Variation in the Content of Bioactive Compounds in Infusions Prepared from Different Parts of Wild Polish Stinging Nettle (Urtica dioica L.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the Extraction Process
2.2. Capillary Isotachophoresis of Nitrate (III), Phosphate (V) and Organic Acids in Fresh Nettle
2.3. LC–MS/MS Determination of Organic Acids, Phenolic Compounds, Vitamin B3 and Trigonelline in Fresh Nettle
2.4. Principal Component Analysis
3. Materials and Methods
3.1. Material and Optimization Method
3.2. Isotachophoretic Method
3.3. LC–MS/MS
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Di Virgilio, N.; Papazoglou, E.G.; Jankauskiene, Z.; Di Lonardo, S.; Praczyk, M.; Wielgusz, K. The potential of stinging nettle (Urtica dioica L.) as a crop with multiple uses. Ind. Crops Prod. 2015, 68, 42–49. [Google Scholar] [CrossRef]
- Samica, S. Production of Nettle (Urtica dioica), Environmental and Economic Valuation in Conventional Farming. Master’s Thesis, University of Helsinki, Helsinki, Finland, 2019. [Google Scholar]
- Radman, S.; Žutić, I.; Fabek, S.; Šic Žlabur, J.; Benko, B.; Toth, N.; Čoga, L. Influence of nitrogen fertilization on chemical composition of cultivated nettle. Emir. J. Food Agric. 2015, 27, 889–896. [Google Scholar] [CrossRef] [Green Version]
- Ammarellou, A.; Kamal, K.; Najafei; Zarreinei, H.; Najmaddin, M.; Nasimeh, A. Effects of different culture media on rooting of Urtica dioica L. stem cuttings. J. Soil Sci. Environ. Manag. 2012, 3, 172–175. [Google Scholar] [CrossRef] [Green Version]
- Waszkiewicz-Robak, B. Przetwórstwo ziół, roślin i kwiatów (Processing of herbs, plants and flowers). In Krótki Łańcuch Dostaw i RHD Jako Determinanty Rozwoju Lokalnego Rolnictwa; Podlaski Ośrodek Doradztwa Rolniczego w Szepietowie: Wysokie Mazowieckie, Poland, 2019; pp. 41–48. [Google Scholar]
- Orčić, D.; Francišković, M.; Bekvalac, K.; Svirčev, E.; Beara, I.; Lesjak, M.; Mimica-Dukić, N. Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection. Food Chem. 2014, 143, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Bacci, L.; Di Lonardo, S.; Albanese, L.; Mastromei, G.; Perito, B. Effect of different extraction methods on fiber quality of nettle (Urtica dioica L.). Text. Res. J. 2011, 81, 827–837. [Google Scholar] [CrossRef]
- Đurović, S.; Pavlić, B.; Šorgić, S.; Popov, S.; Savić, S.; Petronijević, M.; Radojković, M.; Cvetanović, A.; Zeković, Z. Chemical composition of stinging nettle leaves obtained by different analytical approaches. J. Funct. Foods 2017, 32, 18–26. [Google Scholar] [CrossRef]
- Repajić, M.; Cegledi, E.; Zorić, Z.; Pedisić, S.; Elez Garofulić, I.; Radman, S.; Palčić, I.; Dragović-Uzelac, V. Bioactive compounds in wild nettle (Urtica dioica L.) leaves and stalks: Polyphenols and pigments upon seasonal and habitat variations. Foods 2021, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Vajić, U.-N.; Grujić-Milanović, J.; Živković, J.; Šavikin, K.; Gođevac, D.; Miloradović, Z.; Bugarski, B.; Mihailović-Stanojević, N. Optimization of extraction of stinging nettle leaf phenolic compounds using response surface methodology. Ind. Crops Prod. 2015, 74, 912–917. [Google Scholar] [CrossRef]
- Farag, M.A.; Weigend, M.; Luebert, F.; Brokamp, G.; Wessjohann, L.A. Phytochemical, phylogenetic, and anti-inflammatory evaluation of 43 Urtica accessions (stinging nettle) based on UPLC–Q-TOF-MS metabolomic profiles. Phytochemistry 2013, 96, 170–183. [Google Scholar] [CrossRef]
- Pinelli, P.; Ieri, F.; Vignolini, P.; Bacci, L.; Baronti, S.; Romani, A. Extraction and HPLC analysis of phenolic compounds in leaves, stalks, and textile fibers of Urtica diocia L. J. Agric. Food Chem. 2008, 56, 9127–9132. [Google Scholar] [CrossRef]
- Yıldız, L.; Sözgen Başkan, K.; Tütem, E.; Apak, R. Combined HPLC-CUPRAC (cupric ion reducing antioxidant capacity) assay of parsley, celery leaves, and nettle. Talanta 2008, 77, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Jan, K.N.; Zarafshan, K.; Singh, S. Stinging nettle (Urtica dioica L.): A reservoir of nutrition and bioactive components with great functional potential. J. Food Meas. Charact. 2017, 11, 423–433. [Google Scholar] [CrossRef]
- Kavalali, G.M. Urtica: Therapeutic and Nutritional Aspects of Stinging Nettles; Taylor & Francis: London, UK, 2003. [Google Scholar]
- Bnouham, M.; Merhfour, F.-Z.; Ziyyat, A.; Mekhfi, H.; Aziz, M.; Legssyer, A. Antihyperglycemic activity of the aqueous extract of Urtica dioica. Fitoterapia 2003, 74, 677–681. [Google Scholar] [CrossRef]
- Tahri, A.; Yamani, S.; Legssyer, A.; Aziz, M.; Mekhfi, H.; Bnouham, M.; Ziyyat, A. Acute diuretic, natriuretic and hypotensive effects of a continuous perfusion of aqueous extract of Urtica dioica in the rat. J. Ethnopharmacol. 2000, 73, 95–100. [Google Scholar] [CrossRef]
- Hadizadeh, I.; Peivastega, B.; Kolahi, M. Antifungal activity of nettle (Urtica dioica L.), colocynth (Citrullus colocynthis L. Schrad), oleander (Nerium oleander L.) and konar (Ziziphus spina-christi L.) extracts on plants pathogenic fungi. Pakistan J. Biol. Sci. 2008, 12, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Salih, N.A. Antibacterial effect of nettle (Urtica dioica). Al-Qadisiyah J. Vet. Med. Sci. 2014, 13, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Chrubasik, S.; Enderlein, W.; Bauer, R.; Grabner, W. Evidence for antirheumatic effectiveness of Herba Urticae dioicae in acute arthritis: A pilot study. Phytomedicine 1997, 4, 105–108. [Google Scholar] [CrossRef]
- Mansoori, B.; Mohammadi, A.; Hashemzadeh, S.; Shirjang, S.; Baradaran, A.; Asadi, M.; Amin Doustvandi, M.; Baradaran, B. Urtica dioica extract suppresses miR-21 and metastasis-related genes in breast cancer. Biomed. Pharmacother. 2017, 93, 95–102. [Google Scholar] [CrossRef]
- Gião, M.S.; González-Sanjosé, M.L.; Rivero-Pérez, M.D.; Pereira, C.I.; Pintado, M.E.; Malcata, F.X. Infusions of Portuguese medicinal plants: Dependence of final antioxidant capacity and phenol content on extraction features. J. Sci. Food Agric. 2007, 87, 2638–2647. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Malin, V.; Repajić, M.; Zorić, Z.; Pedisić, S.; Sterniša, M.; Smole Možina, S.; Dragović-Uzelac, V. Phenolic profile, antioxidant capacity and antimicrobial activity of nettle leaves extracts obtained by advanced extraction techniques. Molecules 2021, 26, 6153. [Google Scholar] [CrossRef]
- Lukasiewicz, M.; Kowalski, S.; Makarewicz, M. Antimicrobial an antioxidant activity of selected Polish herbhoneys. LWT Food Sci. Technol. 2015, 64, 547–553. [Google Scholar] [CrossRef]
- Fu, H.Y.; Chen, S.J.; Chen, R.F.; Ding, W.H.; Kuo-Huang, L.L.; Huang, R.N. Identification of Oxalic Acid and Tartaric Acid as Major Persistent Pain-inducing Toxins in the Stinging Hairs of the Nettle, Urtica thunbergiana. Ann. Bot. 2006, 98, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Shonte, T.T.; de Kock, H.L. Descriptive sensory evaluation of cooked stinging nettle (Urtica dioica L.) leaves and leaf infusions: Effect of using fresh or oven-dried leaves. S. Afr. J. Bot. 2017, 110, 167–176. [Google Scholar] [CrossRef]
- Otles, S.; Yalcin, B. Phenolic compounds analysis of root, stalk, and leaves of nettle. Sci. World J. 2012, 2012, 564367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grauso, L.; Emrick, S.; Bonanomi, G.; Lanzotti, V. Metabolomics of the alimurgic plants Taraxacum officinale, Papaver rhoeas and Urtica dioica by combined NMR and GC–MS analysis. Phytochem. Anal. 2019, 30, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Jeszka-Skowron, M.; Zgoła-Grześkowiak, A.; Frankowski, R. Cistus incanus a promising herbal tea rich in bioactive compounds: LC–MS/MS determination of catechins, flavonols, phenolic acids and alkaloids—A comparison with Camellia sinensis, Rooibos and Hoan Ngoc herbal tea. J. Food Comp. Anal. 2018, 74, 71–81. [Google Scholar] [CrossRef]
- Jeszka-Skowron, M.; Zgoła-Grześkowiak, A. Usage of capillary isotachophoresis and antioxidant capacity measurement in analysis of changes in coffee properties after roasting, steaming and decaffeination. Food Anal. Methods 2017, 10, 1245–1251. [Google Scholar] [CrossRef] [Green Version]
Model | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Factor | Name | Units | Type | Low Actual | High Actual | Low Coded | High Coded | Mean | Standard Deviation | ||
A | Time | min | Numeric | 9.93 | 29.87 | −1.000 | 1.000 | 19.99 | 7.83 | ||
B | Temperature | °C | Numeric | 65.71 | 93.29 | −1.000 | 1.000 | 79.92 | 10.90 | ||
Response | Name | Units | Observations | Analysis | Min. | Max. | Mean | Std. Dev. | Ratio | Trans | Model |
Y1 | DPPH | mg Trolox 100 mL−1 | 13 | Polynomial | 0.50 | 2.55 | 1.90 | 0.62 | 5.14 | None | Linear |
Y2 | Folin– Ciocalteu | mg GAE 100 mL−1 | 13 | Polynomial | 1.01 | 2.48 | 1.74 | 0.44 | 2.44 | None | Linear |
No. | Run | Parameters | Results | ||
---|---|---|---|---|---|
Time (min) | Temp (°C) | DPPH (mg Trolox 100 mL−1) | Folin–Ciocalteu (mg GAE 100 mL−1) | ||
1 | 11 | 10 | 66 | 0.5 ± 0.1 | 1.3 ± 0.1 |
2 | 5 | 30 | 66 | 1.0 ± 0.1 | 1.3 ± 0.1 |
3 | 9 | 10 | 95 | 2.5 ± 0.2 | 2.9 ± 0.2 |
4 | 2 | 30 | 95 | 2.3 ± 0.1 | 2.4 ± 0.1 |
5 | 3 | 6 | 80 | 2.2 ± 0.1 | 1.8 ± 0.2 |
6 | 10 | 34 | 80 | 2.2 ± 0.1 | 1.5 ± 0.1 |
7 | 12 | 20 | 60 | 1.0 ± 0.1 | 1.0 ± 0.1 |
8 | 13 | 20 | 99 | 2.5 ± 0.2 | 2.5 ± 0.2 |
9 | 6 | 20 | 80 | 1.7 ± 0.1 | 1.7 ± 0.1 |
10 | 4 | 20 | 80 | 1.9 ± 0.2 | 1.7 ± 0.1 |
11 | 7 | 20 | 80 | 2.2 ± 0.2 | 1.7 ± 0.1 |
12 | 1 | 20 | 80 | 2.2 ± 0.2 | 1.7 ± 0.2 |
13 | 8 | 20 | 80 | 2.2 ± 0.2 | 1.8 ± 0.1 |
Nettle Sample | Phosphate (V) | Oxalic Acid | Citric Acid | Malic Acid | |
---|---|---|---|---|---|
I | a (root) | 5.70 ± 0.22 | 0.99 ± 0.02 | 6.45 ± 0.32 | 5.04 ± 0.22 |
b (stem) | 5.94 ± 0.17 | 0.58 ± 0.01 | 13.08 ± 1.02 | 7.36 ± 0.33 | |
c (leaves) | 0.72 ± 0.04 | 1.05 ± 0.03 | 7.40 ± 0.41 | 7.28 ± 0.24 | |
II | a (root) | 10.31 ± 0.12 | 1.83 ± 0.03 | 9.54 ± 0.21 | 2.37 ± 0.12 |
b (stem) | 9.43 ± 0.31 | 0.65 ± 0.01 | 7.49 ± 0.19 | 3.51 ± 0.11 | |
c (leaves) | 1.97 ± 0.05 | 0.90 ± 0.02 | 12.17 ± 0.71 | 9.13 ± 0.39 | |
III | a (root) | 0.92 ± 0.03 | 0.52 ± 0.12 | 2.77 ± 0.12 | 1.69 ± 0.19 |
b (stem) | 0.87 ± 0.02 | 0.31 ± 0.02 | 2.04 ± 0.03 | 1.38 ± 0.23 | |
c (leaves) | 0.40 ± 0.01 | 0.31 ± 0.03 | 1.45 ± 0.21 | 1.91 ± 0.20 | |
IV | a (root) | 4.61 ± 0.07 | 0.55 ± 0.02 | 0.26 ± 0.03 | 0.47 ± 0.02 |
b (stem) | 0.13 ± 0.02 | 0.22 ± 0.01 | 3.10 ± 0.05 | 1.53 ± 0.05 | |
c (leaves) | 0.53 ± 0.02 | 0.44 ± 0.04 | 4.14 ± 0.06 | 0.86 ± 0.03 | |
V | a (root) | 2.20 ± 0.04 | 0.48 ± 0.05 | 0.69 ± 0.03 | 0.44 ± 0.02 |
b (stem) | 1.02 ± 0.03 | 0.31 ± 0.03 | 1.26 ± 0.04 | 1.55 ± 0.04 | |
c (leaves) | 1.00 ± 0.02 | 0.56 ± 0.04 | 1.64 ± 0.05 | 1.07 ± 0.03 | |
VI | a (root) | 2.70 ± 0.05 | 0.56 ± 0.03 | 0.76 ± 0.03 | 1.24 ± 0.02 |
b (stem) | 1.41 ± 0.03 | 0.37 ± 0.05 | 3.14 ± 0.04 | 2.10 ± 0.06 | |
c (leaves) | 1.23 ± 0.02 | 0.48 ± 0.04 | 2.72 ± 0.05 | 1.75 ± 0.04 | |
VII | a (root) | 3.58 ± 0.06 | 0.44 ± 0.03 | 1.23 ± 0.03 | 0.84 ± 0.03 |
b (stem) | 1.50 ± 0.02 | 0.25 ± 0.02 | 1.58 ± 0.04 | 1.50 ± 0.03 | |
c (leaves) | 1.59 ± 0.03 | 0.49 ± 0.03 | 2.35 ± 0.05 | 1.64 ± 0.03 | |
VIII | a (root) | 3.00 ± 0.04 | 0.34 ± 0.02 | 0.85 ± 0.03 | 0.37 ± 0.01 |
b (stem) | 2.04 ± 0.03 | 0.26 ± 0.02 | 3,39 ± 0.06 | 1.87 ± 0.03 | |
c (leaves) | 3.12 ± 0.02 | 0.32 ± 0.02 | 3.63 ± 0.06 | 2.41 ± 0.04 | |
IX | a (root) | 1.68 ± 0.02 | 0.54 ± 0.04 | 5.23 ± 0.05 | 3.52 ± 0.04 |
b (stem) | 2.35 ± 0.02 | 0.24 ± 0.01 | 4.72 ± 0.05 | 4.06 ± 0.06 | |
c (leaves) | 1.68 ± 0.01 | 0.54 ± 0.03 | 5.23 ± 0.04 | 3.52 ± 0.05 | |
X | 0.74 ± 0.01 | 0.96 ± 0.02 | 11.60 ± 0.12 | 12.84 ± 0.75 | |
XI | 1.90 ± 0.04 | 0.88 ± 0.01 | 10.31 ± 0.15 | 11.88 ± 0.71 | |
XII | 1.41 ± 0.03 | 0.66 ± 0.01 | 8.01 ± 0.10 | 6.01 ± 0.54 | |
XIII | 0.75 ± 0.02 | 0.99 ± 0.02 | 9.54 ± 0.09 | 12.99 ± 0.81 | |
XIV | 0.59 ± 0.01 | 0.74 ± 0.01 | 7.68 ± 0.09 | 9.55 ± 0.54 |
Nettle Sample | Succinic Acid | Salicylic Acid | Syringic Acid | Quinic Acid | Protocatechuic Acid | 3-Caffeoylquinic Acid | p-Coumaric Acid | Ferulic Acid | |
---|---|---|---|---|---|---|---|---|---|
I | a | 20.0 ± 0.8 | not detected | 0.17 ± 0.02 | 20.5 ± 0.7 | 0.13 ± 0.01 | 2.13 ± 0.02 | 4.85 ± 0.23 | 1.44 ± 0.03 |
b | 96.6 ± 1.1 | not detected | 0.39 ± 0.03 | 135.5 ± 1.7 | 2.08 ± 0.12 | 75.7 ± 2.5 | 10.35 ± 0.82 | 0.95 ± 0.02 | |
c | 359.0 ± 5.4 | not detected | 0.14 ± 0.01 | 242.6 ± 2.1 | 4.27 ± 0.10 | 308.8 ± 4.1 | 0.25 ± 0.01 | not detected | |
II | a | 13.5 ± 0.4 | 0.27 ± 0.01 | 0.73 ± 0.04 | 59.9 ± 1.0 | 0.52 ± 0.02 | 11.7 ± 1.1 | 6.39 ± 0.31 | 1.20 ± 0.05 |
b | 473.1 ± 5.1 | 3.72 ± 0.02 | 1.02 ± 0.02 | 86.4 ± 1.5 | 3.39 ± 0.13 | 113.6 ± 3.2 | 8.30 ± 0.34 | 1.88 ± 0.06 | |
c | 237.5 ± 2.2 | 2.17 ± 0.02 | 0.37 ± 0.02 | 186.5 ± 2.1 | 7.11 ± 0.21 | 200.1 ± 3.5 | 1.21 ± 0.02 | 0.53 ± 0.01 | |
III | a | 19.7 ± 2.0 | 1.99 ± 0.01 | 0.14 ± 0.01 | 5.0 ± 0.4 | 0.13 ± 0.01 | 9.0 ± 0.6 | 0.90 ± 0.03 | 0.34 ± 0.03 |
b | 30.3 ± 3.2 | 0.24 ± 0.02 | 0.01 ± 0.01 | 10.1 ± 1.5 | 0.18 ± 0.01 | 202.0 ± 2.7 | 0.66 ± 0.01 | 0.16 ± 0.03 | |
c | 52.7 ± 4.2 | 0.16 ± 0.01 | 0.02 ± 0.01 | 89.2 ± 3.2 | 0.74 ± 0.02 | 877.5 ± 4.9 | 0.30 ± 0.01 | 0.37 ± 0.03 | |
IV | a | 11.3 ± 1.1 | 0.01 ± 0.01 | 0.07 ± 0.01 | 7.0 ± 0.8 | 0.18 ± 0.01 | 2.0 ± 0.3 | 0.38 ± 0.01 | 0.41 ± 0.03 |
b | 43.4 ± 3.5 | 0.05 ± 0.01 | 0.01 ± 0.01 | 42.2 ± 2.5 | 0.05 ± 0.01 | 121.63 ± 3.6 | 0.28 ± 0.01 | 0.09 ± 0.03 | |
c | 206.1 ± 4.2 | 0.13 ± 0.01 | 0.01 ± 0.01 | 313. 3 ± 4.3 | 0.34 ± 0.01 | 1212.24 ± 8.5 | 0.32 ± 0.01 | 0.42 ± 0.03 | |
V | a | 8.0 ± 0.5 | 0.01 ± 0.01 | 0.05 ± 0.01 | 1.6 ± 0.3 | 0.09 ± 0.01 | 1.98 ± 0.5 | 0.29 ± 0.01 | 0.38 ± 0.03 |
b | 38.2 ± 3.3 | 0.11 ± 0.01 | 0.01 ± 0.01 | 28.0 ± 2.1 | 0.07 ± 0.01 | 135.5 ± 1.9 | 0.20 ± 0.01 | 0.12 ± 0.01 | |
c | 71.9 ± 4.1 | 0.09 ± 0.01 | 0.01 ± 0.01 | 156.2 ± 3.4 | 0.66 ± 0.01 | 824.5 ± 6.4 | 0.28 ± 0.01 | 0.28 ± 0.01 | |
VI | a | 16.9 ± 1.6 | 0.01 ± 0.01 | 0.12 ± 0.01 | 6.3 ± 0.5 | 0.13 ± 0.01 | 1.8 ± 0.4 | 0.50 ± 0.01 | 0.62 ± 0.01 |
b | 63.3 ± 3.9 | 0.21 ± 0.01 | 0.01 ± 0.01 | 33.0 ± 1.3 | 0.62 ± 0.01 | 292.6 ± 3.7 | 0.36 ± 0.01 | 0.14 ± 0.01 | |
c | 112.4 ± 5.1 | 0.23 ± 0.01 | 0.01 ± 0.01 | 377.8 ± 3.6 | 0.53 ± 0.01 | 1991.8 ± 9.1 | 0.42 ± 0.01 | 0.25 ± 0.01 | |
VII | a | 10.8 ± 1.8 | 0.03 ± 0.01 | 0.03 ± 0.01 | 8.7 ± 0.7 | 0.15 ± 0.01 | 1.7 ± 0.4 | 0.35 ± 0.01 | 0.34 ± 0.01 |
b | 28.6 ± 1.9 | 0.08 ± 0.01 | 0.01 ± 0.01 | 18.4 ± 1.4 | 0.24 ± 0.01 | 97.5 ± 2.3 | 0.32 ± 0.01 | 0.20 ± 0.01 | |
c | 83.8 ± 3.1 | 0.36 ± 0.01 | 0.01 ± 0.01 | 340.0 ± 4.1 | 0.55 ± 0.01 | 751.0 ± 4.8 | 0.31 ± 0.01 | 0.63 ± 0.01 | |
VIII | a | 5.4 ± 0.4 | 0.01 ± 0.01 | 0.08 ± 0.01 | 4.2 ± 0.4 | 0.11 ± 0.01 | 1.0 ± 0.1 | 0.54 ± 0.01 | 0.52 ± 0.01 |
b | 52.0 ± 2.4 | 0.23 ± 0.01 | 0.01 ± 0.01 | 46.3 ± 2.6 | 0.20 ± 0.01 | 198.4 ± 2.9 | 0.45 ± 0.01 | 0.16 ± 0.01 | |
c | 97.5 ± 3.7 | 0.01 ± 0.01 | 0.01 ± 0.01 | 558.3 ± 4.1 | 0.50 ± 0.01 | 1338.8 ± 6.3 | 0.25 ± 0.01 | 0.22 ± 0.01 | |
IX | a | 19.0 ± 2.0 | 0.26 ± 0.01 | 0.10 ± 0.01 | 11.1 ± 1.0 | 0.14 ± 0.01 | 2.3 ± 0.4 | 0.73 ± 0.01 | 0.69 ± 0.02 |
b | 86.9 ± 3.3 | 0.40 ± 0.01 | 0.01 ± 0.01 | 52.7 ± 2.9 | 0.22 ± 0.01 | 174.7 ± 3.7 | 0.62 ± 0.01 | 0.22 ± 0.01 | |
c | 315.4 ± 4.1 | 0.41 ± 0.01 | 0.01 ± 0.01 | 690.1 ± 4.8 | 1.94 ± 0.02 | 2126.5 ± 7.9 | 0.68 ± 0.01 | 0.44 ± 0.01 | |
X | 247.5 ± 2.1 | 1.49 ± 0.01 | 0.28 ± 0.01 | 193.2 ± 2.3 | 4.05 ± 0.11 | 567.1 ± 5.1 | 4.12 ± 0.21 | 0.74 ± 0.03 | |
XI | 253.1 ± 2.7 | 1.50 ± 0.02 | 0.22 ± 0.01 | 305.9 ± 3.2 | 4.51 ± 0.13 | 481.2 ± 4.8 | 3.76 ± 0.20 | 1.02 ± 0.04 | |
XII | 189.8 ± 2.3 | 1.92 ± 0.03 | 0.19 ± 0.01 | 109.5 ± 1.5 | 4.24 ± 0.09 | 838.6 ± 5.9 | 1.19 ± 0.07 | 1.54 ± 0.04 | |
XIII | 373.7 ± 3.3 | 2.60 ± 0.04 | 0.25 ± 0.02 | 150.7 ±1.7 | 6.11 ± 0.13 | 749.0 ± 5.3 | 1.22 ± 0.06 | 0.80 ± 0.02 | |
XIV | 348.4 ± 3.5 | 2.99 ± 0.05 | 0.14 ± 0.01 | 94.8 ± 1.2 | 14.64 ± 1.01 | 1300 ± 13 | 2.46 ± 0.12 | 0.93 ± 0.01 |
Nettle Sample | Kaempferol | Quercetin | Rutin | Nicotinamide | Nicotinic Acid | Trigonelline | |
---|---|---|---|---|---|---|---|
I | a | not detected | 0.53 ± 0.02 | 0.64 ± 0.01 | 3.77 ± 0.07 | 4.07 ± 0.08 | 17.19 ± 0.58 |
b | not detected | 0.40 ± 0.01 | 49.38 ± 1.12 | 4.85 ± 0.08 | 4.84 ± 0.09 | 41.41 ± 1.23 | |
c | not detected | 0.25 ± 0.01 | 12.36 ± 0.71 | 12.91 ± 0.41 | 3.57 ± 0.07 | 40.63 ± 1.19 | |
II | a | not detected | 4.71 ± 0.11 | 6.33 ± 0.32 | 4.22 ± 0.12 | 3.18 ± 0.05 | 79.30 ± 1.34 |
b | not detected | 1.11 ± 0.03 | 347.7 ± 4.1 | 5.49 ± 0.10 | 5.00 ± 0.09 | 34.22 ± 1.02 | |
c | not detected | 0.41 ± 0.01 | 46.7 ± 1.8 | 14.32 ± 0.55 | 10.65 ± 1.12 | 72.27 ± 1.52 | |
III | a | 0.34 ± 0.01 | 0.22 ± 0.01 | 3.31 ± 0.09 | 0.52 ± 0.06 | 0.03 ± 0.01 | 8.64 ± 0.21 |
b | 0.22 ± 0.01 | 0.14 ± 0.02 | 144.94 ± 5.13 | 0.41 ± 0.05 | not detected | 26.44 ± 1.03 | |
c | 1.27 ± 0.03 | 0.91 ± 0.03 | 346.63 ± 6.81 | 1.18 ± 0.22 | 0.22 ± 0.02 | 37.58 ± 1.06 | |
IV | a | 0.23 ± 0.02 | 0.06 ± 0.01 | 0.74 ± 0.12 | 0.41 ± 0.11 | 0.47 ± 0.03 | 13.24 ± 0.09 |
b | 0.19 ± 0.01 | 0.12 ± 0.02 | 33.43 ± 2.11 | 0.21 ± 0.04 | not detected | 24.10 ± 0.08 | |
c | 0.28 ± 0.02 | 0.28 ± 0.01 | 343.82 ± 5.81 | 1.57 ± 0.24 | 0.72 ± 0.22 | 108.26 ± 2.53 | |
V | a | 0.12 ± 0.01 | 0.04 ± 0.01 | 0.30 ± 0.03 | 0.37 ± 0.02 | 0.20 ± 0.03 | 14.25 ± 0.79 |
b | 0.25 ± 0.01 | 0.05 ± 0.01 | 86.64 ± 4.32 | not detected | not detected | 12.93 ± 0.81 | |
c | 0.76 ± 0.03 | 0.18 ± 0.02 | 270.35 ± 2.89 | 1.76 ± 0.12 | 0.81 ± 0.06 | 40.11 ± 1.21 | |
VI | a | 0.11 ± 0.01 | 0.0 2± 0.01 | 0.27 ± 0.2 | 0.48 ± 0.03 | 0.22 ± 0.01 | 13.36 ± 0.83 |
b | 0.10 ± 0.01 | 0.03 ± 0.01 | 148.23 ± 4.1 | 0.51 ± 0.04 | not detected | 18.46 ± 1.01 | |
c | 0.21 ± 0.01 | 0.06 ± 0.01 | 451.46 ± 1.8 | 1.41 ± 0.11 | 0.44 ± 0.02 | 38.94 ± 1.34 | |
VII | a | 0.22 ± 0.02 | 0.03 ± 0.01 | 0.26 ± 0.03 | 0.23 ± 0.01 | 0.33 ± 0.01 | 47.90 ± 1.59 |
b | 0.26 ± 0.02 | 0.03 ± 0.01 | 102.81 ± 2.15 | 0.33 ± 0.01 | 0.25 ± 0.01 | 30.76 ± 1.18 | |
c | 0.68 ± 0.03 | 0.11 ± 0.03 | 454.49 ± 4.79 | 1.65 ± 0.12 | 0.75 ± 0.03 | 98.91 ± 2.38 | |
VIII | a | 0.09 ± 0.01 | 0.03 ± 0.01 | 0.97 ± 0.12 | 0.50 ± 0.01 | 0.22 ± 0.01 | 2.85 ± 0.37 |
b | 0.15 ± 0.02 | 0.05 ± 0.01 | 143.82 ± 3.14 | 0.30 ± 0.01 | not detected | 9.42 ± 0.88 | |
c | 0.14 ± 0.02 | 0.03 ± 0.01 | 205.62 ± 4.24 | 0.12 ± 0.01 | 0.65 ± 0.02 | 29.32 ± 1.12 | |
IX | a | 0.12 ± 0.01 | 0.04 ± 0.01 | 0.24 ± 0.01 | 0.67 ± 0.02 | 0.38 ± 0.01 | 11.45 ± 0.79 |
b | 0.18 ± 0.02 | 0.10 ± 0.02 | 320.26 ± 3.74 | 0.21 ± 0.01 | 0.36 ± 0.01 | 25.19 ± 1.14 | |
c | 0.49 ± 0.03 | 0.09 ± 0.01 | 508.78 ± 4.87 | 1.47 ± 0.08 | 1.29 ± 0.02 | 55.69 ± 2.26 | |
X | not detected | 0.25 ± 0.02 | 157.0 ± 2.9 | 10.87 ± 0.31 | 3.75 ± 0.06 | 36.60 ± 1.01 | |
XI | not detected | 0.17 ± 0.01 | 158.5 ± 3.2 | 14.22 ± 0.27 | 4.92 ± 0.07 | 25.31 ± 0.91 | |
XII | not detected | 0.19 ± 0.02 | 510.4 ± 4.4 | 11.70 ± 0.61 | 3.48 ± 0.05 | 26.60 ± 0.79 | |
XIII | not detected | 0.16 ± 0.01 | 290.2 ± 2.1 | 8.98 ± 0.32 | 3.38 ± 0.03 | 91.41 ± 1.56 | |
XIV | not detected | 0.11 ± 0.01 | 1848 ± 17 | 8.79 ± 0.21 | 3.38 ± 0.04 | 70.31 ± 1.12 |
Sample | Sample Type | Origin |
---|---|---|
Ia | Root | Ditch I |
Ib | Stem | Ditch I |
Ic | Leaves | Ditch I |
IIa | Root | Garden I |
IIb | Stem | Garden I |
IIc | Leaves | Garden I |
IIIa | Root | Ditch II |
IIIb | Stem | Ditch II |
IIIc | Leaves | Ditch II |
IVa | Root | Garden II |
IVb | Stem | Garden II |
IVc | Leaves | Garden II |
Va | Root | Field I |
Vb | Stem | Field I |
Vc | Leaves | Field I |
VIa | Root | Field II |
VIb | Stem | Field II |
VIc | Leaves | Field II |
VIIa | Root | Field III |
VIIb | Stem | Field III |
VIIc | Leaves | Field III |
VIIIa | Root | Field IV |
VIIIb | Stem | Field IV |
VIIIc | Leaves | Field IV |
IXa | Root | Forest I |
IXb | Stem | Forest I |
IXc | Leaves | Forest I |
X | Aerial part | Forest II |
XI | Aerial part | Field V |
XII | Aerial part | Ditch III |
XIII | Aerial part | Forest III |
XIV | Aerial part | Ditch IV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeszka-Skowron, M.; Zgoła-Grześkowiak, A.; Frankowski, R.; Grześkowiak, T.; Jeszka, A.M. Variation in the Content of Bioactive Compounds in Infusions Prepared from Different Parts of Wild Polish Stinging Nettle (Urtica dioica L.). Molecules 2022, 27, 4242. https://doi.org/10.3390/molecules27134242
Jeszka-Skowron M, Zgoła-Grześkowiak A, Frankowski R, Grześkowiak T, Jeszka AM. Variation in the Content of Bioactive Compounds in Infusions Prepared from Different Parts of Wild Polish Stinging Nettle (Urtica dioica L.). Molecules. 2022; 27(13):4242. https://doi.org/10.3390/molecules27134242
Chicago/Turabian StyleJeszka-Skowron, Magdalena, Agnieszka Zgoła-Grześkowiak, Robert Frankowski, Tomasz Grześkowiak, and Anna Maria Jeszka. 2022. "Variation in the Content of Bioactive Compounds in Infusions Prepared from Different Parts of Wild Polish Stinging Nettle (Urtica dioica L.)" Molecules 27, no. 13: 4242. https://doi.org/10.3390/molecules27134242
APA StyleJeszka-Skowron, M., Zgoła-Grześkowiak, A., Frankowski, R., Grześkowiak, T., & Jeszka, A. M. (2022). Variation in the Content of Bioactive Compounds in Infusions Prepared from Different Parts of Wild Polish Stinging Nettle (Urtica dioica L.). Molecules, 27(13), 4242. https://doi.org/10.3390/molecules27134242