Successive Deprotonation Steering the Structural Evolution of Supramolecular Assemblies on Ag(111)
Abstract
:1. Introduction
2. Results and Discussion
2.1. H-Bonded Structures: H0 Networks and Close-Packing Assemblies CP1 and CP2
2.2. H-Bonded Prorous Pattern—H1
2.3. Metal-Orgnaic Coordinative Structure—H2 Nework
3. Conclusions
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lehn, J.-M. Toward complex matter: Supramolecular chemistry and self-organization. Proc. Natl. Acad. Sci. USA 2002, 99, 4763–4768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barth, J.V.; Costantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671–679. [Google Scholar] [CrossRef] [PubMed]
- De Feyter, S.; De Schryver, F.C. Self-Assembly at the Liquid/Solid Interface: STM Reveals. J. Phys. Chem. B 2005, 109, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Barth, J.V. Molecular Architectonic on Metal Surfaces. Annu. Rev. Phys. Chem. 2007, 58, 375–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelika, K. Self-assembly of organic molecules at metal surfaces. Curr. Opin. Colloid Interface Sci. 2009, 14, 157–168. [Google Scholar]
- Barth, J.V. Fresh perspectives for surface coordination chemistry. Surf. Sci. 2009, 603, 1533–1541. [Google Scholar] [CrossRef]
- Bonifazi, D.; Mohnani, S.; Llanes-Pallas, A. Supramolecular Chemistry at Interfaces: Molecular Recognition on Nanopatterned Porous Surfaces. Chem.-Eur. J. 2009, 15, 7004. [Google Scholar] [CrossRef]
- Lin, N.; Stepanow, S.; Ruben, M.; Barth, J.V. Surface-Confined Supramolecular Coordination Chemistry. Top. Curr. Chem. 2009, 287, 1–44. [Google Scholar]
- Bartels, L. Tailoring molecular layers at metal surfaces. Nat. Chem. 2010, 2, 87–95. [Google Scholar] [CrossRef]
- Wang, D.; Wan, L.-J.; Bai, C.-L. Formation and structural transition of molecular self-assembly on solid surface investigated by scanning tunneling microscopy. Mater. Sci. Eng. R Rep. 2010, 70, 169–187. [Google Scholar] [CrossRef]
- Otero, R.; Gallego, J.M.; de Parga, A.L.V.; Martín, N.; Miranda, R. Molecular Self-Assembly at Solid Surfaces. Adv. Mater. 2011, 23, 5148–5176. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Gao, Z.A.; Lin, N. Self-assembly of metal–organic coordination structures on surfaces. Prog. Surf. Sci. 2016, 91, 101–135. [Google Scholar] [CrossRef]
- Goronzy, D.P.; Ebrahimi, M.; Rosei, F.; Arramel; Fang, Y.; De Feyter, S.; Tait, S.L.; Wang, C.; Beton, P.H.; Wee, A.T.S.; et al. Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. ACS Nano 2018, 12, 7445–7481. [Google Scholar] [CrossRef] [PubMed]
- Stepanow, S.; Lingenfelder, M.; Dmitriev, A.; Spillmann, H.; Delvigne, E.; Lin, N.; Deng, X.B.; Cai, C.Z.; Barth, J.V.; Kern, K. Steering molecular organization and host-guest interactions using two-dimensional nanoporous coordination systems. Nat. Mater. 2004, 3, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Tseng, T.-C.; Urban, C.; Wang, Y.; Otero, R.; Tait, S.L.; Alcamí, M.; Écija, D.; Trelka, M.; Gallego, J.M.; Lin, N.; et al. Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces. Nat. Chem. 2010, 2, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Fabris, S.; Stepanow, S.; Lin, N.; Gambardella, P.; Dmitriev, A.; Honolka, J.; Baroni, S.; Kern, K. Oxygen Dissociation by Concerted Action of Di-Iron Centers in Metal–Organic Coordination Networks at Surfaces: Modeling Non-Heme Iron Enzymes. Nano Lett. 2011, 11, 5414–5420. [Google Scholar] [CrossRef] [Green Version]
- Wurster, B.; Grumelli, D.; Hötger, D.; Gutzler, R.; Kern, K. Driving the Oxygen Evolution Reaction by Nonlinear Cooperativity in Bimetallic Coordination Catalysts. J. Am. Chem. Soc. 2016, 138, 3623–3626. [Google Scholar] [CrossRef]
- Tempas, C.D.; Morris, T.W.; Wisman, D.L.; Le, D.; Din, N.U.; Williams, C.G.; Wang, M.; Polezhaev, A.V.; Rahman, T.S.; Caulton, K.G.; et al. Redox-active ligand controlled selectivity of vanadium oxidation on Au(100). Chem. Sci. 2018, 9, 1674–1685. [Google Scholar] [CrossRef] [Green Version]
- Uemura, S.; Tanoue, R.; Yilmaz, N.; Ohira, A.; Kunitake, M. Molecular Dynamics in Two-Dimensional Supramolecular Systems Observed by STM. Materials 2010, 3, 4252–4276. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Liu, J.; Lin, T.; Xia, F.; Liu, P.N.; Lin, N. Thermodynamics and selectivity of two-dimensional metallo-supramolecular self-assembly resolved at molecular scale. J. Am. Chem. Soc. 2011, 133, 6150–6153. [Google Scholar] [CrossRef]
- Gutzler, R.; Cardenas, L.; Rosei, F. Kinetics and thermodynamics in surface-confined molecular self-assembly. Chem. Sci. 2011, 2, 2290–2300. [Google Scholar] [CrossRef]
- Dmitriev, A.; Lin, N.; Weckesser, J.; Barth, J.V.; Kern, K. Supramolecular Assemblies of Trimesic Acid on a Cu(100) Surface. J. Phys. Chem. B 2002, 106, 6907–6912. [Google Scholar] [CrossRef]
- Dmitriev, A.; Spillmann, H.; Lin, N.; Barth, J.V.; Kern, K. Modular assembly of two-dimensional metal-organic coordination networks at a metal surface. Angew. Chem. Int. Ed. 2003, 42, 2670–2673. [Google Scholar] [CrossRef] [PubMed]
- Ruben, M.; Payer, D.; Landa, A.; Comisso, A.; Gattinoni, C.; Lin, N.; Collin, J.-P.; Sauvage, J.-P.; De Vita, A.; Kern, K. 2D Supramolecular Assemblies of Benzene-1,3,5-triyl-tribenzoic Acid: Temperature-Induced Phase Transformations and Hierarchical Organization with Macrocyclic Molecules. J. Am. Chem. Soc. 2006, 128, 15644–15651. [Google Scholar] [CrossRef] [PubMed]
- Lackinger, M.; Heckl, W.M. Carboxylic Acids: Versatile Building Blocks and Mediators for Two-Dimensional Supramolecular Self-Assembly. Langmuir 2009, 25, 11307–11321. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.Y.; Fuchs, H. Dehydrogenation, Peroxide Coupling, and Decarboxylation of Acid Molecules at Metal Surfaces. In Encyclopedia of Interfacial Chemistry; Wandelt, K., Ed.; Elsevier: Oxford, UK, 2018; pp. 253–260. [Google Scholar]
- Cao, N.; Ding, J.; Yang, B.; Zhang, J.; Peng, C.; Lin, H.; Zhang, H.; Li, Q.; Chi, L. Deprotonation-Induced Phase Evolutions in Co-Assembled Molecular Structures. Langmuir 2018, 34, 7852–7858. [Google Scholar] [CrossRef]
- Abyazisani, M.; Bradford, J.; Motta, N.; Lipton-Duffin, J.; MacLeod, J. Adsorption, Deprotonation, and Decarboxylation of Isophthalic Acid on Cu(111). Langmuir 2019, 35, 7112–7120. [Google Scholar] [CrossRef]
- MacLeod, J. Design and construction of on-surface molecular nanoarchitectures: Lessons and trends from trimesic acid and other small carboxlyated building blocks. J. Phys. D Appl. Phys. 2019, 53, 043002. [Google Scholar] [CrossRef]
- Kormoš, L.; Procházka, P.; Makoveev, A.O.; Čechal, J. Complex k-uniform tilings by a simple bitopic precursor self-assembled on Ag(001) surface. Nat. Commun. 2020, 11, 1856. [Google Scholar] [CrossRef]
- Spillmann, H.; Dmitriev, A.; Lin, N.; Messina, P.; Barth, J.V.; Kern, K. Hierarchical assembly of two-dimensional homochiral nanocavity arrays. J. Am. Chem. Soc. 2003, 125, 10725–10728. [Google Scholar] [CrossRef]
- Stepanow, S.; Lin, N.; Vidal, F.; Landa, A.; Ruben, M.; Barth, J.V.; Kern, K. Programming supramolecular assembly and chirality in two-dimensional dicarboxylate networks on a Cu(100) surface. Nano Lett. 2005, 5, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Ernst, K.-H. Molecular chirality at surfaces. Phys. Status Solidi B 2012, 249, 2057–2088. [Google Scholar] [CrossRef]
- Chen, T.; Wang, D.; Wan, L.-J. Two-dimensional chiral molecular assembly on solid surfaces: Formation and regulation. Natl. Sci. Rev. 2015, 2, 205–216. [Google Scholar] [CrossRef]
- Wade, L.G. Organic Chemistry, 7th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2009; pp. 942–943. [Google Scholar]
- Heintz, J.; Durand, C.; Tang, H.; Coratger, R. Control of the deprotonation of terephthalic acid assemblies on Ag(111) studied by DFT calculations and low temperature scanning tunneling microscopy. Phys. Chem. Chem. Phys. 2020, 22, 3173–3183. [Google Scholar] [CrossRef]
- Clair, S.; Pons, S.; Seitsonen, A.P.; Brune, H.; Kern, K.; Barth, J.V. STM Study of Terephthalic Acid Self-Assembly on Au(111): Hydrogen-Bonded Sheets on an Inhomogeneous Substrate. J. Phys. Chem. B 2004, 108, 14585–14590. [Google Scholar] [CrossRef] [Green Version]
- Payer, D.; Comisso, A.; Dmitriev, A.; Strunskus, T.; Lin, N.; Woll, C.; Devita, A.; Barth, J.V.; Kern, K. Ionic hydrogen bonds controlling two-dimensional supramolecular systems at a metal surface. Chemistry 2007, 13, 3900–3906. [Google Scholar] [CrossRef]
- Lipton-Duffin, J.; Abyazisani, M.; MacLeod, J. Periodic and nonperiodic chiral self-assembled networks from 1,3,5-benzenetricarboxylic acid on Ag(111). Chem. Commun. 2018, 54, 8316–8319. [Google Scholar] [CrossRef] [Green Version]
- Svane, K.L.; Baviloliaei, M.S.; Hammer, B.; Diekhöner, L. An extended chiral surface coordination network based on Ag7-clusters. J. Chem. Phys. 2018, 149, 164710. [Google Scholar] [CrossRef]
- Lin, N.; Payer, D.; Dmitriev, A.; Strunskus, T.; Wöll, C.; Barth, J.V.; Kern, K. Two-Dimensional Adatom Gas Bestowing Dynamic Heterogeneity on Surfaces. Angew. Chem. Int. Ed. 2005, 44, 1488–1491. [Google Scholar] [CrossRef]
- Horcas, I.; Fernandez, R.; Gomez-Rodriguez, J.M.; Colchero, J.; Gomez-Herrero, J.; Baro, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys Rev Lett 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Li, Z.; Lin, T.; Shi, Z. Successive Deprotonation Steering the Structural Evolution of Supramolecular Assemblies on Ag(111). Molecules 2022, 27, 3876. https://doi.org/10.3390/molecules27123876
Shi J, Li Z, Lin T, Shi Z. Successive Deprotonation Steering the Structural Evolution of Supramolecular Assemblies on Ag(111). Molecules. 2022; 27(12):3876. https://doi.org/10.3390/molecules27123876
Chicago/Turabian StyleShi, Jiwei, Zhanbo Li, Tao Lin, and Ziliang Shi. 2022. "Successive Deprotonation Steering the Structural Evolution of Supramolecular Assemblies on Ag(111)" Molecules 27, no. 12: 3876. https://doi.org/10.3390/molecules27123876
APA StyleShi, J., Li, Z., Lin, T., & Shi, Z. (2022). Successive Deprotonation Steering the Structural Evolution of Supramolecular Assemblies on Ag(111). Molecules, 27(12), 3876. https://doi.org/10.3390/molecules27123876