Hybrid Molecules Containing Naphthoquinone and Quinolinedione Scaffolds as Antineoplastic Agents
Abstract
1. Introduction
2. Bibliographic Research Methodology
3. Naphthoquinone and Quinolinedione Scaffolds in Antitumor Hybrid Molecules
4. Design, Synthesis, and Biological Evaluation of Antitumor Hybrids
4.1. Naphthoquinone-Based Molecules
4.1.1. 1,4-Naphthoquinone Scaffold
4.1.2. 1,2-Naphthoquinone Scaffold
4.1.3. 1,4- and 1,2-Naphthoquinone Scaffolds
4.2. Quinolinedione and Isoquinolinedione-Based Molecules
4.2.1. Quinoline-5,8-dione Scaffold
4.2.2. Quinoline-5,8-dione and 1,4-Naphthoquinone Scaffolds
4.2.3. 5,8-Isoquinolinedione Scaffold
4.2.4. 5,8-Isoquinolinedione and 1,4-Naphthoquinone Scaffolds
5. Summary Remarks
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2020; Available online: https://gco.iarc.fr/today (accessed on 27 February 2022).
- Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; et al. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther. 2021, 6, 1–48. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, P.; Alwin, M.; Hartman, A.M.; Hirsch, A.K.H.; Empting, M. Concepts and core principles of fragment-based drug design. Molecules 2019, 24, 4309. [Google Scholar] [CrossRef] [PubMed]
- Viegas-Júnior, C.; Barreiro, E.J.; Fraga, C.A.M. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem. 2007, 14, 1829–1852. [Google Scholar] [CrossRef] [PubMed]
- Kerru, N.; Singh, P.; Koorbanally, N.; Raj, R.; Kumar, V. Recent advances (2015–2016) in anticancer hybrids. Eur. J. Med. Chem. 2017, 142, 179–212. [Google Scholar] [CrossRef] [PubMed]
- Abbot, V.; Sharma, P.; Dhiman, S.; Noolvi, M.N.; Patel, H.M.; Bhardwaj, V. Small hybrid heteroaromatics: Resourceful biological tools in cancer research. RSC Adv. 2017, 7, 28313–28349. [Google Scholar] [CrossRef]
- Rj, S.; Pal, S.; Jayashree, A. Molecular hybridization—An emanating tool in drug design. Med. Chem. 2019, 9, 93–95. [Google Scholar]
- Decker, M. Hybrid molecules incorporating natural products: Applications in cancer therapy, neurodegenerative disorders and beyond. Curr. Med. Chem. 2011, 18, 1464–1475. [Google Scholar] [CrossRef] [PubMed]
- Kucuksayan, E.; Ozben, T. Hybrid compounds as multitarget directed anticancer agents. Curr. Top. Med. Chem. 2017, 17, 907–918. [Google Scholar] [CrossRef]
- Fortin, S.; Bérubé, G. Advances in the development of hybrid anticancer drugs. Expert Opin. Drug Discov. 2013, 8, 1029–1047. [Google Scholar] [CrossRef]
- Stazi, G.; Fioravanti, R.; Mai, A.; Mattevi, A.; Valente, S. Histone deacetylases as an epigenetic pillar for the development of hybrid inhibitors in cancer. Curr. Opin. Chem. Biol. 2019, 50, 89–100. [Google Scholar] [CrossRef]
- Shalini; Kumar, V. Have molecular hybrids delivered effective anti-cancer treatments and what should future drug discovery focus on? Expert Opin. Drug Discov. 2021, 16, 335–363. [Google Scholar] [CrossRef] [PubMed]
- Bolton, J.L.; Trush, M.A.; Penning, T.M.; Dryhurst, G.; Monks, T.J. Role of quinones in toxicology. Chem. Res. Toxicol. 2000, 13, 135–160. [Google Scholar] [CrossRef] [PubMed]
- National Library of Medicine. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 25 February 2022).
- Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem. 2014, 77, 422–487. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.Y.; Wang, P.F.; Lin, H.Y.; Tang, C.Y.; Zhu, H.L.; Yang, Y.H. Naphthoquinones: A continuing source for discovery of therapeutic antineoplastic agents. Chem. Biol. Drug Des. 2018, 91, 681–690. [Google Scholar] [CrossRef]
- Tandon, V.K.; Kumar, S. Recent development on naphthoquinone derivatives and their therapeutic applications as anticancer agents. Expert Opin. Ther. Pat. 2013, 23, 1087–1108. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, K.S.; Pooja, M.; Vikas, J. Naphthoquinones in the treatment of cancer. J. Pharm. Sci. Res. 2020, 12, 587–590. [Google Scholar]
- Ahmadi, E.S.; Tajbakhsh, A.; Iranshahy, M.; Asili, J.; Kretschmer, N.; Shakeri, A.; Sahebkar, A. Naphthoquinone derivatives isolated from plants: Recent advances in biological activity. Mini Rev. Med. Chem. 2020, 20, 2019–2035. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, G.; Xu, S.; Song, Y. Recent advances of quinones as a privileged structure in drug discovery. Eur. J. Med. Chem. 2021, 223, 113632. [Google Scholar] [CrossRef] [PubMed]
- Wellington, K.W. Understanding cancer and the anticancer activities of naphthoquinones—A review. RSC Adv. 2015, 5, 20309–20338. [Google Scholar] [CrossRef]
- Soares, A.G.; Muscara, M.N.; Costa, S.K.P. Molecular mechanism and health effects of 1,2-naphthoquinone. EXCLI J. 2020, 19, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Pavan, V.; Ribaudo, G.; Zorzan, M.; Redaelli, M.; Pezzani, R.; Mucignat-Caretta, C.; Zagotto, G. Antiproliferative activity of Juglone derivatives on rat glioma. Nat. Prod. Res. 2016, 31, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Pereyra, C.E.; Dantas, R.F.; Ferreira, S.B.; Gomes, L.P.; Silva, F.P. The diverse mechanisms and anticancer potential of naphthoquinones. Cancer Cell Int. 2019, 19, 207. [Google Scholar] [CrossRef]
- Kadela-Tomanek, M.; Bȩbenek, E.; Chrobak, E.; Boryczka, S. 5,8-Quinolinedione scaffold as a promising moiety of bioactive agents. Molecules 2019, 24, 4115. [Google Scholar] [CrossRef] [PubMed]
- Saluja, P.; Khurana, J.M.; Nikhil, K.; Roy, P. Task-specific ionic liquid catalyzed synthesis of novel naphthoquinone-urazole hybrids and evaluation of their antioxidant and in vitro anticancer activity. RSC Adv. 2014, 4, 34594–34603. [Google Scholar] [CrossRef]
- Özbakir Işin, D. DFT Study on Antioxidant Action Mechanisms of Naphthoquinone-Urazole Hybrids. Cumhuriyet Sci. J. 2018, 39, 734–744. [Google Scholar] [CrossRef][Green Version]
- Gholampour, M.; Seradj, H.; Pirhadi, S.; Khoshneviszadeh, M. Novel 2-amino-1,4-naphthoquinone hybrids: Design, synthesis, cytotoxicity evaluation and in silico studies. Bioorg. Med. Chem. 2020, 28, 115718. [Google Scholar] [CrossRef] [PubMed]
- PR, K.R.; Mary, Y.S.; Fernandez, A.; Mary, Y.S.; Thomas, R. Single crystal XRD, DFT investigations and molecular docking study of 2- ((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1h-pyrazol-4-yl)amino)naphthalene-1,4-dione as a potential anti-cancer lead molecule. Comput. Biol. Chem. 2019, 78, 153–164. [Google Scholar] [CrossRef]
- Fiorot, R.G.; Westphal, R.; Lemos, B.C.; Romagna, R.A.; Gonçalves, P.R.; Fernandes, M.R.N.; Ferreira, C.V.; Tarantoe, A.G.; Greco, S.J. Synthesis, molecular modelling and anticancer activities of new molecular hybrids containing 1,4-naphthoquinone, 7-chloroquinoline, 1,3,5-triazine and morpholine cores as PI3K and AMPK inhibitors in the metastatic melanoma cells. J. Braz. Chem. Soc. 2019, 30, 1860–1873. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Dang Thi, T.A.; Hoang Thi, P.; Le-Nhat-Thuy, G.; Nguyen Thi, Q.G.; Nguyen Tuan, A.; Le Thi, T.A.; Van Nguyen, T. A new approach for the synthesis of novel naphthoquinone chalcone hybrid compounds. Tetrahedron Lett. 2021, 81, 153337. [Google Scholar] [CrossRef]
- Bolognesi, M.L.; Calonghi, N.; Mangano, C.; Masotti, L.; Melchiorre, C. Parallel synthesis and cytotoxicity evaluation of a polyamine-quinone conjugates library. J. Med. Chem. 2008, 51, 5463–5467. [Google Scholar] [CrossRef] [PubMed]
- Gholampour, M.; Ranjbar, S.; Edraki, N.; Mohabbati, M.; Firuzi, O.; Khoshneviszadeh, M. Click chemistry-assisted synthesis of novel aminonaphthoquinone-1,2,3-triazole hybrids and investigation of their cytotoxicity and cancer cell cycle alterations. Bioorg. Chem. 2019, 88, 102967–102975. [Google Scholar] [CrossRef] [PubMed]
- Valença, W.O.; Baiju, T.V.; Brito, F.G.; Araujo, M.H.; Pessoa, C.; Cavalcanti, B.C.; de Simone, C.A.; Jacob, C.; Namboothiri, I.N.N.; da Silva Júnior, E.N. Synthesis of quinone-based N-sulfonyl-1,2,3-triazoles: Chemical reactivity of Rh(II) azavinyl carbenes and antitumor activity. ChemistrySelect 2017, 2, 4301–4308. [Google Scholar] [CrossRef]
- Prasad, C.V.; Nayak, V.L.; Ramakrishna, S.; Mallavadhani, U.V. Novel menadione hybrids: Synthesis, anticancer activity, and cell-based studies. Chem. Biol. Drug Des. 2018, 91, 220–233. [Google Scholar] [CrossRef]
- Da Cruz, E.H.G.; Hussene, C.M.B.; Dias, G.G.; Diogo, E.B.T.; De Melo, I.M.M.; Rodrigues, B.L.; Da Silva, M.G.; Valença, W.O.; Camara, C.A.; De Oliveira, R.N.; et al. 1,2,3-Triazole-, arylamino- and thio-substituted 1,4-naphthoquinones: Potent antitumor activity, electrochemical aspects, and bioisosteric replacement of c-ring-modified lapachones. Bioorg. Med. Chem. 2014, 22, 1608–1619. [Google Scholar] [CrossRef] [PubMed]
- De Castro, L.S.; Emery, F.S.; da Silva Júnior, E.N. Synthesis of quinoidal molecules: Strategies towards bioactive compounds with an emphasis on lapachones. Eur. J. Med. Chem. 2013, 69, 678–700. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Das, G.; Ghosh, S.; Mal, D. Regioselective synthesis of naphthoquinone/ naphthoquinol-carbohydrate hybrids by [4 + 2] anionic annulations and studies on their cytotoxicity. Org. Biomol. Chem. 2016, 14, 10636–10647. [Google Scholar] [CrossRef] [PubMed]
- Alimohammadi, A.; Mostafavi, H.; Mahdavi, M. Thiourea derivatives based on the dapsone-naphthoquinone hybrid as anticancer and antimicrobial agents: In vitro screening and molecular docking studies. ChemistrySelect 2020, 5, 847–852. [Google Scholar] [CrossRef]
- Boulos, J.C.; Rahama, M.; Hegazy, M.E.F.; Efferth, T. Shikonin derivatives for cancer prevention and therapy. Cancer Lett. 2019, 459, 248–267. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.Y.; Han, H.W.; Sun, W.X.; Yang, Y.S.; Tang, C.Y.; Lu, G.H.; Qi, J.L.; Wang, X.M.; Yang, Y.H. Design and characterization of α-lipoic acyl shikonin ester twin drugs as tubulin and PDK1 dual inhibitors. Eur. J. Med. Chem. 2018, 144, 137–150. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, C.; Wu, L. L-proline catalyzed three-component synthesis of para-naphthoquinone- 4-aza-podophyllotoxin hybrids as potent antitumor agents. RSC Adv. 2015, 5, 18945–18951. [Google Scholar] [CrossRef]
- Bao, N.; Ou, J.; Li, N.; Zou, P.; Sun, J.; Chen, L. Novel anticancer hybrids from diazen-1-ium-1,2-diolate nitric oxide donor and ROS inducer plumbagin: Design, synthesis and biological evaluations. Eur. J. Med. Chem. 2018, 154, 1–8. [Google Scholar] [CrossRef]
- Gach, K.; Modranka, J.; Szymański, J.; Pomorska, D.; Krajewska, U.; Mirowski, M.; Janecki, T.; Janecka, A. Anticancer properties of new synthetic hybrid molecules combining naphtho[2,3-b]furan-4,9-dione or benzo[f]indole-4,9-dione motif with phosphonate subunit. Eur. J. Med. Chem. 2016, 120, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Długosz, A.; Gach, K.; Szymański, J.; Modranka, J.; Janecki, T.; Janecka, A. Anticancer activity of new molecular hybrids combining 1,4-naphthalenedione motif with phosphonic acid moiety in hepatocellular carcinoma HepG2 cells. Acta Biochim. Pol. 2017, 64, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Peng, C.; Du, F.; Zhou, L.; Shi, Y.; Du, Y.; Liu, D.; Sun, W.; Zhang, M.; Chen, G. Design, synthesis and activity of BBI608 derivatives targeting on stem cells. Eur. J. Med. Chem. 2018, 151, 39–50. [Google Scholar] [CrossRef]
- Aly, A.A.; Bräse, S.; Hassan, A.A.; Mohamed, N.K.; El-Haleem, L.E.A.; Nieger, M.; Morsy, N.M.; Alshammari, M.B.; Ibrahim, M.A.A.; Abdelhafez, E.M.N. Design, synthesis, and molecular docking of paracyclophanyl-thiazole hybrids as novel Cdk1 inhibitors and apoptosis inducing anti-melanoma agents. Molecules 2020, 25, 5569. [Google Scholar] [CrossRef] [PubMed]
- De Riccardis, F.; Izzo, I.; Di Filippo, M.; Sodano, G.; D’Acquisto, F.; Carnuccio, R. Synthesis and cytotoxic activity of steroid-anthraquinone hybrids. Tetrahedron 1997, 53, 10871–10882. [Google Scholar] [CrossRef]
- Kaliappan, K.P.; Ravikumar, V. Design and synthesis of novel sugar-oxasteroid-quinone hybrids. Org. Biomol. Chem. 2005, 3, 848–851. [Google Scholar] [CrossRef] [PubMed]
- Sayyad, A.A.; Kaliappan, K.P. sequential enyne-metathesis/diels–alder strategy: Rapid access to sugar–oxasteroid–quinone hybrids. Eur. J. Org. Chem. 2017, 2017, 5055–5065. [Google Scholar] [CrossRef]
- Collins, J.A.; Osheroff, N. 1,2-Naphthoquinone as a poison of human type II Topoisomerases. Chem. Res. Toxicol. 2021, 34, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Löcken, H.; Clamor, C.; Müller, K. Napabucasin and related heterocycle-fused naphthoquinones as STAT3 inhibitors with antiproliferative activity against cancer cells. J. Nat. Prod. 2018, 81, 1636–1644. [Google Scholar] [CrossRef]
- Bian, J.; Deng, B.; Xu, L.; Xu, X.; Wang, N.; Hu, T.; Yao, Z.; Du, J.; Yang, L.; Lei, Y.; et al. 2-Substituted 3-methylnaphtho[1,2-b]furan-4,5-diones as novel l-shaped ortho-quinone substrates for NAD(P)H:Quinone Oxidoreductase (NQO1). Eur. J. Med. Chem. 2014, 82, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bian, J.; Wang, N.; Qian, X.; Gu, J.; Mu, T.; Fan, J.; Yang, X.; Li, S.; Yang, T.; et al. Novel naphtho[2,1-d]oxazole-4,5-diones as NQO1 substrates with improved aqueous solubility: Design, synthesis, and in vivo antitumor evaluation. Bioorg. Med. Chem. 2016, 24, 1006–1013. [Google Scholar] [CrossRef]
- Yu, J.; Li, S.; Zeng, X.; Song, J.; Hu, S.; Cheng, S.; Chen, C.; Luo, H.; Pan, W. Design, synthesis, and evaluation of proliferation inhibitory activity of novel l-shaped ortho-quinone analogs as anticancer agents. Bioorg. Chem. 2021, 117, 105383. [Google Scholar] [CrossRef] [PubMed]
- da Silva Júnior, E.N.; de Moura, M.A.B.F.; Pinto, A.V.; Pinto, M.D.C.F.; de Souza, M.C.B.V.; Araújo, A.J.; Pessoa, C.; Costa-Lotufo, L.V.; Montenegro, R.C.; de Moraes, M.O.; et al. Cytotoxic, trypanocidal activities and physicochemical parameters of nor-β-lapachone-based 1,2,3-triazoles. J. Braz. Chem. Soc. 2009, 20, 635–643. [Google Scholar] [CrossRef]
- Wu, L.-Q.; Xin Ma, X.; Liu, Z.-P. Design, synthesis, and biological evaluation of 3-(1-benzotriazole)-nor-β-lapachones as NQO1-directed antitumor agents. Bioorg. Chem. 2021, 113, 104995–105006. [Google Scholar] [CrossRef]
- Chipoline, I.C.; Alves, E.; Branco, P.; Costa-Lotufo, L.V.; Ferreira, V.F.; da Silva, F.C. Synthesis and cytotoxic evaluation of 1H-1,2,3-triazol-1-ylmethyl-2,3-dihydronaphtho[1,2-b]furan-4,5-diones. Ann. Braz. Acad. Sci. 2018, 90, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Martín-Rodríguez, P.; Guerra, B.; Hueso-Falcón, I.; Aranda-Tavío, H.; Díaz-Chico, J.; Quintana, J.; Estévez, F.; Díaz-Chico, B.; Amesty, A.; Estévez-Braun, A.; et al. A novel naphthoquinone-coumarin hybrid that inhibits BCR-ABL1-STAT5 oncogenic pathway and reduces survival in imatinib-resistant chronic myelogenous leukemia cells. Front. Pharmacol. 2019, 9, 1546. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Liu, Y.; Li, Y. Synthesis of spirooxindole-o-naphthoquinone-tetrazolo[1,5-a]pyrimidine hybrids as potential anticancer agents. Molecules 2018, 23, 2330. [Google Scholar] [CrossRef]
- Zhou, D.C.; Lu, Y.T.; Mai, Y.W.; Zhang, C.; Xia, J.; Yao, P.F.; Wang, H.G.; Huang, S.L.; Huang, Z.S. Design, synthesis and biological evaluation of novel perimidine o-quinone derivatives as non-intercalative Topoisomerase II catalytic inhibitors. Bioorg. Chem. 2019, 91, 103131. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, C. Synthesis and antitumor activity evaluation of novel substituted 5H-benzo[i][1,3,4]thiadiazolo[3,2-a] quinazoline-6,7-diones. RSC Adv. 2016, 6, 28555–28562. [Google Scholar] [CrossRef]
- Vieira, A.A.; Brandão, I.R.; Valença, W.O.; De Simone, C.A.; Cavalcanti, B.C.; Pessoa, C.; Carneiro, T.R.; Braga, A.L.; Da Silva, E.N. Hybrid compounds with two redox centres: Modular synthesis of chalcogen-containing lapachones and studies on their antitumor activity. Eur. J. Med. Chem. 2015, 101, 254–265. [Google Scholar] [CrossRef]
- Bahia, S.B.B.B.; Reis, W.J.; Jardim, G.A.M.; Souto, F.T.; De Simone, C.A.; Gatto, C.C.; Menna-Barreto, R.F.S.; De Castro, S.L.; Cavalcanti, B.C.; Pessoa, C.; et al. Molecular hybridization as a powerful tool towards multitarget quinoidal systems: Synthesis, trypanocidal and antitumor activities of naphthoquinone-based 5-iodo-1,4-disubstituted-, 1,4- and 1,5-disubstituted-1,2,3-triazoles. MedChemComm 2016, 7, 1555–1563. [Google Scholar] [CrossRef]
- Costa, D.C.S.; de Almeida, G.S.; Won-Held, R.V.; Cabral, L.M.; Sathler, P.C.; Alvarez Abreu, P.; Ferreira, V.F.; Pereira da Silva, C.R.; da Silva, F.D.C. Synthesis and evaluation of the cytotoxic activity of furanaphthoquinones tethered to 1H-1,2,3-triazoles in Caco-2, Calu-3, MDA-MB231 cells. Eur. J. Med. Chem. 2018, 156, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, E.N.; Cavalcanti, B.C.; Guimarães, T.T.; Pinto, M.D.C.F.R.; Cabral, I.O.; Pessoa, C.; Costa-Lotufo, L.V.; De Moraes, M.O.; De Andrade, C.K.Z.; Dos Santos, M.R.; et al. Synthesis and evaluation of quinonoid compounds against tumor cell lines. Eur. J. Med. Chem. 2011, 46, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Jardim, G.A.M.; Guimarães, T.T.; Pinto, M.D.C.F.R.; Cavalcanti, B.C.; De Farias, K.M.; Pessoa, C.; Gatto, C.C.; Nair, D.K.; Namboothiri, I.N.N.; Da Silva Júnior, E.N. Naphthoquinone-based chalcone hybrids and derivatives: Synthesis and potent activity against cancer cell lines. MedChemComm 2015, 6, 120–150. [Google Scholar] [CrossRef]
- Da Cruz, E.H.G.; Silvers, M.A.; Jardim, G.A.M.; Resende, J.M.; Cavalcanti, B.C.; Bomfim, I.S.; Pessoa, C.; De Simone, C.A.; Botteselle, G.V.; Braga, A.L.; et al. Synthesis and antitumor activity of selenium-containing quinone-based triazoles possessing two redox centres, and their mechanistic insights. Eur. J. Med. Chem. 2016, 122, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Jardim, G.A.M.; Da Cruz, E.H.G.; Valença, W.O.; Lima, D.J.B.; Cavalcanti, B.C.; Pessoa, C.; Rafique, J.; Braga, A.L.; Jacob, C.; Da Silva, E.N. Synthesis of selenium-quinone hybrid compounds with potential antitumor activity via Rh-catalyzed c-h bond activation and click reactions. Molecules 2018, 23, 83. [Google Scholar] [CrossRef] [PubMed]
- Gontijo, T.B.; de Freitas, R.P.; Emery, F.S.; Pedrosa, L.F.; Vieira Neto, J.B.; Cavalcanti, B.C.; Pessoa, C.; King, A.; de Moliner, F.; Vendrell, M.; et al. On the synthesis of quinone-based BODIPY hybrids: New insights on antitumor activity and mechanism of action in cancer cells. Bioorg. Med. Chem. Lett. 2017, 27, 4446–4456. [Google Scholar] [CrossRef] [PubMed]
- Modranka, J.; Drogosz-Stachowicz, J.; Pietrzak, A.; Janecka, A.; Janecki, T. Synthesis and structure-activity relationship study of novel 3-diethoxyphosphorylfuroquinoline-4,9-diones with potent antitumor efficacy. Eur. J. Med. Chem. 2021, 219, 113429–113439. [Google Scholar] [CrossRef]
- Li, G.; Li, Q.; Sun, H.; Li, W. Novel diosgenin-1,4-quinone hybrids: Synthesis, antitumor evaluation, and mechanism studies. J. Steroid Biochem. Mol. Biol. 2021, 214, 105993. [Google Scholar] [CrossRef]
- Kadela-Tomanek, M.; Bębenek, E.; Chrobak, E.; Marciniec, K.; Latocha, M.; Kuśmierz, D.; Jastrzębska, M.; Boryczka, S. Betulin-1,4-quinone hybrids: Synthesis, anticancer activity and molecular docking study with NQO1 enzyme. Eur. J. Med. Chem. 2019, 177, 302–315. [Google Scholar] [CrossRef] [PubMed]
- Kadela-Tomanek, M.; Jastrzębska, M.; Chrobak, E.; Bębenek, E.; Boryczka, S. Chromatographic and computational screening of lipophilicity and pharmacokinetics of newly synthesized betulin-1,4-quinone hybrids. Processes 2021, 9, 376. [Google Scholar] [CrossRef]
- Kadela-Tomanek, M.; Jastrzębska, M.; Marciniec, K.; Chrobak, E.; Bębenek, E.; Latocha, M.; Kuśmierz, D.; Boryczka, S. Design, synthesis and biological activity of 1,4-quinone moiety attached to betulin derivatives as potent DT-diaphorase substrate. Bioorg. Chem. 2021, 106, 104478. [Google Scholar] [CrossRef] [PubMed]
- Defant, A.; Mancini, I. Design, synthesis and cancer cell growth inhibition evaluation of new aminoquinonequinone hybrid molecules. Molecules 2019, 24, 2224. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, W.A.; da Silva, L.C.; Campos, V.R.; de Souza, M.C.; Ferreira, V.F.; Dos Santos, Â.C.; Sathler, P.C.; de Almeida, G.S.; Dias, F.R.; Cabral, L.M.; et al. Synthesis and antitumor evaluation of hybrids of 5,8-dioxo-5,8-dihydroisoquinoline 4-carboxylates and carbohydrate. Future Med. Chem. 2018, 10, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Mello, N.A.L.; Sagrillo, F.S.; de Souza, A.G.; Costa, A.R.P.; Campos, V.R.; Cunha, A.C.; Imbroisi Filho, R.; da Costa Santos Boechat, F.; Sola-Penna, M.; de Souza, M.C.B.V.; et al. Selective AMPK activator leads to unfolded protein response downregulation and induces breast cancer cell death and autophagy. Life Sci. 2021, 276, 119470. [Google Scholar] [CrossRef] [PubMed]
- Córdova-Delgado, M.; Fuentes-Retamal, S.; Palominos, C.; López-Torres, C.; Guzmán-Rivera, D.; Ramírez-Rodríguez, O.; Araya-Maturana, R.; Urra, F.A. FRI-1 Is an Anti-Cancer Isoquinolinequinone That Inhibits the Mitochondrial Bioenergetics and Blocks Metabolic Shifts by Redox Disruption in Breast Cancer Cells. Antioxidants 2021, 10, 1618. [Google Scholar] [CrossRef] [PubMed]
Biological Evaluation | Computational Analyses | Figure | Reference | |||||
---|---|---|---|---|---|---|---|---|
sub-μM IC50 | Normal Cell | In Vivo | DFT | Docking | Drug Likeness | MD | ||
✓ | Figure 3 | [26,27] | ||||||
✓ | ✓ | ✓ | ✓ | Figure 3 | [28] | |||
✓ | ✓ | Figure 4 | [29] | |||||
✓ | Figure 4 | [30] | ||||||
✓ | ✓ | Figure 6 | [34] | |||||
✓ | ✓ | ✓ | Figure 7 | [37] | ||||
✓ | ✓ | Figure 9 | [39] | |||||
✓ | Figure 10 | [41] | ||||||
✓ | Figure 11 | [43] | ||||||
✓ | ✓ | ✓ | Figure 13 | [46] | ||||
✓ | ✓ | Figure 14 | [47] | |||||
✓ | ✓ | Figure 17 | [52] | |||||
✓ | Figure 18 | [53] | ||||||
✓ | ✓ | Figure 18 | [54] | |||||
✓ | ✓ | Figure 18 | [55] | |||||
✓ | Figure 19 | [56] | ||||||
✓ | ✓ | Figure 19 | [57] | |||||
✓ | ✓ | Figure 19 | [58] | |||||
✓ | ✓ | Figure 20 | [59] | |||||
✓ | Figure 20 | [60] | ||||||
✓ | Figure 21 | [61] | ||||||
✓ | Figure 21 | [62] | ||||||
✓ | ✓ | Figure 22 | [63] | |||||
✓ | Figure 23 | [64] | ||||||
✓ | ✓ | Figure 23 | [65] | |||||
✓ | ✓ | Figure 25 | [67] | |||||
✓ | ✓ | Figure 27 | [68] | |||||
✓ | ✓ | Figure 28 | [69] | |||||
✓ | ✓ | Figure 29 | [70] | |||||
✓ | ✓ | Figure 30 | [71] | |||||
✓ | Figure 31 | [72] | ||||||
✓ | ✓ | Figure 32 | [73,74] | |||||
✓ | Figure 32 | [75] | ||||||
✓ | ✓ | ✓ | Figure 33 | [76] | ||||
✓ | Figure 34 | [77] | ||||||
✓ | Figure 35 | [78] |
Authors (Year) | Mechanisms of Action |
---|---|
Saluja et al. (2014) | antioxidant activity |
Gholampur et al. (2020) | cell cycle arrest in the S phase and potentially apoptosis induction |
Rani et al. (2019) | Erβ receptor and protein kinase CK2 potential inhibition by docking |
Fiorot et al. (2019) | PI3Kγ and AMPK potential inhibition by docking |
Bolognesi et al. (2008) | apoptotic EGFR-mediated intracellular signaling |
Gholampur et al. (2019) | cell cycle arrest at G0/G1 phase |
Valença et al. (2017) | apparently involves the generation of ROS |
Prasad et al.(2018) | induction of cell cycle arrest and apoptosis |
da Cruz et al. (2014) | potential releasing of ROS |
Alimohammadi et al. (2020) | tyrosine kinase inhibition, BCR-ABL protein, Abl kinase, and T315I Abl mutantas targets by docking |
Lin et al. (2018) | cell cycle arrest in G2/M phase as tubulin inhibitor and PDK1 activity inhibition |
Bao et al. (2018) | induction of apoptosis in A549 cells in a concentration-dependent manner |
Gach et al. (2016) | generation of intracellular ROS |
Długosz et al. (2027) | apoptosis induction |
Zhou et al. (2018) | potential STAT3 inhibitory activities by docking |
Aly et al. (2020) | CDK1/CDC2 phospho-Tyr15 regulation and pre-G1 apoptosis and cell cycle arrest at the G2/M phase |
Löcken et al. (2018) | inhibition of STAT3 phosphorylation and generation of ROS in an NQO1-independent manner |
Bian et al. (2014) | NQO1-mediated ROS production by experiments and docking |
Yu et al. (2021) | NQO1 binding by experiments and docking |
Li et al. (2016) | NQO1 substrate and NQO1-mediated ROS production |
da Silva Júnior et al. (2009) | no correlation between redox potential and cytotoxicity |
Wu et al. (2021) | NQO1 substrate by enzymatic assay; cell cycle arrest in G0/G1 phase, cell apoptosis induction through the mitochondrial pathway, and ROS generation promtion. tumor growth suppression in vivo with no influences on animal body weight. |
Martín-Rodríguez et al. (2019) | multi-targeting agent by induction of JNK activity, cell cycle arrest, apoptosis induction and inhibition of the BCR-ABL1/STAT5/c-MYC/PIM-1 signaling pathway |
Zhou et al. (2019) | non-intercalative Topo IIα inhibitor, ATP binding site and inductor of apoptosis |
Vieira et al. (2015) | ROS generation |
Costa et al. (2018) | inhibition of topoisomerase I and IIα but not IIβ by docking |
da Silva Júnior et al. (2011) | induction of apoptotic cell death mediated by ROS generation |
da Cruz et al. (2016) | bioactivation by NQO1 followed by apoptosis associated with ROS |
Gontijo et al. (2017) | ROS generation and cytotoxic action in subcellular lysosomal organelles |
Modranka et al. (2021) | cell cycle arrest at the S phase, cell proliferation reduction, DNA damage and apoptosis induction |
Li et al. (2021) | activation of the mitochondrial apoptosis pathway (experimental) and NQO1 enzyme interactions by docking |
Kadela-Tomanek et al. (2019) | potential NQO1 interaction by docking |
Kadela-Tomanek et al. (2021) | substrates for NQO1 experimental and by docking, mitochondrial apoptosis pathway |
Defant and Mancini (2019) | potential tubulin, human topoisomerase II and ROCK1 interactions by docking |
Mello et al. (2021) | AMPK activation with mTORC1 signaling inhibition, autophagy activation and ER inhibition stress pathway |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancini, I.; Vigna, J.; Sighel, D.; Defant, A. Hybrid Molecules Containing Naphthoquinone and Quinolinedione Scaffolds as Antineoplastic Agents. Molecules 2022, 27, 4948. https://doi.org/10.3390/molecules27154948
Mancini I, Vigna J, Sighel D, Defant A. Hybrid Molecules Containing Naphthoquinone and Quinolinedione Scaffolds as Antineoplastic Agents. Molecules. 2022; 27(15):4948. https://doi.org/10.3390/molecules27154948
Chicago/Turabian StyleMancini, Ines, Jacopo Vigna, Denise Sighel, and Andrea Defant. 2022. "Hybrid Molecules Containing Naphthoquinone and Quinolinedione Scaffolds as Antineoplastic Agents" Molecules 27, no. 15: 4948. https://doi.org/10.3390/molecules27154948
APA StyleMancini, I., Vigna, J., Sighel, D., & Defant, A. (2022). Hybrid Molecules Containing Naphthoquinone and Quinolinedione Scaffolds as Antineoplastic Agents. Molecules, 27(15), 4948. https://doi.org/10.3390/molecules27154948