Radium and Lead Radioisotopes Composition of Sediment and Its Biogeochemical Implication in Polymetallic Nodule Area of Clario-Clipperton Zone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. 210Pb and 226Ra Analysis
2.3. Quality Controls
3. Results
The Distribution of 226Ra and 210Pb
4. Discussion
4.1. The Radioactive Disequilibrium between 226Ra and 210Pb
4.2. Bioturbation Coefficient
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Liu, Y.; Zhu, K. Polymetallic nodules distribution in the central pacific basin and comparison with nodules in China pioneer area, CC Zone. Mar. Geol. Quat. Geol. 2015, 35, 73–79. [Google Scholar]
- Hein, J.R.; Spinardi, F.; Okamoto, N.; Mizell, K.; Thorburn, D.; Tawake, A. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions. Ore Geol. Rev. 2015, 68, 97–116. [Google Scholar] [CrossRef]
- Battin, T.J.; Kaplan, L.A.; Findlay, S.; Hopkinson, C.; Marti, E.; Packman, A.I.; Newbold, J.D.; Sabater, F. Biophysical controls on organic carbon fluxes in fluvial networks. Nat. Geosci. 2008, 1, 95–100. [Google Scholar] [CrossRef]
- Kristensen, E.; Kostka, J. Macrofaunal Burrows and Irrigation in Marine Sediment: Microbiological and Biogeochemical Interactions. Interactions between Macro-and Microorganisms in Marine Sediments; American Geophysical Union: Washington, DC, USA, 2005; pp. 125–157. [Google Scholar]
- Villalobos, M.; Bargar, J.; Sposito, G. Sposito, Trace Metal Retention on Biogenic Manganese Oxide Nanoparticles. Elements 2005, 1, 223–226. [Google Scholar] [CrossRef]
- De Smet, B.; Simon-Lledó, E.; Mevenkamp, L.; Pape, E.; Pasotti, F.; Jones, D.O.; Vanreusel, A. The megafauna community from an abyssal area of interest for mining of polymetallic nodules. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2021, 172, 103530. [Google Scholar] [CrossRef]
- Church, T.M.; Sarin, M.M. Chapter 2 U- and Th-Series Nuclides in the Atmosphere: Supply, Exchange, Scavenging, and Applications to Aquatic Processes. In Radioactivity in the Environment; Krishnaswami, S., Cochran, J.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 11–47. [Google Scholar]
- Steiner, Z.; Lazar, B.; Levi, S.; Tsroya, S.; Pelled, O.; Bookman, R.; Erez, J. The effect of bioturbation in pelagic sediments: Lessons from radioactive tracers and planktonic foraminifera in the Gulf of Aqaba, Red Sea. Geochim. et Cosmochim. Acta 2016, 194, 139–152. [Google Scholar] [CrossRef]
- Yang, W.; Guo, L.; Chuang, C.-Y.; Schumann, D.; Ayranov, M.; Santschi, P.H. Adsorption characteristics of 210Pb, 210Po and 7Be onto micro-particle surfaces and the effects of macromolecular organic compounds. Geochim. et Cosmochim. Acta 2013, 107, 47–64. [Google Scholar] [CrossRef]
- Jones, D.O.B.; Kaiser, S.; Sweetman, A.K.; Smith, C.R.; Menot, L.; Vink, A.; Trueblood, D.; Greinert, J.; Billett, D.S.M.; Arbizu, P.M.; et al. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE 2017, 12, e0171750. [Google Scholar] [CrossRef] [Green Version]
- Cutshall, N.H.; Larsen, I.L.; Olsen, C.R. Direct analysis of 210Pb in sediment samples: Self-absorption corrections. Nucl. Instrum. Methods Phys. Res. 1983, 206, 309–312. [Google Scholar] [CrossRef]
- Dahlgaard, H. Marine radioecology. In Radioecology: Lectures in Environmental Radioactivity; World Scientific: Singapore, 1994. [Google Scholar]
- Smith, C.R.; Berelson, W.; Demaster, D.J.; Dobbs, F.C.; Hammond, D.; Hoover, D.J.; Pope, R.H.; Stephens, M. Latitudinal variations in benthic processes in the abyssal equatorial Pacific: Control by biogenic particle flux. Deep. Sea Res. Part II Top. Stud. Oceanogr. 1997, 44, 2295–2317. [Google Scholar] [CrossRef]
- Smith, J.; Schafer, C. Bioturbation processes in continental slope and rise sediments delineated by Pb–210, microfossil and textural indicators. J. Mar. Res. 1984, 42, 1117–1145. [Google Scholar] [CrossRef]
- Yan, Q.; Zhou, H. Bioturbation in near-surface sediments from the COMRA Polymetallic Nodule Area: Evidence from excess ~(210)Pb measurements. Chin. Sci. Bull. 2004, 49, 2538–2542. [Google Scholar]
- Teal, L.R.; Bulling, M.T.; Parker, E.R.; Solan, M. Global patterns of bioturbation intensity and mixed depth of marine soft sediments. Aquat. Biol. 2008, 2, 207–218. [Google Scholar] [CrossRef]
- Carpenter, R.; Peterson, M.; Bennett, J. 210Pb-derived sediment accumulation and mixing rates for the Washington continental slope. Mar. Geol. 1982, 48, 135–164. [Google Scholar] [CrossRef]
- Guinasso, N., Jr.; Schink, D. Quantitative estimates of biological mixing rates in abyssal sediments. J. Geophys. Res. 1975, 80, 3032–3043. [Google Scholar] [CrossRef]
- Nozaki, Y.; Cochran, J.K.; Turekian, K.K.; Keller, G. Radiocarbon and 210Pb distribution in submersible-taken deep-sea cores from Project FAMOUS. Earth Planet. Sci. Lett. 1977, 34, 167–173. [Google Scholar] [CrossRef]
- Hyeong, K.; Seo, I.; Lee, H.-B.; Yoo, C.M.; Chi, S.-B.; Um, I.K. Variability in Particle Mixing Rates in Sediments with Polymetallic Nodules in the Equatorial Eastern Pacific as Determined from Measurements of Excess 210Pb. Ocean. Sci. J. 2018, 53, 355–368. [Google Scholar] [CrossRef]
- Lin, F.; Lin, C.; Lin, H.; Sun, X.; Lin, L. 210Pb-Derived Bioturbation Rates in Sediments Around Seamounts in the Tropical Northwest Pacific. Front. Mar. Sci. 2021, 8, 701897. [Google Scholar] [CrossRef]
- Yang, Z.; Qian, Q.; Chen, M.; Zhang, R.; Yang, W.; Zheng, M.; Qiu, Y. Enhanced but highly variable bioturbation around seamounts in the northwest Pacific. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2019, 156, 103190. [Google Scholar] [CrossRef]
- Suckow, A.; Treppke, U.; Wiedicke, M.H.; Weber, M.E. Bioturbation coefficients of deep-sea sediments from the Peru Basin determined by gamma spectrometry of 210Pbexc. Deep. Sea Res. Part II: Top. Stud. Oceanogr. 2001, 48, 3569–3592. [Google Scholar] [CrossRef]
- Froelich, P. Analysis of organic carbon in marine sediments1. Limnol. Oceanogr. 1980, 25, 564–572. [Google Scholar]
- Hedges, I.J.; Stern, J.H. Carbon and nitrogen determinations of carbonate--containing solids1. Limnol. Oceanogr. 1984, 29, 657–663. [Google Scholar] [CrossRef]
Station | Latitude (°N) | Longitude (°E) | Bottom Depth (m) | Db (cm2/a) |
---|---|---|---|---|
KW1-S05-MC13 | 10.0833 | −154.3334 | 5167 | 24.2 (II) |
5.9 (III) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, F.; Lin, C.; Yu, W.; Sun, X.; Lin, H. Radium and Lead Radioisotopes Composition of Sediment and Its Biogeochemical Implication in Polymetallic Nodule Area of Clario-Clipperton Zone. Molecules 2022, 27, 5061. https://doi.org/10.3390/molecules27165061
Lin F, Lin C, Yu W, Sun X, Lin H. Radium and Lead Radioisotopes Composition of Sediment and Its Biogeochemical Implication in Polymetallic Nodule Area of Clario-Clipperton Zone. Molecules. 2022; 27(16):5061. https://doi.org/10.3390/molecules27165061
Chicago/Turabian StyleLin, Feng, Cai Lin, Wen Yu, Xiuwu Sun, and Hui Lin. 2022. "Radium and Lead Radioisotopes Composition of Sediment and Its Biogeochemical Implication in Polymetallic Nodule Area of Clario-Clipperton Zone" Molecules 27, no. 16: 5061. https://doi.org/10.3390/molecules27165061
APA StyleLin, F., Lin, C., Yu, W., Sun, X., & Lin, H. (2022). Radium and Lead Radioisotopes Composition of Sediment and Its Biogeochemical Implication in Polymetallic Nodule Area of Clario-Clipperton Zone. Molecules, 27(16), 5061. https://doi.org/10.3390/molecules27165061