Preparation and Characterization of Disulfiram and Beta Cyclodextrin Inclusion Complexes for Potential Application in the Treatment of SARS-CoV-2 via Nebulization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Solubility Studies
2.2. Physicochemical Characterization Studies of Freeze-Dried Formulations
2.2.1. Differential Scanning Calorimetry (DSC) Analysis
2.2.2. Thermogravimetric Analysis (TGA)
2.2.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.3. Determination of Total Aerosol Output, Droplet Size, and Fine Particle Fraction (FPF)
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Solubility Studies
3.2.2. Freeze-Drying/Lyophilization
3.2.3. Differential Scanning Calorimetry (DSC) Analysis
3.2.4. Thermogravimetric Analysis (TGA)
3.2.5. Fourier Transform Infrared Spectroscopy (FTIR)
3.2.6. Determination of Total Aerosol Output, Droplet Size, and Fine Particle Fraction (FPF)
3.2.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 30 January 2022).
- Lin, M.H.; Moses, D.C.; Hsieh, C.H.; Cheng, S.C.; Chen, Y.H.; Sun, C.Y.; Chou, C.Y. Disulfiram Can Inhibit MERS and SARS Coronavirus Papain-like Proteases via Different Modes. Antiviral Res. 2018, 150, 155–163. [Google Scholar] [CrossRef]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef]
- Lobo-Galo, N.; Terrazas-López, M.; Martínez-Martínez, A.; Díaz-Sánchez, Á.G. FDA-Approved Thiol-Reacting Drugs That Potentially Bind into the SARS-CoV-2 Main Protease, Essential for Viral Replication. J. Biomol. Struct. Dyn. 2021, 39, 3419–3427. [Google Scholar] [CrossRef] [PubMed]
- Fillmore, N.; Bell, S.; Shen, C.; Nguyen, V.; La, J.; Dubreuil, M.; Strymish, J.; Brophy, M.; Mehta, G.; Wu, H.; et al. Disulfiram Use Is Associated with Lower Risk of COVID-19: A Retrospective Cohort Study. PLoS ONE 2021, 16, e0259061. [Google Scholar] [CrossRef]
- Ma, C.; Hu, Y.; Townsend, J.A.; Lagarias, P.I.; Marty, M.T.; Kolocouris, A.; Wang, J. Ebselen, Disulfiram, Carmofur, PX-12, Tideglusib, and Shikonin Are Nonspecific Promiscuous SARS-CoV-2 Main Protease Inhibitors. ACS Pharmacol. Transl. Sci. 2020, 3, 1265–1277. [Google Scholar] [CrossRef] [PubMed]
- Elliott, J.H.; McMahon, J.H.; Chang, C.C.; Lee, S.A.; Hartogensis, W.; Bumpus, N.; Savic, R.; Roney, J.; Hoh, R.; Solomon, A.; et al. Short-Term Administration of Disulfiram for Reversal of Latent HIV Infection: A Phase 2 Dose-Escalation Study. Lancet HIV 2015, 2, e520–e529. [Google Scholar] [CrossRef]
- Lee, Y.M.; Duh, Y.; Wang, S.T.; Lai, M.M.C.; Yuan, H.S.; Lim, C. Using an Old Drug to Target a New Drug Site: Application of Disulfiram to Target the Zn-Site in HCV NS5A Protein. J. Am. Chem. Soc. 2016, 138, 3856–3862. [Google Scholar] [CrossRef]
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y. Structure of M pro from SARS-CoV-2 and Discovery of Its Inhibitors. Nature 2020, 582, 289–293. [Google Scholar] [CrossRef]
- Shergill, M.; Patel, M.; Khan, S.; Bashir, A.; Mcconville, C. Development and Characterisation of Sustained Release Solid Dispersion Oral Tablets Containing the Poorly Water Soluble Drug Disul Fi Ram. Int. J. Pharm. 2016, 497, 3–11. [Google Scholar] [CrossRef]
- Ou, A.T.; Zhang, J.X.; Fang, Y.F.; Wang, R.; Tang, X.P.; Zhao, P.F.; Zhao, Y.G.; Zhang, M.; Huang, Y.Z. Disulfiram-Loaded Lactoferrin Nanoparticles for Treating Inflammatory Diseases. Acta Pharmacol. Sin. 2021, 42, 1913–1920. [Google Scholar] [CrossRef]
- Najlah, M.; Suliman, A.S.; Tolaymat, I.; Kurusamy, S.; Kannappan, V.; Elhissi, A.M.A.; Wang, W. Development of Injectable PEGylated Liposome Encapsulating Disulfiram for Colorectal Cancer Treatment. Pharmaceutics. 2019, 11, 610. [Google Scholar] [CrossRef] [PubMed]
- Najlah, M.; Ahmed, Z.; Iqbal, M.; Wang, Z.; Tawari, P.; Wang, W.; Mcconville, C. Development and Characterisation of Disulfiram-Loaded PLGA Nanoparticles for the Treatment of Non-Small Cell Lung Cancer. Eur. J. Pharm. Biopharm. 2016, 112, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Najlah, M. Drug Repurposing Supported by Nanotechnology: A Promising Strategy to Fight Cancer. Therap. Deliv. Fut. Sci. 2021, 12, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.C.; Costa, D.; Ferreira, L.; Guerra, C.; Pereira-Silva, M.; Pereira, I.; Peixoto, D.; Ferreira, N.R.; Veiga, F. Cyclodextrin-Based Delivery Systems for in Vivo-Tested Anticancer Therapies. Drug Deliv. Transl. Res. 2021, 11, 49–71. [Google Scholar] [CrossRef] [PubMed]
- Al-Marzouqi, A.H.; Shehatta, I.; Jobe, B.; Dowaidar, A. Phase Solubility and Inclusion Complex of Itraconazole with β-Cyclodextrin Using Supercritical Carbon Dioxide. J. Pharm. Sci. 2006, 95, 292–304. [Google Scholar] [CrossRef]
- Brewster, M.E.; Vandecruys, R.; Peeters, J.; Neeskens, P.; Verreck, G.; Loftsson, T. Comparative Interaction of 2-Hydroxypropyl-β-Cyclodextrin and Sulfobutylether-β-Cyclodextrin with Itraconazole: Phase-Solubility Behavior and Stabilization of Supersaturated Drug Solutions. Eur. J. Pharm. Sci. 2008, 34, 94–103. [Google Scholar] [CrossRef]
- Agency, E.M. Wheat Starch (Containing Gluten) Used as Excipients. Eur. Med. Agen. 2017, 44, 1–9. [Google Scholar]
- Brewster, M.E.; Loftsson, T. Cyclodextrins as Pharmaceutical Solubilizers. Adv. Drug Deliv. Rev. 2007, 59, 645–666. [Google Scholar] [CrossRef]
- Rasheed, A.; Kumar, A.; Sravanthi. Cyclodextrins as Drug Carrier Molecule: A Review. Sci. Pharm. 2008, 76, 567–598. [Google Scholar] [CrossRef]
- Bekers, O.; Uijtendaal, E.V.; Beijnen, J.H.; Bult, A.; Underberg, W.J.M. Cyclodextrins in the Pharmaceutical Field. Drug Dev. Ind. Pharm. 2008, 17, 1503–1549. [Google Scholar] [CrossRef]
- Hadžiabdić, J.; Elezović, A.; Rahić, O.; Mujezin, I. Effect of Cyclodextrin Complexation on the Aqueous Solubility of Diazepam and Nitrazepam: Phase-Solubility Analysis, Thermodynamic Properties. Am. J. Anal. Chem. 2012, 3, 811–819. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Sun, X.; Ma, L.; Li, C.; Xu, Z.; Ma, W.; Zhou, Y.; Zhao, Z.; Ma, D. Therapeutic Effect of Disulfiram Inclusion Complex Embedded in Hydroxypropyl-β-Cyclodextrin on Intracranial Glioma-Bearing Male Rats via Intranasal Route. Eur. J. Pharm. Sci. 2021, 156, 105590. [Google Scholar] [CrossRef] [PubMed]
- Tyukova, V.S.; Kedik, S.A.; Panov, A.V.; Zhavoronok, E.S.; Mendeleev, D.I.; Senchikhin, I.N.; Fursova, A.Z.; Rumyantseva, Y.V.; Kolosova, N.G. Synthesis of a Disulfuram Inclusion Complex with Hydroxypropyl-β-Cyclodextrin and Its Effect on Cataract Development in Rats. Pharm. Chem. J. 2020, 53, 1158–1163. [Google Scholar] [CrossRef]
- Jambhekar, S.S.; Breen, P. Cyclodextrins in Pharmaceutical Formulations I: Structure and Physicochemical Properties, Formation of Complexes, and Types of Complex. Drug Discov. Today 2016, 21, 356–362. [Google Scholar] [CrossRef]
- Loftsson, T.; Hreinsdóttir, D.; Másson, M. Evaluation of Cyclodextrin Solubilization of Drugs. Int. J. Pharm. 2005, 302, 18–28. [Google Scholar] [CrossRef]
- Wang, S.; Li, D.; Ito, Y.; Nabekura, T.; Wang, S.; Zhang, J.; Wu, C. Bioavailability and Anticataract Effects of a Topical Ocular Drug Delivery System Containing Disulfiram and Hydroxypropyl-Beta- Cyclodextrin on Selenite-Treated Rats. Curr. Eye Res. 2009, 29, 51–58. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, T.; Zhang, D.; He, W.; Wang, S.; Jiang, T. Disulfiram Thermosensitive In-Situ Gel Based on Solid Dispersion for Cataract. Asian J. Pharm. Sci. 2018, 13, 527–535. [Google Scholar] [CrossRef]
- Suliman, A.S.; Khoder, M.; Tolaymat, I.; Webster, M.; Alany, R.G.; Wang, W.; Elhissi, A.; Najlah, M. Cyclodextrin Diethyldithiocarbamate Copper Ii Inclusion Complexes: A Promising Chemotherapeutic Delivery System against Chemoresistant Triple Negative Breast Cancer Cell Lines. Pharmaceutics 2021, 13, 84. [Google Scholar] [CrossRef]
- Akash, M.S.H.; Rehman, K. Ultraviolet-Visible (UV-VIS) Spectroscopy. Essent. Pharm. Anal. 2020, 29–56. [Google Scholar] [CrossRef]
- Farooq, M.A.; Li, L.; Parveen, A.; Wang, B. Globular Protein Stabilized Nanoparticles for Delivery of Disulfiram: Fabrication, Characterization, In Vitro Toxicity, and Cellular Uptake. RSC Adv. 2019, 10, 133–144. [Google Scholar] [CrossRef]
- Dampage, U.; Ariyasinghe, M.; Pulleperuma, S. An Automated Jet Nebulizer with Dynamic Flow Regulation. J. Pharm. Innov. 2021. [Google Scholar] [CrossRef] [PubMed]
- Najlah, M.; Vali, A.; Taylor, M.; Arafat, B.T.; Ahmed, W.; Phoenix, D.A.; Taylor, K.M.G.; Elhissi, A. A Study of the Effects of Sodium Halides on the Performance of Air-Jet and Vibrating-Mesh Nebulizers. Int. J. Pharm. 2013, 456, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Nasr, M.; Najlah, M.; D’Emanuele, A.; Elhissi, A. PAMAM Dendrimers as Aerosol Drug Nanocarriers for Pulmonary Delivery via Nebulization. Int. J. Pharm. 2014, 461, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Agel, M.R.; Engelhardt, K.H.; Pinnapireddy, S.R.; Agel, S.; Duse, L.; Preis, E.; Wojcik, M.; Bakowsky, U. Improvement of Pulmonary Photodynamic Therapy: Nebulisation of Curcumin-Loaded Tetraether Liposomes. Pharmaceutics 2021, 13, 1243. [Google Scholar] [CrossRef] [PubMed]
- Poel, G.V.; Istrate, D.; Magon, A.; Mathot, V. Performance and Calibration of the Flash DSC 1, a New, MEMS-Based Fast Scanning Calorimeter. J. Therm. Anal. Calorim. 2012, 110, 1533–1546. [Google Scholar] [CrossRef]
CD | K1:1 (M−1) | CE | |
---|---|---|---|
Using S0 | Using Sint | ||
SBE | 149.3 | −1263 a | 0.64 |
HP | 224.9 | 1539 | 0.42 |
Parameter | Formulation | Empty Cyclodextrin | Loaded Cyclodextrin |
---|---|---|---|
VMD (µm) | HP 10% | 1.8 ± 1 | 2.52 ± 0.61 |
HP 15% | 1.49 ± 0.69 | 3.37 ± 0.81 a | |
SBE 10% | 1.67 ± 1.23 | 3 ± 0.99 | |
SBE 15% | 1.63 ± 1 | 2.95 ± 0.84 | |
Span | HP 10% | 4.96 ± 3.61 | 1.41 ± 0.24 |
HP 15% | 5.28 ± 2.85 | 2.12 ± 0.24 | |
SBE 10% | 3.57 ± 0.48 | 2.3 ± 0.38 | |
SBE 15% | 6.51 ± 4.2 | 2.47 ± 0.31 | |
% ≤ 5.4 µm | HP 10% | 82.16 ± 2.15 | 92.95 ± 8.03 |
HP 15% | 84.14 ± 2.16 | 76.28 ± 10.86 | |
SBE 10% | 90.20 ± 10 | 79.42 ± 8.02 | |
SBE 15% | 80.53 ± 6.35 | 77.04 ± 10.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, A.M.; Kaya, A.; Alves, D.; Ansari-Fard, N.; Tolaymat, I.; Arafat, B.; Najlah, M. Preparation and Characterization of Disulfiram and Beta Cyclodextrin Inclusion Complexes for Potential Application in the Treatment of SARS-CoV-2 via Nebulization. Molecules 2022, 27, 5600. https://doi.org/10.3390/molecules27175600
Pereira AM, Kaya A, Alves D, Ansari-Fard N, Tolaymat I, Arafat B, Najlah M. Preparation and Characterization of Disulfiram and Beta Cyclodextrin Inclusion Complexes for Potential Application in the Treatment of SARS-CoV-2 via Nebulization. Molecules. 2022; 27(17):5600. https://doi.org/10.3390/molecules27175600
Chicago/Turabian StylePereira, Ana Maria, Ayse Kaya, Dan Alves, Niusha Ansari-Fard, Ibrahim Tolaymat, Basel Arafat, and Mohammad Najlah. 2022. "Preparation and Characterization of Disulfiram and Beta Cyclodextrin Inclusion Complexes for Potential Application in the Treatment of SARS-CoV-2 via Nebulization" Molecules 27, no. 17: 5600. https://doi.org/10.3390/molecules27175600