebigs Ann. Chem. 1992, 1992, 23–28. [Google Scholar] [CrossRef]
- Hasanein, A.A.; Senior, S.A. DFT calculations of amine-imine tautomerism in some pyrimidine derivatives and their 1:1 and 1:2 complexes with water. Int. J. Quantum Chem. 2011, 111, 3993–4010. [Google Scholar] [CrossRef]
- Makhloufi-Chebli, M.; Hamdi, S.M.; Rabahi, A.; Silva, A.M.; Hamdi, M. Estimation of ground- and excited-state dipole moments of 3-acetoacetyl-coumarin derivatives from a solvatochromic shift method based on the solvent polarity parameter. J. Mol. Liq. 2013, 181, 89–96. [Google Scholar] [CrossRef]
- A El-Daly, S.; Abdel-Kader, M.H.; Issa, R.M.; A El-Sherbini, E.-S. Influence of solvent polarity and medium acidity on the UV–Vis spectral behavior of 1-methyl-4-[4-amino-styryl] pyridinum iodide. Spectrochim. Acta Part A Mol. Biomol. Spectrosc 2002, 59, 405–411. [Google Scholar] [CrossRef]
- Slimani, I.; Şahin-Bölükbaşı, S.; Ulu, M.; Evren, E.; Gürbüz, N.; Özdemir, I.; Hamdi, N.; Özdemir, I. Rhodium(i) N-heterocyclic carbene complexes: Synthesis and cytotoxic properties. New J. Chem. 2021, 45, 5176–5183. [Google Scholar] [CrossRef]
- Patil, N.R.; Melavanki, R.M.; Muttannavar, V.T.; Vaijayanthimala, S.; Naik, L.R.; Kadadevarmath, J.S. Solvent effects on the dipole moments and photo physical properties of laser dye. Indian J. Pure Appl. Phys. 2018, 56, 749–754. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Zhang, Y.; Liu, L. Fluorescence lifetimes and quantum yields of ten rhodamine derivatives: Structural effect on emission mechanism in different solvents. J. Lumin. 2013, 145, 448–453. [Google Scholar] [CrossRef]
- Azim, S.; Al-Hazmy, S.; Ebeid, E.; El-Daly, S. A new coumarin laser dye 3-(benzothiazol-2-yl)-7-hydroxycoumarin. Opt. Laser Technol. 2005, 37, 245–249. [Google Scholar] [CrossRef]
- Al-Ragehey, A.S.J.M. Effect Of Solvent Polarity On The Quantum Yield Of (C17H19N3). J. Multidiscip. Eng. Sci. Technol. 2016, 2, 561–564. [Google Scholar]
- Hoche, J.; Schulz, A.; Dietrich, L.M.; Humeniuk, A.; Stolte, M.; Schmidt, D.; Brixner, T.; Würthner, F.; Mitric, R. The origin of the solvent dependence of fluorescence quantum yields in dipolar merocyanine dyes. Chem. Sci. 2019, 10, 11013–11022. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, E.; Lima, J.C.; Parola, A.J.; Branco, P.S. Incorporation of Coumarin-Based Fluorescent Monomers into Co-Oligomeric Molecules. Polymers 2018, 10, 396. [Google Scholar] [CrossRef] [PubMed]
- Loutfy, R.O.; Arnold, B.A. Effect of viscosity and temperature on torsional relaxation of molecular rotors. J. Phys. Chem. 1982, 86, 4205–4211. [Google Scholar] [CrossRef]
- Law, K. Fluorescence probe for microenvironments: Anomalous viscosity dependence of the fluorescence quantum yield of p-N,N-dialkylaminobenzylidenemalononitrile in 1-alkanols. Chem. Phys. Lett. 1980, 75, 545–549. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Ahmadi, S.; Mardinia, F.; Azimi, N.; Qomi, M.; Balali, E. Prediction of chalcone derivative cytotoxicity activity against MCF-7 human breast cancer cell by Monte Carlo method. J. Mol. Struct. 2018, 1181, 305–311. [Google Scholar] [CrossRef]
- Gangadevi, V.; Muthumary, J. Preliminary studies on cytotoxic effect of fungal taxol on cancer cell lines. Afr. J. Biotechnol. 2007, 6, 1382–1386. [Google Scholar]
- Thusyanthan, J.; Wickramaratne, N.S.; Senathilake, K.S.; Rajagopalan, U.; Tennekoon, K.H.; Thabrew, I.; Samarakoon, S.R. Cytotoxicity against Human Hepatocellular Carcinoma (HepG2) Cells and Anti-Oxidant Activity of Selected Endemic or Medicinal Plants in Sri Lanka. Adv. Pharmacol. Pharm. Sci 2022, 2022, 1–9. [Google Scholar] [CrossRef]
- Żamojć, K.; Wiczk, W.; Zaborowski, B.; Jacewicz, D.; Chmurzyński, L. Analysis of Fluorescence Quenching of Coumarin Derivatives by 4-Hydroxy-TEMPO in Aqueous Solution. J. Fluoresc. 2013, 24, 713–718. [Google Scholar] [CrossRef] [Green Version]
Reaction Medium | ||
Gas phase | 36.00 | −6.86 |
Explicit model | 14.18 | −1.65 |
Implicit model | 35.87 | −7.72 |
Site | ||
---|---|---|
C8 | −20.71 | |
O11 | −8.38 | |
O12 | −31.38 | |
C13 | 8.60 | |
H18 | 10.04 | |
H20 | 5.44 | |
H21 | 14.12 | |
H22 | 2.61 | |
O23 | −23.33 |
Site | ||
---|---|---|
C8 | 17.18 | |
O10 | 16.47 | |
O12 | −28.29 | |
N14 | 15.49 | |
C15 | 4.72 | |
O19 | −42.57 | |
C22 | 1.60 | |
O26 | −11.28 | |
C27 | 2.55 | |
N28 | −37.98 | |
H33 | 33.29 | |
H34 | 11.43 | |
H40 | 47.24 |
Solvent | (%) | ε() | |||
---|---|---|---|---|---|
THF | 309 | 3.21 | H→L (58%) | 26,736 | 0.65 |
3.24 | H-1→L (57%) | ||||
249 | 3.80 | H-2→L (94%) | - | - | |
4.04 | H-1→L + 1 (66%) | ||||
4.10 | H-4→L (62%) | ||||
202 | 4.60 | H-2→L + 1 (88%) | - | - | |
4.71 | H-3→L + 1 (84%) | ||||
4.89 | H→L + 2 (41%) | ||||
181 | 5.40 | H-8→L (41%) | - | - | |
5.71 | H-4→L + 2 (24%) | ||||
Ethanol | 306 | 3.21 | H-1→L (82%) | 27,407 | 0.67 |
3.24 | H→L (82%) | ||||
249 | 3.89 | H-3→L (86%) | - | - | |
4.05 | H-1→L + 1 (84%) | ||||
4.10 | H-4→L (64%) | ||||
201 | 4.58 | H-2→L + 1 (89%) | - | - | |
4.91 | H-1→L + 2 (33%) | ||||
H→L + 2 (28%) | |||||
5.07 | H-6→L (39%) | ||||
181 | 5.41 | H→L (82%) | - | - | |
5.69 | H→L (82%) | ||||
Water | 306 | 3.21 | H-1→L (88%) | 27,437 | 0.67 |
3.25 | H→L (88%) | ||||
249 | 3.89 | H-3→L (88%) | - | - | |
4.05 | H-1→L (84%) | ||||
4.10 | H-4→L (63%) | ||||
201 | 4.58 | H-2→L + 1 (89%) | - | - | |
4.73 | H-2→L + 2 (49%) | ||||
4.91 | H-3→L + 1 (85%) | ||||
181 | 5.42 | H-8→L (52%) | - | - | |
5.69 | H-4→L + 2 (31%) | ||||
Chloroform | 310 | 3.19 | H→L (83%) | 0.60 | |
249 | 3.80 | H-2→L (91%) | - | - | |
3.92 | H-3→L (57%) | - | - | ||
4.04 | H-1→L + 1 (88%) | - | - | ||
4.16 | H-5→L (59%) | - | - | ||
204 | 4.62 | H-2→L + 1 (86%) | - | - | |
4.71 | H-3→L + 1 (86%) | - | - | ||
4.88 | H→L + 2 (37%) | - | - | ||
H-7→L (26%) | |||||
5.38 | H-6→L + 1 (28%) | - | - | ||
H-7→L + 1 (24%) | |||||
Acetonitrile | 306 | 3.21 | H-1→L (86%) | 26,188 | 0.67 |
3.25 | H→L (86%) | ||||
349 | 3.89 | H-3→L (87%) | - | - | |
4.05 | H-1→L + 1 (84%) | ||||
4.10 | H-4→L (64%) | ||||
201 | 4.58 | H-2→L + 1 (89%) | - | - | |
4.73 | H-3→L + 1 (85%) | ||||
4.91 | H-1→L + 2 (40%) | ||||
5.07 | H-6→L (40%) | ||||
181 | 5.42 | H-8→L (51%) | - | - | |
5.70 | H-4→L + 2 (29%) | ||||
Acetic acid | 309 | 3.21 | H→L (64%) | 26,137 | 0.54 |
249 | 3.80 | H-2→L (93%) | - | - | |
203 | 4.61 | H-2→L + 1 (87%) | - | - | |
4.89 | H→L + 2 (41%) | ||||
181 | 5.39 | H-8→L (38%) | - | - | |
5.72 | H-4→L + 2 (26%) |
Solvent | ||
---|---|---|
THF | 350 | 3.54 |
Ethanol | 328 | 3.78 |
Water | 326 | 3.81 |
Chloroform | 354 | 3.50 |
Acetonitrile | 326 | 3.81 |
Aceticacid | 350 | 3.54 |
Solvent | ||
---|---|---|
THF | 320 | 0.34 |
Ethanol | 0.37 | |
Water | 0.37 | |
Chloroform | 0.33 | |
Acetonitrile | 0.37 | |
Acetic acid | 0.33 |
Solvents | λabs, max (nm) | λem, max (nm) | λex, max (nm) | Δf | ɸc | ɸf | Stock’s Shift |
---|---|---|---|---|---|---|---|
N-heptane | 300 | 346 | 300 | 0.012 | 46 | ||
CCl4 | 316 | 433 | 396 | 0.052 | 0.002 | 117 | |
Toluene | 310 | 407 | 313 | 0.099 | 0.07 | 91 | |
Hexane | 313 | 425 | 392 | 0.009 | 0.04 | ||
1,4 Dioxane | 314 | 407 | 312 | 0.164 | 0.06 | ||
THF | 313 | 344.5 | 258 | 0.207 | 31 | ||
CHCl3 | 309 | 436 | 376 | 0.259 | 127 | ||
CH2Cl2 | 312 | 409 | 311 | 0.269 | |||
EG | 309 | 376 | 350 307 | 0.30 | 67 | ||
C4H9Cl | 311 | 431 | 310 | ||||
DMF | 311 | 409 | 306 | 0.386 | |||
CH3CN | 307 | 404 | 308 | 0.460 | |||
EtOH | 307 | 372 | 306 | 0.654 | 0.003 | 68 | |
Glycerol | 310 | 411 | 365 | 0.812 | |||
Pentanol | 307 | 410 | 307 | 0.568 | 102 | ||
H2O | 306 | 405 | 306 | 1 | 99 | ||
Dye-doped PVA | 309 | 433 | 0.001 | ||||
SDS in aqueous solution | 307 | 406 |
Microorganisms Product | Micrococcusluteus LB14110 | Listeria monocytogenes ATCC 19117 | Salmonella Typhimurium ATCC 14028 | Staphylococcus Aureus ATCC 6538 | Pseudomonas aeruginosa | Candida albicans |
---|---|---|---|---|---|---|
2 | 28 | 25 | 24 | 26 | 22 | 23 |
3 | 27 | 24 | 23 | 24 | 23 | 22 |
4 | 26 | 22 | 27 | 30 | 30 | 30 |
AMC | 25 | 22 | 20 | 23 | 20 | 22 |
Microorganism Indicator | Compound | MIC (mg/mL) |
---|---|---|
Listeria monocytogenes ATCC 19117 | 2 | 0.524 |
3 | 0.038 | |
4 | 0.413 | |
SalmonellaTyphimurium ATCC 14028 | 2 | 1.26 |
3 | 1.25 | |
4 | 0.039 | |
Micrococcus luteus LB14110 | 2 | 0.624 |
3 | 1.51 | |
4 | ||
Ampicillin | 0.037 |
EC50 in µg mL−1/ Compounds | DPPH | ABTS |
---|---|---|
2 | 48.07 | 32.21 |
3 | 47.08 | 31.23 |
4 | 49.07 | 30.22 |
BHT | 31.25 | 17.38 |
Compounds | IC50 Values in µM | |
---|---|---|
Lipoxygenase Inhibition Assay | PLA2 Inhibition Assay | |
2 | 8.2 | 1105 |
3 | 7.3 | 1004 |
4 | 8.5 | 1110 |
Indomethacin | 8.0 | - |
Aristolochic acid | 8.1 | 25.0 |
IC50 | Compounds | |
---|---|---|
HepG-2 | HCT-116 | |
11.75 | 7.76 | 2 |
17.45 | 13.56 | 3 |
20.65 | 15.36 | 4 |
6.05 | 3.83 | Vinblastine Standard |
Protein | PDB ID | PDB DOI | Full Name |
---|---|---|---|
Lipoxygenase | 6N2W | 10.2210/pdb6 NRW/pdb | Crystal structure of Dpr1 IG1 bound to DIP-eta IG1 |
4NRE | 10.2210/pdb4NRE/pdb | The structure of human 15-lipoxygenase-2 with a substrate mimic | |
PLA2 | 1TH6 | 10.2210/pdb1TH6/pdb | Crystal structure of phospholipase A2 in complex with atropine at 1.23 A resolution |
2QU9 | 10.2210/pdb2QU9/pdb | Crystal structure of the complex of group II phospholipase A2 with eugenol | |
4DBK | 10.2210/pdb4DBK/pdb | Crystal structure of porcine pancreatic phospholipase A2 complexed with berberine | |
HepG-2 | 2W3L | 10.2210/pdb2W3L/pdb | Crystal structure of Chimeric Bcl2-xL and Phenyl Tetrahydroisoquinoline Amide Complex |
HCT-116 | 1YWN | 10.2210/pdb1YWN/pdb | Vegfr2 in complex with a novel 4-amino-furo[2,3-d]pyrimidine |
Anti-Inflammatory Activity | ||||
---|---|---|---|---|
Protein | Resolution | n | Volume | Eb |
6N2W (Lipoxygenase) | 2.40 | 34 | 1155 | −10.3 |
4NRE (Lipoxygenase) | 2.63 | 33 | 2171 | −8.3 |
1TH6 (PLA2) | 1.23 | 6 | 1247 | −9.0 |
2QU9 (PLA2) | 2.08 | 5 | 670 | −8.9 |
4DBK (PLA2) | 2.30 | 9 | 650 | −8.8 |
Antiproliferative activity | ||||
2W3L (HepG-2) | 2.10 | 7 | 534 | −8.8 |
1YWN (HCT-116) | 1.71 | 18 | 1096 | −8.7 |
Protein | (a) | (b) |
---|---|---|
6N2W | ||
4NRE | ||
1TH6 | ||
2QU9 | ||
4DBK | ||
2W3L | ||
1YWN |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hazmy, S.M.; Zouaghi, M.O.; Al-Johani, J.N.; Arfaoui, Y.; Al-Ashwal, R.; Hammami, B.; Alhagri, I.A.; Alhemiary, N.A.; Hamdi, N. Chemosensing Properties of Coumarin Derivatives: Promising Agents with Diverse Pharmacological Properties, Docking and DFT Investigation. Molecules 2022, 27, 5921. https://doi.org/10.3390/molecules27185921
Al-Hazmy SM, Zouaghi MO, Al-Johani JN, Arfaoui Y, Al-Ashwal R, Hammami B, Alhagri IA, Alhemiary NA, Hamdi N. Chemosensing Properties of Coumarin Derivatives: Promising Agents with Diverse Pharmacological Properties, Docking and DFT Investigation. Molecules. 2022; 27(18):5921. https://doi.org/10.3390/molecules27185921
Chicago/Turabian StyleAl-Hazmy, Sadeq M., Mohamed Oussama Zouaghi, Jamal N. Al-Johani, Youssef Arfaoui, Rania Al-Ashwal, Bechir Hammami, Ibrahim A. Alhagri, Nabil A. Alhemiary, and Naceur Hamdi. 2022. "Chemosensing Properties of Coumarin Derivatives: Promising Agents with Diverse Pharmacological Properties, Docking and DFT Investigation" Molecules 27, no. 18: 5921. https://doi.org/10.3390/molecules27185921
APA StyleAl-Hazmy, S. M., Zouaghi, M. O., Al-Johani, J. N., Arfaoui, Y., Al-Ashwal, R., Hammami, B., Alhagri, I. A., Alhemiary, N. A., & Hamdi, N. (2022). Chemosensing Properties of Coumarin Derivatives: Promising Agents with Diverse Pharmacological Properties, Docking and DFT Investigation. Molecules, 27(18), 5921. https://doi.org/10.3390/molecules27185921