Magnetic Self-Healing Composites: Synthesis and Applications
Abstract
:1. Introduction
2. Magnetic (Nano)Particles
2.1. Synthesis Methods
2.2. Magnetic Properties
3. State-of-the-Art Fabrication Methods of Magnetic Self-Healing Composites
Method | Pros | Cons | References |
---|---|---|---|
Direct mixing and dispersion of magnetic (nano)particles in a polymeric matrix | Simple fabrication Scalability Low cost | Simple 2D-3D geometries NP agglomeration | [30,39,40,41,42,45,49,50] |
Self-assembled magnetic (nano)particles composites | Good control over the particle aggregation state Incorporation of additional functionalities | Complex fabrication procedure | [32,33,34,36,46,48,51,52,53] |
Additive manufacturing | Fast fabrication Multi-material printing High resolution | Complex control and high cost | [33,45,46,49] |
AC magnetic field | Fast fabrication | AC magnetic fields are required | [54] |
Spray deposition | Fast fabrication Easy performance | Limitation in building geometries | [38] |
3.1. Direct Mixing and Dispersion of Magnetic (Nano)Particles in a Polymeric Matrix
- Physical methods: enhance the particle deagglomeration by applying high shear forces that can break down the particle agglomerates to nanoscale dispersed particles. This includes well-known top-down manufacturing methods such as twin-screw extrusion [57,58], injection moulding [59], roll and ball milling [60,61,62] and ultrasonic vibration [63,64]. The exerted high shear forces are capable of reducing the aggregated particles sufficiently and homogeneously dispersing them. However, there is the great inconvenience that dissociative covalent networks or supramolecular networks rely on the narrow thermal region of the gel transition linked to an abrupt viscosity drop. Thus, precise control of the reaction conversion needs to be maintained to ensure a sufficiently high viscous medium to avoid particle re-aggregation and sedimentation upon curing. With reversible polymer networks, this can be achieved upon thermal dissociation at a well-defined temperature close to the gel transition. In addition, a monodisperse composite cannot be achieved under these conditions as shear forces are not high enough to separate the clusters at smaller size scales.
- Chemical methods that can deal with the dispersion issue from a composition perspective: Hindering magnetic (nano)particle interactions (mostly magnetic dipole-dipole interactions, hydrogen bonding and van der Waals interactions) by designing proper formulations has been proven to enhance (nano)particle distribution. This can be approached from either the magnetic (nano)particles (surface functionalization, magnetization state, etc.) or the polymer matrix state (polymer (nano)blends [65,66,67,68], the grafting of diverse functional groups [48,53,69], etc.). Additionally, the incorporation of stabilizers [70] or performing the magnetic (nano)particle synthesis of the polymer matrix in situ at a suitable crosslinked state [55] can help further this aim.
3.2. Engineering of the Particle Surface towards the Self-Assembly of Magnetic Self-Healing Composites
3.3. Additive Manufacturing
3.4. Alternative Fabrication Methods
3.4.1. Polymerization Induced by an Alternative Magnetic Field
3.4.2. Spray Deposition Method
Fabrication Method | Self-Healing Mechanism | Magnetic Filler | References |
---|---|---|---|
Direct Mixing | Ionomer | Fe3O4, CoFe2O4 | [41,42] |
Hydrogen bonds | Fe3O4 | [32,35,51,52] | |
Diels-Alder | CrO2 | [45] | |
Fe3O4 | [56] | ||
Intermolecular diffusion | Fe3O4 | [40] | |
NPs surface engineering and self-assembly | Metal-ligand complex | Fe3O4 | [36,51] |
Hydrogen bonds | Fe3O4 Fe3O4@NVP-DVB | [32] [53] | |
Boronic ester | MnFe2O4 | [48] | |
Diels-Alder | Fe3O4 Fe3O4@MWCNTs | [46] [35] | |
Schiff base | Fe3O4 Fe3O4@SiO2 | [52] [33] | |
Intermolecular diffusion | Fe2CoO4@Fe2MnO4 MnxZn1−xFe2O4 | [34] [39] | |
Additive manufacturing | Hydrogen bonds/π-π stacking | Fe3O4 | [49] |
Schiff base | Fe3O4 | [43,44] | |
Intermolecular diffusion | Fe3O4 | [31] | |
External magnetic field | Host-guest interactions | Fe3O4 | [54] |
Schiff base | CIPs | [76] | |
Intermolecular diffusion | Fe3O4 | [77] | |
Spray deposition | Intermolecular diffusion | Fe3O4@SiO2 | [40] |
4. Applications
4.1. Actuators
4.2. Biomedical
4.3. Stretchable Electronics
4.4. Slippery Surfaces
5. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, A.; Shah, T.; Ullah, R.; Zhou, P.; Guo, M.; Ovais, M.; Tan, Z.; Rui, Y. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front. Chem. 2021, 548. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Merino, B.; Bringas, E.; Ortiz, I. Synthesis and applications of surface-modified magnetic nanoparticles: Progress and future prospects. Rev. Chem. Eng. 2021. [Google Scholar] [CrossRef]
- Batlle, X.; Moya, C.; Escoda-Torroella, M.; Iglesias, O.; Fraile Rodríguez, A.; Labarta, A. Magnetic nanoparticles: From the nanostructure to the physical properties. J. Magn. Magn. Mater. 2021, 543, 168594. [Google Scholar] [CrossRef]
- Wu, S.; Hu, W.; Ze, Q.; Sitti, M.; Zhao, R. Multifunctional magnetic soft composites: A review. Multifunct. Mater. 2020, 3, 042003. [Google Scholar] [CrossRef]
- Wang, S.; Urban, M. Self-healing polymers. Nat. Rev. Mater. 2020, 5, 562–583. [Google Scholar] [CrossRef]
- White, S.; Sottos, N.; Geubelle, P.; Moore, J.; Kessler, M.; Sriram, S.; Brown, E.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797. [Google Scholar] [CrossRef]
- Dry, C. Procedures developed for self-repair of polymer matrix composite materials. Compos. Struct. 1996, 35, 263–269. [Google Scholar] [CrossRef]
- Toohey, K.; Sottos, N.; Lewis, J.; Moore, J.; White, S. Self-healing materials with microvascular networks. Nat. Mater. 2007, 6, 581–585. [Google Scholar] [CrossRef]
- Chen, X.; Dam, M.; Ono, K.; Mal, A.; Shen, H.; Nutt, S.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science 2002, 295, 1698–1702. [Google Scholar] [CrossRef]
- Denissen, W.; Rivero, G.; Nicolay, R.; Leibler, L.; Winne, J.; Du Prez, F. Vinylogous Urethane Vitrimers. Adv. Funct. Mater. 2015, 25, 2451–2457. [Google Scholar] [CrossRef]
- Lu, Y.; Guan, Z. Olefin Metathesis for Effective Polymer Healing via Dynamic Exchange of Strong Carbon-Carbon Double Bonds. J. Am. Chem. Soc. 2012, 134, 14226–14231. [Google Scholar] [CrossRef] [PubMed]
- Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451, 977–980. [Google Scholar] [CrossRef]
- Bose, R.; Hohlbein, N.; Garcia, S.; Schmidt, A.; van der Zwaag, S. Connecting supramolecular bond lifetime and network mobility for scratch healing in poly(butyl acrylate) ionomers containing sodium, zinc and cobalt. Phys. Chem. Chem. Phys. 2015, 17, 1697–1704. [Google Scholar] [CrossRef]
- Terryn, S.; Langenbach, J.; Roels, E.; Brancart, J.; Bakkali-Hassani, C.; Poutrel, Q.; Georgopoulou, A.; Thuruthel, T.; Safaei, A.; Ferrentino, P.; et al. A review on self-healing polymers for soft robotics. Mater. Today 2021, 47, 187–205. [Google Scholar] [CrossRef]
- Safronov, A.; Beketov, I.; Komogortsev, S.; Kurlyandskaya, G.; Medvedev, A.; Leiman, D.; Larranaga, A.; Bhagat, S. Spherical magnetic nanoparticles fabricated by laser target evaporation. AIP Adv. 2013, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, Y.; Rong, C.; Liu, J. Sm-Co hard magnetic nanoparticles prepared by surfactant-assisted ball milling. Nanotechnology 2007, 18, 465701. [Google Scholar] [CrossRef] [PubMed]
- Akdogan, N.; Hadjipanayis, G.; Sellmyer, D. Anisotropic Sm-(Co,Fe) nanoparticles by surfactant-assisted ball milling. J. Appl. Phys. 2009, 105. [Google Scholar] [CrossRef] [Green Version]
- Fafard, S. Wavefunction engineering for enhanced quantum well intermixing and integrated infrared spectrometers. J. Appl. Phys. 1997, 82, 3857–3860. [Google Scholar] [CrossRef]
- Goya, G.; Berquo, T.; Fonseca, F.; Morales, M. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 2003, 94, 3520–3528. [Google Scholar] [CrossRef] [Green Version]
- Jolivet, J.-P.; Henry, M.; Livage, J. Metal Oxide Chemistry and Synthesis: From Solution to Solid State; Wiley-Blackwell: Hoboken, NJ, USA, 2000. [Google Scholar]
- Roca, A.; Gutierrez, L.; Gavilan, H.; Brollo, M.; Veintemillas-Verdaguer, S.; Morales, M. Design strategies for shape-controlled magnetic iron oxide nanoparticles. Adv. Drug Deliv. Rev. 2019, 138, 68–104. [Google Scholar] [CrossRef]
- Ansari, S.; Ficiara, E.; Ruffinatti, F.; Stura, I.; Argenziano, M.; Abollino, O.; Cavalli, R.; Guiot, C.; D’Agata, F. Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Functionalization for Biomedical Applications in the Central Nervous System. Materials 2019, 12, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyeon, T. Chemical synthesis of magnetic nanoparticles. Chem. Commun. 2003, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Guardia, P.; Labarta, A.; Batlle, X. Tuning the Size, the Shape, and the Magnetic Properties of Iron Oxide Nanoparticles. J. Phys. Chem. C 2011, 115, 390–396. [Google Scholar] [CrossRef]
- Moya, C.; Batlle, X.; Labarta, A. The effect of oleic acid on the synthesis of Fe3-xO4 nanoparticles over a wide size range. Phys. Chem. Chem. Phys. 2015, 17, 27373–27379. [Google Scholar] [CrossRef]
- Escoda-Torroella, M.; Moya, C.; Rodriguez, A.; Batlle, X.; Labarta, A. Selective Control over the Morphology and the Oxidation State of Iron Oxide Nanoparticles. Langmuir 2021, 37, 35–45. [Google Scholar] [CrossRef]
- Buschow, K.; Grandjean, F.; Long, G. Introduction to hard magnetic materials. Interstitial Intermet. Alloy. 1995, 281, 349–369. [Google Scholar]
- Gittlema, J.I.; Abeles, B.; Bozowski, S. Superparamagnetism and relaxation effects in granular ni-sio2 and ni-al2o3 films. Phys. Rev. B 1974, 9, 3891–3897. [Google Scholar] [CrossRef]
- Mohapatra, J.; Xing, M.; Liu, J. Inductive Thermal Effect of Ferrite Magnetic Nanoparticles. Materials 2019, 12, 3208. [Google Scholar] [CrossRef] [Green Version]
- Tao, H.; Yue, D.; Li, C. A Fast Self-Healing Magnetic Nanocomposite for Magnetic Actuators. Macromol. Mater. Eng. 2022, 307, 2100649. [Google Scholar] [CrossRef]
- Qi, S.; Fu, J.; Xie, Y.; Li, Y.; Gan, R.; Yu, M. Versatile magnetorheological plastomer with 3D printability, switchable mechanics, shape memory, and self-healing capacity. Compos. Sci. Technol. 2019, 183, 107817. [Google Scholar] [CrossRef]
- Muradyan, H.; Mozhdehi, D.; Guan, Z. Self-healing magnetic nanocomposites with robust mechanical properties and high magnetic actuation potential prepared from commodity monomers via graft-from approach. Polym. Chem. 2020, 11, 1292–1297. [Google Scholar] [CrossRef]
- Sanoh, N.; Salazar, G.; Penaloza, D. Magnetic Biopolymeric Hydrogel Composite Material with Self-healing Attribute. Biointerface Res. Appl. Chem. 2021, 11, 14881–14888. [Google Scholar] [CrossRef]
- Yoonessi, M.; Lerch, B.; Peck, J.; Rogers, R.; Sola-Lopez, F.; Meador, M. Self-Healing of Core-Shell Magnetic Polystyrene Nanocomposites. ACS Appl. Mater. Interfaces 2015, 7, 16932–16937. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Zhuang, Y.; Wang, H.; Wei, M.; Ko, W.; Chang, W.; Way, T.; Rwei, S. Fabrication of Self-Healable Magnetic Nanocomposites via Diels-Alder Click Chemistry. Appl. Sci. 2019, 9, 506. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Barret, D.; Messersmith, P.; Holten-Andersen, N. Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics. ACS Nano 2016, 10, 1317–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakur, V.; Kessler, M. Self-healing polymer nanocomposite materials: A review. Polymer 2015, 69, 369–383. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wu, G.; Tan, J.; Zhu, Y.; Yu, X.; Lei, Y.; Sun, G.; You, B. Facile fabrication of self-healing superhydrophobic nanocomposite films enabled by near-infrared light. J. Mater. Sci. 2019, 54, 7702–7718. [Google Scholar] [CrossRef]
- Ahmed, A.; Ramanujan, R. Curie temperature controlled self-healing magnet-polymer composites. J. Mater. Res. 2015, 30, 946–958. [Google Scholar] [CrossRef]
- Huang, J.; Cao, L.; Yuan, D.; Chen, Y. Design of Novel Self-Healing Thermoplastic Vulcanizates Utilizing Thermal/Magnetic/Light-Triggered Shape Memory Effects. ACS Appl. Mater. Interfaces 2018, 10, 40996–41002. [Google Scholar] [CrossRef]
- Post, W.; Bose, R.; Garcia, S.; van der Zwaag, S. Healing of Early Stage Fatigue Damage in Ionomer/Fe3O4 Nanoparticle Composites. Polymers 2016, 8, 436. [Google Scholar] [CrossRef]
- Hohlbein, N.; Shaaban, A.; Schmidt, A. Remote-controlled activation of self-healing behavior in magneto-responsive ionomeric composites. Polymer 2015, 69, 301–309. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, C.; Kim, H.; Moon, C.; Lee, K. 3D Printing of dynamic tissue scaffold by combining self-healing hydrogel and self-healing ferrogel. Colloids Surf. B Biointerfaces 2021, 208, 112108. [Google Scholar] [CrossRef] [PubMed]
- Ko, E.; Kim, C.; Choi, Y.; Lee, K. 3D printing of self-healing ferrogel prepared from glycol chitosan, oxidized hyaluronate, and iron oxide nanoparticles. Carbohydr. Polym. 2020, 245, 116496. [Google Scholar] [CrossRef]
- Adzima, B.; Kloxin, C.; Bowman, C. Externally Triggered Healing of a Thermoreversible Covalent Network via Self-Limited Hysteresis Heating. Adv. Mater. 2010, 22, 2784–2787. [Google Scholar] [CrossRef]
- Schafer, S.; Kickelbick, G. Diets-Alder Reactions on Surface -Modified Magnetite/Maghemite Nanoparticles: Application in Self-Healing Nanocomposites. Acs Appl. Nano Mater. 2018, 1, 2640–2652. [Google Scholar] [CrossRef]
- Gang, F.; Yan, H.; Ma, C.; Jiang, L.; Gu, Y.; Liu, Z.; Zhao, L.; Wang, X.; Zhang, J.; Sun, X. Robust magnetic double-network hydrogels with self-healing, MR imaging, cytocompatibility and 3D printability. Chem. Commun. 2019, 55, 9801–9804. [Google Scholar] [CrossRef]
- Liu, K.; Pan, X.; Chen, L.; Huang, L.; Ni, Y.; Liu, J.; Cao, S.; Wang, H. Ultrasoft Self-Healing Nanoparticle-Hydrogel Composites with Conductive and Magnetic Properties. ACS Sustain. Chem. Eng. 2018, 6, 6395–6403. [Google Scholar] [CrossRef]
- Ogliani, E.; Yu, L.; Javakhishvili, I.; Skov, A. A thermo-reversible silicone elastomer with remotely controlled self-healing. RSC Adv. 2018, 8, 8285–8291. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Gong, G.; Zhou, L.; Zhang, F. Facile fabrication of a magnetic self-healing poly(vinyl alcohol) composite hydrogel. RSC Adv. 2017, 7, 21476–21483. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Xu, Z.; Fan, C.; Xiang, G.; Yang, K.; Wang, Y. A Fascinating Metallo-Supramolecular Polymer Network with Thermal/Magnetic/Light-Responsive Shape-Memory Effects Anchored by Fe3O4 Nanoparticles. Macromolecules 2018, 51, 705–715. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, B.; Zhang, X.; Xu, L.; Tao, L.; Li, S.; Wei, Y. A magnetic self-healing hydrogel. Chem. Commun. 2012, 48, 9305–9307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, B.; Li, S.; Liao, X.; Li, J.; Ma, W.; Dong, Y.; Zhou, X.; Liu, Y. Synthesis and Properties of Magnetic Self-Healing Polymers: An Effective Method for Improving Interface Compatibility of Doped Functional Polymers. Chemnanomat 2019, 5, 642–650. [Google Scholar] [CrossRef]
- Yu, C.; Wang, C.; Chen, S. Robust Self- Healing Host- Guest Gels from Magnetocaloric Radical Polymerization. Adv. Funct. Mater. 2014, 24, 1235–1242. [Google Scholar] [CrossRef]
- Kalia, S.; Kango, S.; Kumar, A.; Haldorai, Y.; Kumari, B.; Kumar, R. Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym. Sci. 2014, 292, 2025–2052. [Google Scholar] [CrossRef]
- Cerdan, K.; Van Assche, G.; van Puyvelde, P.; Brancart, J. A novel approach for the closure of large damage in self-healing elastomers using magnetic particles. Polymer 2020, 204, 122819. [Google Scholar] [CrossRef]
- Tsonos, C.; Pandis, C.; Soin, N.; Sakellari, D.; Myrovali, E.; Kripotou, S.; Kanapitsas, A.; Siores, E. Multifunctional nanocomposites of poly(vinylidene fluoride) reinforced by carbon nanotubes and magnetite nanoparticles. Express Polym. Lett. 2015, 9, 1104–1118. [Google Scholar] [CrossRef]
- Mousavian, S.; Ebadi-Dehaghani, H.; Ashouri, D.; Sadeghipour, H.; Jabbari, F. Effect of polymer matrix on the magnetic properties of polymer bonded magnets filled Fe3O4 nanoparticles. J. Polym. Res. 2012, 19, 9991. [Google Scholar] [CrossRef]
- Tiusanen, J.; Vlasveld, D.; Vuorinen, J. Review on the effects of injection moulding parameters on the electrical resistivity of carbon nanotube filled polymer parts. Compos. Sci. Technol. 2012, 72, 1741–1752. [Google Scholar] [CrossRef]
- Kothmann, M.; Ziadeh, M.; Bakis, G.; de Anda, A.; Breu, J.; Altstadt, V. Analyzing the influence of particle size and stiffness state of the nanofiller on the mechanical properties of epoxy/clay nanocomposites using a novel shear-stiff nano-mica. J. Mater. Sci. 2015, 50, 4845–4859. [Google Scholar] [CrossRef]
- Thostenson, E.; Chou, T. Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 2006, 44, 3022–3029. [Google Scholar] [CrossRef]
- Castrillo, P.; Olmos, D.; Amador, D.; Gonzalez-Benito, J. Real dispersion of isolated fumed silica nanoparticles in highly filled PMMA prepared by high energy ball milling. J. Colloid Interface Sci. 2007, 308, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Avila-Orta, C.; Quinones-Jurado, Z.; Waldo-Mendoza, M.; Rivera-Paz, E.; Cruz-Delgado, V.; Mata-Padilla, J.; Gonzalez-Morones, P.; Ziolo, R. Ultrasound-Assist Extrusion Methods for the Fabrication of Polymer Nanocomposites Based on Polypropylene/ Multi-Wall Carbon Nanotubes. Materials 2015, 8, 7900–7912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacristan, M.; Planta, X.; Morell, M.; Puiggali, J. Effects of ultrasonic vibration on the micro-molding processing of polylactide. Ultrason. Sonochem. 2014, 21, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Cai, X.; Lin, X.; Yui, H. Heterogeneous distribution of magnetic nanoparticles in reactive polymer blends. React. Funct. Polym. 2010, 70, 732–737. [Google Scholar] [CrossRef]
- Wang, H.; Yang, X.; Fu, Z.; Zhao, X.; Li, Y.; Li, J. Rheology of Nanosilica-Compatibilized Immiscible Polymer Blends: Formation of a “Heterogeneous Network” Facilitated by Interfacially Anchored Hybrid Nanosilica. Macromolecules 2017, 50, 9494–9506. [Google Scholar] [CrossRef]
- Essabir, H.; Raji, M.; Essassi, E.; Rodrigue, D.; Bouhfid, R.; Qaiss, A. Morphological, thermal, mechanical, electrical and magnetic properties of ABS/PA6/SBR blends with Fe3O4 nano-particles. J. Mater. Sci. Mater. Electron. 2017, 28, 17120–17130. [Google Scholar] [CrossRef]
- Cerdan, K.; Brancart, J.; Roels, E.; Vanderborght, B.; Van Puyvelde, P. Humins Blending in Thermoreversible Diels-Alder Networks for Stiffness Tuning and Enhanced Healing Performance for Soft Robotics. Polymers 2022, 14, 1657. [Google Scholar] [CrossRef]
- Diaz, M.; Brancart, J.; Van Assche, G.; Van Mele, B. Room-temperature versus heating-mediated healing of a Diels-Alder crosslinked polymer network. Polymer 2018, 153, 453–463. [Google Scholar] [CrossRef]
- Bokern, S.; Getze, J.; Agarwal, S.; Greiner, A. Polymer grafted silver and copper nanoparticles with exceptional stability against aggregation by a high yield one-pot synthesis. Polymer 2011, 52, 912–920. [Google Scholar] [CrossRef]
- Roels, E.; Terryn, S.; Iida, F.; Bosman, A.; Norvez, S.; Clemens, F.; Van Assche, G.; Vanderborght, B.; Brancart, J. Processing of Self-Healing Polymers for Soft Robotics. Adv. Mater. 2022, 34, e2104798. [Google Scholar] [CrossRef]
- Taplan, C.; Guerre, M.; Winne, J.; Du Prez, F. Fast processing of highly crosslinked, low-viscosity vitrimers. Mater. Horiz. 2020, 7, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Falahati, M.; Ahmadvand, P.; Safaee, S.; Chang, Y.; Lyu, Z.; Chen, R.; Li, L.; Lin, Y. Smart polymers and nanocomposites for 3D and 4D printing. Mater. Today 2020, 40, 215–245. [Google Scholar] [CrossRef]
- Roels, E.; Terryn, S.; Brancart, J.; Verhelle, R.; Van Assche, G.; Vanderborght, B. Additive Manufacturing for Self-Healing Soft Robots. Soft Robot. 2020, 7, 711–723. [Google Scholar] [CrossRef]
- Vaes, D.; Van Puyvelde, P. Semi-crystalline feedstock for filament-based 3D printing of polymers. Prog. Polym. Sci. 2021, 118, 101411. [Google Scholar] [CrossRef]
- Nardecchia, S.; Jimenez, A.; Morillas, J.; de Vicente, J. Synthesis and rheological properties of 3D structured self-healing magnetic hydrogels. Polymer 2021, 218, 123489. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Wen, Y.; Zhong, Q.; Zhao, Y. Self-Healable Magnetic Structural Color Hydrogels. ACS Appl. Mater. Interfaces 2020, 12, 7486–7493. [Google Scholar] [CrossRef]
- Li, M.; Pal, A.; Aghakhani, A.; Pena-Francesch, A.; Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 2022, 7, 235–249. [Google Scholar] [CrossRef]
- Wanasinghe, D.; Aslani, F.; Ma, G.; Habibi, D. Review of Polymer Composites with Diverse Nanofillers for Electromagnetic Interference Shielding. Nanomaterials 2020, 10, 541. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Gu, Z.; Zhang, Y.; Ma, Z.; Qiu, H.; Gu, J. Structural Design Strategies of Polymer Matrix Composites for Electromagnetic Interference Shielding: A Review. Nano-Micro Lett. 2021, 13, 181. [Google Scholar] [CrossRef]
- Zhang, Q.; Serpe, M. Stimuli-Responsive Polymers for Actuation. Chemphyschem 2017, 18, 1451–1465. [Google Scholar] [CrossRef] [Green Version]
- Kashima, S.; Miyasaka, F.; Hirata, K. Novel Soft Actuator Using Magnetorheological Elastomer. IEEE Trans. Magn. 2012, 48, 1649–1652. [Google Scholar] [CrossRef]
- Elhajjar, R.; Law, C.; Pegoretti, A. Magnetostrictive polymer composites: Recent advances in materials, structures and properties. Prog. Mater. Sci. 2018, 97, 204–229. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, J.; Salehizadeh, M.; Onaizah, O.; Diller, E. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Sci. Robot. 2019, 4, 29. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.; Parsons, A.; Zheng, L. Magnetically Controlled Soft Robotics Utilizing Elastomers and Gels in Actuation: A Review. Adv. Intell. Syst. 2021, 3, 2000186. [Google Scholar] [CrossRef]
- Cheng, Y.; Chan, K.; Wang, X.; Ding, T.; Li, T.; Zhang, C.; Lu, W.; Zhou, Y.; Ho, G. A Fast Autonomous Healing Magnetic Elastomer for Instantly Recoverable, Modularly Programmable, and Thermorecyclable Soft Robots. Adv. Funct. Mater. 2021, 31, 2411–2502. [Google Scholar] [CrossRef]
- Shibaev, A.; Smirnova, M.; Kessel, D.; Bedin, S.; Razumovskaya, I.; Philippova, O. Remotely Self-Healable, Shapeable and pH-Sensitive Dual Cross-Linked Polysaccharide Hydrogels with Fast Response to Magnetic Field. Nanomaterials 2021, 11, 1271. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Q.; Su, G.; Cao, J.; Liu, J.; Zhang, X. Hierarchically Structured Self-Healing Actuators with Superfast Light- and Magnetic-Response. Adv. Funct. Mater. 2019, 29, 1906198. [Google Scholar] [CrossRef]
- Hager, M.; Bode, S.; Weber, C.; Schubert, U. Shape memory polymers: Past, present and future developments. Prog. Polym. Sci. 2015, 49–50, 3–33. [Google Scholar] [CrossRef]
- Alabiso, W.; Hron, T.; Reisinger, D.; Bautista-Anguis, D.; Schlogl, S. Shape memory-assisted self-healing of dynamic thiol-acrylate networks. Polym. Chem. 2021, 12, 5704–5714. [Google Scholar] [CrossRef]
- Rivero, G.; Nguyen, L.; Hillewaere, X.; Du Prez, F. One-Pot Thermo-Remendable Shape Memory Polyurethanes. Macromolecules 2014, 47, 2010–2018. [Google Scholar] [CrossRef]
- Jorcin, J.; Scheltjens, G.; Van Ingelgem, Y.; Tourwe, E.; Van Assche, G.; De Graeve, I.; Van Mele, B.; Terryn, H.; Hubin, A. Investigation of the self-healing properties of shape memory polyurethane coatings with the ‘odd random phase multisine’ electrochemical impedance spectroscopy. Electrochim. Acta 2010, 55, 6195–6203. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, G.; Bai, Q.; Jiang, H.; Xu, B.; Li, H. High Strength Self-Healing Magnetic Elastomers with Shape Memory Effect. Macromol. Mater. Eng. 2016, 301, 125–132. [Google Scholar] [CrossRef]
- Karshalev, E.; Silva-Lopez, C.; Chan, K.; Yan, J.; Sandraz, E.; Gallot, M.; Nourhani, A.; Garay, J.; Wang, J. Swimmers Heal on the Move Following Catastrophic Damage. Nano Lett. 2021, 21, 2240–2247. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Moses, J.; Bhardwaj, N.; Mandal, B. Injectable hydrogels: A new paradigm for osteochondral tissue engineering. J. Mater. Chem. B 2018, 6, 5499–5529. [Google Scholar] [CrossRef]
- Arkenberg, M.; Nguyen, H.; Lin, C. Recent advances in bio-orthogonal and dynamic crosslinking of biomimetic hydrogels. J. Mater. Chem. B 2020, 8, 7835–7855. [Google Scholar] [CrossRef]
- Tu, Y.; Chen, N.; Li, C.; Liu, H.; Zhu, R.; Chen, S.; Xiao, Q.; Liu, J.; Ramakrishna, S.; He, L. Advances in injectable self-healing biomedical hydrogels. Acta Biomater. 2019, 90, 1–20. [Google Scholar] [CrossRef]
- Hou, S.; Wang, X.; Park, S.; Jin, X.; Ma, P. Rapid Self-Integrating, Injectable Hydrogel for Tissue Complex Regeneration. Adv. Healthc. Mater. 2015, 4, 1491–1495. [Google Scholar] [CrossRef]
- Feliciano, A.; van Blitterswijk, C.; Moroni, L.; Baker, M. Realizing tissue integration with supramolecular hydrogels. Acta Biomater. 2021, 124, 1–14. [Google Scholar] [CrossRef]
- Li, L.; Yan, B.; Yang, J.; Chen, L.; Zeng, H. Novel Mussel-Inspired Injectable Self-Healing Hydrogel with Anti-Biofouling Property. Adv. Mater. 2015, 27, 1294–1299. [Google Scholar] [CrossRef]
- Wang, W.; Zeng, Z.; Xiang, L.; Liu, C.; Diaz-Dussan, D.; Du, Z.; Asha, A.; Yang, W.; Peng, Y.; Pan, M.; et al. Injectable Self-Healing Hydrogel via Biological Environment-Adaptive Supramolecular Assembly for Gastric Perforation Healing. ACS Nano 2021, 15, 9913–9923. [Google Scholar] [CrossRef]
- Chen, X.; Fan, M.; Tan, H.; Ren, B.; Yuan, G.; Jia, Y.; Li, J.; Xiong, D.; Xing, X.; Niu, X.; et al. Magnetic and self-healing chitosan-alginate hydrogel encapsulated gelatin microspheres via covalent cross-linking for drug delivery. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 101, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Gerecht, S. A self-healing hydrogel as an injectable instructive carrier for cellular morphogenesis. Biomaterials 2018, 185, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Moreno, P.; de Vicente, J.; Nardecchia, S.; Marchal, J.; Boulaiz, H. Thermo-Sensitive Nanomaterials: Recent Advance in Synthesis and Biomedical Applications. Nanomaterials 2018, 8, 935. [Google Scholar] [CrossRef] [Green Version]
- Nardecchia, S.; Sanchez-Moreno, P.; de Vicente, J.; Marchal, J.; Boulaiz, H. Clinical Trials of Thermosensitive Nanomaterials: An Overview. Nanomaterials 2019, 9, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, W.; Gao, Q.; Guo, Z.; Wang, D.; Gao, F.; Wang, X.; Wei, Y.; Zhao, L. Injectable and Self-Healing Thermosensitive Magnetic Hydrogel for Asynchronous Control Release of Doxorubicin and Docetaxel to Treat Triple-Negative Breast Cancer. ACS Appl. Mater. Interfaces 2017, 9, 33660–33673. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, S.; Meng, Y.; Li, J.; Li, J. An injectable, self-healing hydrogel system from oxidized pectin/chitosan/gamma-Fe2O3. Int. J. Biol. Macromol. 2020, 164, 4566–4574. [Google Scholar] [CrossRef]
- Wang, Z.; Zhai, X.; Fan, M.; Tan, H.; Chen, Y. Thermal-reversible and self-healing hydrogel containing magnetic microspheres derived from natural polysaccharides for drug delivery. Eur. Polym. J. 2021, 157, 110644. [Google Scholar] [CrossRef]
- Charlet, A.; Lutz-Bueno, V.; Mezzenga, R.; Amstad, E. Shape retaining self-healing metal-coordinated hydrogels. Nanoscale 2021, 13, 4073–4084. [Google Scholar] [CrossRef]
- Pena-Francesch, A.; Jung, H.; Demirel, M.; Sitti, M. Biosynthetic self-healing materials for soft machines. Nat. Mater. 2020, 19, 1230–1235. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Y.; Ma, X.; Lei, Y. Functional self-healing materials and their potential applications in biomedical engineering. Adv. Compos. Hybrid Mater. 2018, 1, 94–113. [Google Scholar] [CrossRef]
- Shao, H.; Stewart, R. Biomimetic Underwater Adhesives with Environmentally Triggered Setting Mechanisms. Adv. Mater. 2010, 22, 729–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gila-Vilchez, C.; Manas-Torres, M.; Contreras-Montoya, R.; Alaminos, M.; Duran, J.; de Cienfuegos, L.; Lopez-Lopez, M. Anisotropic magnetic hydrogels: Design, structure and mechanical properties. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2019, 377, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhu, C.; Pfattner, R.; Yan, H.; Jin, L.; Chen, S.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N.; et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammock, M.; Chortos, A.; Tee, B.; Tok, J.; Bao, Z. 25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress. Adv. Mater. 2013, 25, 5997–6037. [Google Scholar] [CrossRef]
- Quintero, A.; Verplancke, R.; De Smet, H.; Vanfleteren, J. Stretchable Electronic Platform for Soft and Smart Contact Lens Applications. Adv. Mater. Technol. 2017, 2, 1700073. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, Y.; Rogers, J. Mechanics of stretchable batteries and supercapacitors. Curr. Opin. Solid State Mater. Sci. 2015, 19, 190–199. [Google Scholar] [CrossRef]
- Wu, W. Stretchable electronics: Functional materials, fabrication strategies and applications. Sci. Technol. Adv. Mater. 2019, 20, 187–224. [Google Scholar] [CrossRef] [Green Version]
- Makarov, D.; Melzer, M.; Karnaushenko, D.; Schmidt, O. Shapeable magnetoelectronics. Appl. Phys. Rev. 2016, 3, 011101. [Google Scholar] [CrossRef] [Green Version]
- Bermudez, G.; Karnaushenko, D.; Karnaushenko, D.; Lebanov, A.; Bischoff, L.; Kaltenbrunner, M.; Fassbender, J.; Schmidt, O.; Makarov, D. Magnetosensitive e-skins with directional perception for augmented reality. Sci. Adv. 2018, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Son, D.; Kang, J.; Vardoulis, O.; Kim, Y.; Matsuhisa, N.; Oh, J.; To, J.; Mun, J.; Katsumata, T.; Liu, Y.; et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 2018, 13, 1057–1065. [Google Scholar] [CrossRef]
- Ocheje, M.; Charron, B.; Nyayachavadi, A.; Rondeau-Gagne, S. Stretchable electronics: Recent progress in the preparation of stretchable and self-healing semiconducting conjugated polymers. Flex. Print. Electron. 2017, 2, 4. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, M.; Lv, L.; Fu, H. Self-healing, conductive and magnetic ZnFe2O4/MCNT/PPy ternary composite hydrogels. J. Alloys Compd. 2021, 886, 161083. [Google Scholar] [CrossRef]
- He, Y.; Liao, S.; Jia, H.; Cao, Y.; Wang, Z.; Wang, Y. A Self-Healing Electronic Sensor Based on Thermal-Sensitive Fluids. Adv. Mater. 2015, 27, 4622–4627. [Google Scholar] [CrossRef]
- Bandodkar, A.; Lopez, C.; Mohan, A.; Yin, L.; Kumar, R.; Wang, J. All-printed magnetically self-healing electrochemical devices. Sci. Adv. 2016, 2, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, R.; Sun, X.; Yuan, B.; Wang, H.; Liu, J. Magnetic Liquid Metal (Fe-EGaIn) Based Multifunctional Electronics for Remote Self-Healing Materials, Degradable Electronics, and Thermal Transfer Printing. Adv. Sci. 2019, 6, 1901478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palchoudhury, S.; Ramasamy, K.; Gupta, R.; Gupta, A. Flexible Supercapacitors: A Materials Perspective. Front. Mater. 2019, 5, 103053. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ding, Y.; Guo, X.; Yu, G. Conductive polymers for stretchable supercapacitors. Nano Res. 2019, 12, 1978–1987. [Google Scholar] [CrossRef]
- Xu, C.; Puente-Santiago, A.; Rodriguez-Padron, D.; Munoz-Batista, M.; Ahsan, M.; Noveron, J.; Luque, R. Nature-inspired hierarchical materials for sensing and energy storage applications. Chem. Soc. Rev. 2021, 50, 4856–4871. [Google Scholar] [CrossRef]
- Qin, H.; Liu, P.; Chen, C.; Cong, H.; Yu, S. A multi-responsive healable supercapacitor. Nat. Commun. 2021, 12, 4297. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, M.; Meng, W.; Pei, Z.; Liu, C.; Hu, H.; Zhi, C. Magnetic-Assisted, Self-Healable, Yarn-Based Supercapacitor. ACS Nano 2015, 9, 6242–6251. [Google Scholar] [CrossRef]
- Zi, Y.; Wang, J.; Wang, S.; Li, S.; Wen, Z.; Guo, H.; Wang, Z. Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 2016, 7, 10987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Huang, L.; Hao, J. Fully self-healing and shape-tailorable triboelectric nanogenerators based on healable polymer and magnetic-assisted electrode. Nano Energy 2017, 40, 399–407. [Google Scholar] [CrossRef]
- Choudhary, H.; Kumar, R.; Pawar, S.; Sundararaj, U.; Sahoo, B. Enhancing absorption dominated microwave shielding in Co@C-PVDF nanocomposites through improved magnetization and graphitization of the Co@C-nanoparticles. Phys. Chem. Chem. Phys. 2019, 21, 15595–15608. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, H.; Antunes, M.; Velasco, J. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 2019, 103, 319–373. [Google Scholar] [CrossRef]
- Bose, S.; Sharma, M.; Bharati, A.; Moldenaers, P.; Cardinaels, R. A strategy to achieve enhanced electromagnetic interference shielding at ultra-low concentration of multiwall carbon nanotubes in P alpha MSAN/PMMA blends in the presence of a random copolymer PS-r-PMMA. RSC Adv. 2016, 6, 26959–26966. [Google Scholar] [CrossRef]
- Dai, X.; Du, Y.; Yang, J.; Wang, D.; Gu, J.; Li, Y.; Wang, S.; Xu, B.; Kong, J. Recoverable and self-healing electromagnetic wave absorbing nanocomposites. Compos. Sci. Technol. 2019, 174, 27–32. [Google Scholar] [CrossRef]
- Menon, A.; Madras, G.; Bose, S. Ultrafast Self-Healable Interfaces in Polyurethane Nanocomposites Designed Using Diels-Alder “Click” as an Efficient Microwave Absorber. ACS Omega 2018, 3, 1137–1146. [Google Scholar] [CrossRef]
- Menon, A.; Madras, G.; Bose, S. Light weight, ultrathin, and "thermally-clickable" self-healing MWNT patch as electromagnetic interference suppressor. Chem. Eng. J. 2019, 366, 72–82. [Google Scholar] [CrossRef]
- Menon, A.; Madras, G.; Bose, S. Mussel-Inspired Self-Healing Polyurethane with “Flower-like” Magnetic MoS2 as Efficient Microwave Absorbers. ACS Appl. Polym. Mater. 2019, 1, 2417–2429. [Google Scholar] [CrossRef]
- Aksoy, Y.; Zhu, Y.; Eneren, P.; Koos, E.; Vetrano, M. The Impact of Nanofluids on Droplet/Spray Cooling of a Heated Surface: A Critical Review. Energies 2021, 14, 80. [Google Scholar] [CrossRef]
- Smith, J.; Dhiman, R.; Anand, S.; Reza-Garduno, E.; Cohen, R.; McKinley, G.; Varanasi, K. Droplet mobility on lubricant-impregnated surfaces. Soft Matter 2013, 9, 1772–1780. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Schuh, J.; Ewoldt, R.; Allison, J. Enhancing Full-Film Lubrication Performance Via Arbitrary Surface Texture Design. J. Mech. Des. 2017, 139, 053401. [Google Scholar] [CrossRef]
- Jin, B.; Liu, M.; Zhang, Q.; Zhan, X.; Chen, F. Silicone Oil Swelling Slippery Surfaces Based on Mussel-Inspired Magnetic Nanoparticles with Multiple Self-Healing Mechanisms. Langmuir 2017, 33, 10340–10350. [Google Scholar] [CrossRef] [PubMed]
- Irajizad, P.; Ray, S.; Farokhnia, N.; Hasnain, M.; Baldelli, S.; Ghasemi, H. Remote Droplet Manipulation on Self-Healing Thermally Activated Magnetic Slippery Surfaces. Adv. Mater. Interfaces 2017, 4, 1700009. [Google Scholar] [CrossRef]
Application | Fabrication Method | Self-Healing Mechanism | Magnetic Filler | References |
---|---|---|---|---|
Actuators | Mixing | Disulfide bonds | Nd2Fe14B | [86] |
Boronic ester | CoFe2O4 | [87] | ||
Surface eng. | Metal-ligand complex | Fe3O4@CNC | [88] | |
Hydrogen bonds | Fe3O4 | [93] | ||
Biomedical | Mixing | Imide bonds | Fe3O4@DF-PEG-DF | [106] |
Schiff base | Fe3O4 γ-Fe2O3 | [102] [107] | ||
Mixing + external magnetic field | Schiff base | CIPs | [76] | |
Intermolecular diffusion | Fe3O4@PSSMA@SiO2 | [77] | ||
Slippery surfaces | Mixing | Intermolecular diffusion | Oil-based ferrofluid | [145] |
Stretchable electronics | Mixing | Hydrogen bonds | Fe3O4@SiO2 Magnetic cubes | [124] [133] |
Metal-ligand complex | Fe3O4@MoS2 | [140] | ||
Imide bonds | Fe3O4@MWCNTs | [137] | ||
Diels-Alder | Fe3O4@rGO | [138] | ||
Disulfide bonds | Fe3O4@MoS2@rGO | [139] | ||
Surface eng. | Hydrogen bonds | ZnFe2O4@MWCNTs | [123] | |
Disulfide bonds | Fe3O4@Au | [130] | ||
Additive manufacturing | Intermolecular diffusion | Nd2Fe14B Fe-GaIn | [125] [126] | |
Electrodeposition | Hydrogen bonds | Fe3O4@Stainless Steel | [131] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerdan, K.; Moya, C.; Van Puyvelde, P.; Bruylants, G.; Brancart, J. Magnetic Self-Healing Composites: Synthesis and Applications. Molecules 2022, 27, 3796. https://doi.org/10.3390/molecules27123796
Cerdan K, Moya C, Van Puyvelde P, Bruylants G, Brancart J. Magnetic Self-Healing Composites: Synthesis and Applications. Molecules. 2022; 27(12):3796. https://doi.org/10.3390/molecules27123796
Chicago/Turabian StyleCerdan, Kenneth, Carlos Moya, Peter Van Puyvelde, Gilles Bruylants, and Joost Brancart. 2022. "Magnetic Self-Healing Composites: Synthesis and Applications" Molecules 27, no. 12: 3796. https://doi.org/10.3390/molecules27123796