Biological Activities and Chemical Profile of Gentiana asclepiadea and Inula helenium Ethanolic Extracts
Abstract
:1. Introduction
2. Results and Discussions
2.1. Quantification of Total Polyphenolic (TPC), Flavonoid (TFC), and Phenolic Acids (TPA) Content
2.2. Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis
2.3. Antioxidant Activity
2.4. Antibacterial Activity
2.5. Cytotoxicity Assay
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material and Extract Preparation
3.3. Quantification of Total Phenolic, Flavonoid, and Phenolic Acids Content
3.4. Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis
3.5. Antioxidant Activity
3.5.1. Ferric-Reducing Antioxidant Power Assay (FRAP)
3.5.2. DPPH Radical Scavenging Activity Assay
3.6. Antibacterial Activity
3.7. Isolation of Rat Intestinal Epithelial Cells
3.8. Cytotoxicity Assay
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Khan, M.S.A.; Ahmad, I. Chapter 1—Herbal Medicine: Current Trends and Future Prospects. In New Look to Phytomedicine; Khan, M.S.A., Ahmad, I., Chattopadhyay, D., Eds.; Academic Press: London, UK, 2019; pp. 3–13. [Google Scholar] [CrossRef]
- Stefanović, O.; Ličina, B.; Vasić, S.; Radojević, I.; Čomić, L. Bioactive extracts of Gentiana asclepiadea: Antioxidant, antimicrobial, and antibiofilm activity. Bot. Serbica 2018, 42, 223–229. [Google Scholar] [CrossRef]
- Mihailovic, V.; Matic, S.; Mišic, D.; Solujic, S.; Stanic, S.; Katanic, J.; Mladenovic, M.; Stankovic, N. Chemical composition, antioxidant and antigenotoxic activities of different fractions of Gentiana asclepiadea L. roots extract. EXCLI J. 2013, 12, 807–823. Available online: https://www.excli.de/index.php/excli/article/view/1194 (accessed on 9 May 2022). [PubMed]
- Dorn, D.C.; Alexenizer, M.; Hengstler, J.G.; Dorn, A. Tumor cell specific toxicity of Inula helenium extracts. Phytother. Res. 2006, 20, 970–980. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [Green Version]
- Struwe, L. Classification and evolution of the Gentianaceae. In The Gentianaceae: Characterization and Ecology; Rybczyński, J.J., Davey, M.R., Mikula, A., Eds.; Springer: Heidelberg, Germany, 2014; Volume 1, pp. 13–35. [Google Scholar]
- Bilz, M. Gentiana asclepiadea. The IUCN Red List of Threatened Species. 2013, E.T203218A2762391. Available online: https://www.iucnredlist.org/ (accessed on 26 March 2022).
- Zając, A.; Pindel, A. Review of the Willow Gentian, Gentiana asclepiadea L. Biodiversity 2011, 12, 181–185. [Google Scholar] [CrossRef]
- Papp, N.; Tóth, M.; Dénes, T.; Gyergyák, K.; Filep, R.; Bartha, S.G.; Csepregi, R.; Balázs, V.L.; Farkas, Á. Ethnomedicinal treatment of gastrointestinal disorders in Transylvania, Romania. Acta Ethnogr. Hung. 2017, 62, 207–220. [Google Scholar] [CrossRef]
- Mihailović, V.; Mihailović, M.; Uskoković, A.; Arambašić, J.; Mišić, D.; Stanković, V.; Katanić, J.; Mladenović, M.; Solujić, S.; Matić, S. Hepatoprotective effects of Gentiana asclepiadea L. extracts against carbon tetrachloride induced liver injury in rats. Food Chem. Toxicol. 2013, 52, 83–90. [Google Scholar] [CrossRef]
- Milutinović, M.; Dimitrijević-Branković, S.; Rajilić-Stojanović, M. Plant Extracts Rich in Polyphenols as Potent Modulators in the Growth of Probiotic and Pathogenic Intestinal Microorganisms. Front. Nutr. 2021, 8, 688843. [Google Scholar] [CrossRef]
- Szucs, Z.; Dános, B.; Nyiredy, S.Z. Comparative analysis of the underground parts of Gentiana species by HPLC with diode-array and mass spectrometric detection. Chromatographia 2002, 56, S19–S23. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Gadimli, A.I.; Isaev, J.I.; Kashchenko, N.I.; Prokopyev, A.S.; Kataeva, T.N.; Chirikova, N.K.; Vennos, C. Caucasian Gentiana Species: Untargeted LC-MS Metabolic Profiling, Antioxidant and Digestive Enzyme Inhibiting Activity of Six Plants. Metabolites 2019, 9, 271. [Google Scholar] [CrossRef] [Green Version]
- Mandel, J.R.; Dikow, R.B.; Siniscalchi, C.M.; Thapa, R.; Watson, L.E.; Funk, V.A. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc. Natl. Acad. Sci. USA. 2019, 116, 14083–14088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khela, S. Inula helenium. The IUCN Red List of Threatened Species. 2013, E.T202982A2758393. Available online: https://www.iucnredlist.org/ (accessed on 26 March 2022).
- Buza, V.; Matei, M.-C.; Ștefănuț, L.C. Inula helenium: A literature review on ethnomedical uses, bioactive compounds and pharmacological activities. Lucr. Ştiinţ. Ser. Med. Vet. 2020, 63, 53–59. [Google Scholar]
- Ghedira, K.; Goetz, P.; Le Jeune, R. Inula helenium L. (Asteraceae): Aunée. Phytothérapie 2011, 9, 176–179. [Google Scholar] [CrossRef]
- Deriu, A.; Zanetti, S.; Sechi, L.A.; Marongiu, B.; Piras, A.; Porcedda, S.; Tuveri, E. Antimicrobial activity of Inula helenium L. essential oil against Gram-positive and Gram-negative bacteria and Candida spp. Int. J. Antimicrob. Agents 2008, 31, 588–590. [Google Scholar] [CrossRef]
- Stanojević, D.; Ćomić, L.J.; Stefanović, O.; Sukdoloak, S.S. In Vitro synergistic antibacterial activity of Helichrysum arenarium, Inula helenium, Cichorium intybus and some preservatives. Ital. J. Food Sci. 2010, 22, 210–216. [Google Scholar]
- Kenny, C.-R.; Stojakowska, A.; Furey, A.; Lucey, B. From Monographs to Chromatograms: The Antimicrobial Potential of Inula helenium L. (Elecampane) Naturalised in Ireland. Molecules 2022, 27, 1406. [Google Scholar] [CrossRef]
- Abolfathi, M.E.; Tabeidian, S.A.; Foroozandeh Shahraki, A.D.; Tabatabaei, S.N.; Habibian, M. Comparative effects of n-hexane and methanol extracts of elecampane (Inula helenium L.) rhizome on growth performance, carcass traits, feed digestibility, intestinal antioxidant status and ileal microbiota in broiler chickens. Arch. Anim. Nutr. 2019, 73, 88–110. [Google Scholar] [CrossRef]
- Spiridon, I.; Nechita, C.B.; Niculaua, M.; Silion, M.; Armatu, A.; Teacă, C.-A.; Bodîrlău, R. Antioxidant and chemical properties of Inula helenium root extracts. Cent. Eur. J. Chem. 2013, 11, 1699–1709. [Google Scholar] [CrossRef]
- Petkova, N.; Vrancheva, R.; Mihaylova, D.; Ivanov, I.; Pavlov, A.; Denev, P. Antioxidant activity and fructan content in root extracts from elecampane (Inula helenium L.). J. Biosci. Biotechnol. 2015, 4, 101–107. [Google Scholar]
- Zlatić, N.; Jakovljević, D.; Stanković, M. Temporal, Plant Part, and Interpopulation Variability of Secondary Metabolites and Antioxidant Activity of Inula helenium L. Plants 2019, 8, 179. [Google Scholar] [CrossRef] [Green Version]
- Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. Amarogentin as Topical Anticancer and Anti-Infective Potential: Scope of Lipid Based Vesicular in its Effective Delivery. Recent Pat. Antiinfect. Drug Discov. 2019, 14, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Phoboo, S.; Pinto, M.; Barbosa, A.C.; Sarkar, D.; Bhowmik, P.C.; Jha, P.K.; Shetty, K. Phenolic-linked biochemical rationale for the anti-diabetic properties of Swertia chirayita (Roxb. ex Flem.) Karst. Phytother Res 2013, 27, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Yen, T.-L.; Lu, W.-J.; Lien, L.-M.; Thomas, P.A.; Lee, T.-Y.; Chiu, H.-C.; Sheu, J.R.; Lin, K.-H. Amarogentin, a Secoiridoid Glycoside, Abrogates Platelet Activation through PLCγ2-PKC and MAPK Pathways. Biomed. Res. Int. 2014, 2014, 728019. [Google Scholar] [CrossRef] [PubMed]
- Disasa, D.; Cheng, L.; Manzoor, M.; Liu, Q.; Wang, Y.; Xiang, L.; Qi, J. Amarogentin from Gentiana rigescens Franch Exhibits Antiaging and Neuroprotective Effects through Antioxidative Stress. Oxid. Med. Cell. Longev. 2020, 2020, 3184019. [Google Scholar] [CrossRef] [PubMed]
- Tavares, W.R.; Seca, A.M.L. Inula L. Secondary Metabolites against Oxidative Stress-Related Human Diseases. Antioxidants 2019, 8, 122. [Google Scholar] [CrossRef] [Green Version]
- Nder, A.E. Efficacy of methanol-water extract of Inula helenium root against oxidative DNA damage. J. Tradit. Chin. Med. 2021, 41, 293–300. [Google Scholar] [PubMed]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; Xia, F.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Ivanova, V.; Trendafilova, A.; Todorova, M.; Danova, K.; Dimitrov, D. Phytochemical Profile of Inula britannica from Bulgaria. Nat. Prod. Commun. 2017, 12, 153–154. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.N.; Kuo, S.H.; Chung, M.I.; Ko, F.N.; Teng, C.M. A New Flavone C-Glycoside and Antiplatelet and Vasorelaxing Flavones from Gentiana arisanensis. J. Nat. Prod. 1997, 60, 851–853. [Google Scholar] [CrossRef]
- Dou, X.; Zhou, Z.; Ren, R.; Xu, M. Apigenin, flavonoid component isolated from Gentiana veitchiorum flower suppresses the oxidative stress through LDLR-LCAT signaling pathway. Biomed. Pharmacother. 2020, 128, 110298. [Google Scholar] [CrossRef]
- Ozkan, E.; Pehlivan Karakas, F.; Birinci Yildirim, A.B.; Tas, I.; Eker, I.; Zeynep Yavuz, M.; Ucar Turker, A. Promising medicinal plant Inula viscosa L.: Antiproliferative, antioxidant, antibacterial and phenolic profiles. Prog. Nutr. 2019, 21, 652–661. [Google Scholar] [CrossRef]
- Lopez-Lazaro, M. Distribution and Biological Activities of the Flavonoid Luteolin. Mini Rev. Med. Chem. 2009, 9, 31–59. [Google Scholar] [CrossRef] [PubMed]
- Mani, R.; Natesan, V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 2018, 145 (Suppl. SC), 187–196. [Google Scholar] [CrossRef] [PubMed]
- Arul, D.; Subramanian, P. Naringenin (Citrus Flavonone) Induces Growth Inhibition, Cell Cycle Arrest and Apoptosis in Human Hepatocellular Carcinoma Cells. Pathol. Oncol. Res. 2013, 19, 763–770. [Google Scholar] [CrossRef]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; Zhang, T.; Yang, H.; Lan, X.; Ying, J.; Du, G. The flavonoid apigenin protects brain neurovascular coupling against amyloid-β₂₅₋₃₅-induced toxicity in mice. J. Alzheimer’s Dis. 2011, 24, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Gullón, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol. 2017, 67, 220–235. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Gökbulut, A.; Ozhan, O.; Satilmiş, B.; Batçioğlu, K.; Günal, S.; Sarer, E. Antioxidant and antimicrobial activities, and phenolic compounds of selected Inula species from Turkey. Nat. Prod. Commun. 2013, 8, 475–478. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhao, Y.M.; Zhang, B.; Guo, C.Y. Protective Effect of Total Phenolic Compounds from Inula helenium on Hydrogen Peroxide-induced Oxidative Stress in SH-SY5Y Cells. Indian J. Pharm. Sci. 2015, 77, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Kusar, A.; Zupancic, A.; Sentjurc, M.; Baricevic, D. Free radical scavenging activities of yellow gentian (Gentiana lutea L.) measured by electron spin resonance. Hum. Exp. Toxicol. 2006, 25, 599–604. [Google Scholar] [CrossRef]
- O’Neill, J. The review on antimicrobial resistance. In Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; HM Government and Wellcome Trust: London, UK, 2016; Available online: https://amr-review.org (accessed on 10 April 2022).
- Mahoney, A.R.; Safaee, M.M.; Wuest, W.M.; Furst, A.L. The silent pandemic: Emergent antibiotic resistances following the global response to SARS-CoV-2. iScience 2021, 24, 102304. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, M.; Matejić, J.; Kitić, D.; Krstev, T.M.; Kitić, N.; Šavikin, K.; Milutinović, M. Antimicrobial Activity of Fractions and The Extract from Gentiana asclepiadea L. Underground Parts with Molecular Docking Analysis. Acta Med. Median. 2022, 61, 14–22. [Google Scholar] [CrossRef]
- Mihailović, V.; Vuković, N.; Nićiforović, N.; Solujić, S.; Mladenović, M.; Mašković, P.; Stanković, M.S. Studies on the antimicrobial activity and chemical composition of the essential oils and alcoholic extracts of Gentiana asclepiadea L. J. Med. Plant Res. 2011, 5, 1164–1174. [Google Scholar] [CrossRef]
- O’Shea, S.; Lucey, B.; Cotter, L. In Vitro activity of Inula helenium against clinical Staphylococcus aureus strains including MRSA. Br. J. Biomed. Sci. 2009, 66, 186–189. [Google Scholar] [CrossRef]
- Budán, F.; Nan, M.; Kocsis, B.; Laczkó-Zöld, E. Antimicrobial activity and potential secondary signal transduction mechanisms of elecampane (Inula helenium L.) root extract. PCBMB 2021, 22, 86–92. [Google Scholar]
- Diguță, C.; Cornea, C.P.; Ioniță, L.; Brîndușe, E.; Farcaș, N.; Bobit, D.; Matei, F. Studies on antimicrobial activity of Inula helenium L. Romanian cultivar. Rom. Biotechnol. Lett. 2014, 19, 9699–9704. [Google Scholar]
- Hudecova, A.; Hasplova, K.; Miadokova, E.; Magdolenova, Z.; Rinna, A.; Galova, E.; Sevcovicova, A.; Vaculcikova, D.; Gregan, F.; Dusinska, M. Cytotoxic and genotoxic effect of methanolic flower extract from Gentiana asclepiadea on COS 1 cells. Neuro Endocrinol. Lett. 2010, 31 (Suppl. S2), 21–25. [Google Scholar]
- Boateng, A. Hepatoprotective Properties of Gentiana SPP: Against Non-Alcoholic Fatty Liver Disease (NAFLD). Ph.D. Thesis, University of Westminster Biomedical Sciences, London, UK, 2018. [Google Scholar]
- Xu, R.; Peng, Y.; Wang, M.; Li, X. Intestinal Absorption of Isoalantolactone and Alantolactone, Two Sesquiterpene Lactones from Radix Inulae, Using Caco-2 Cells. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 295–303. [Google Scholar] [CrossRef]
- Lee, S.-G.; Kang, H. Anti-neuroinflammatory Effects of Ethanol Extract of Inula helenium L. (Compositae). Trop. J. Pharm. Res. 2016, 15, 521–526. [Google Scholar] [CrossRef] [Green Version]
- Chun, J.; Song, K.; Kim, Y.S. Anti-inflammatory Activity of Standardized Fraction from Inula helenium L. via Suppression of NF-κB Pathway in RAW 264.7 Cells. Nat. Prod. Sci. 2019, 25, 16–22. [Google Scholar] [CrossRef]
- Ielciu, I.; Sevastre, B.; Olah, N.-K.; Turdean, A.; Chişe, E.; Marica, R.; Oniga, I.; Uifălean, A.; Sevastre-Berghian, A.C.; Niculae, M.; et al. Evaluation of Hepatoprotective Activity and Oxidative Stress Reduction of Rosmarinus officinalis L. Shoots Tincture in Rats with Experimentally Induced Hepatotoxicity. Molecules 2021, 26, 1737. [Google Scholar] [CrossRef] [PubMed]
- Hanganu, D.; Niculae, M.; Ielciu, I.; Olah, N.-K.; Munteanu, M.; Burtescu, R.; Ştefan, R.; Olar, L.; Pall, E.; Andrei, S.; et al. Chemical Profile, Cytotoxic Activity and Oxidative Stress Reduction of Different Syringa vulgaris L. Extracts. Molecules 2021, 26, 3104. [Google Scholar] [CrossRef] [PubMed]
- Păltinean, R.; Ielciu, I.; Hanganu, D.; Niculae, M.; Pall, E.; Angenot, L.; Tits, M.; Mocan, A.; Babotă, M.; Frumuzachi, O.; et al. Biological Activities of Some Isoquinoline Alkaloids from Fumaria schleicheri Soy. Will. Plants 2022, 11, 1202. [Google Scholar] [CrossRef]
- Ielciu, I.; Filip, G.A.; Oniga, I.; Olah, N.K.; Bâldea, I.; Olteanu, D.; Burtescu, R.F.; Turcuș, V.; Sevastre-Berghian, A.C.; Benedec, D.; et al. Oxidative Stress and Dna Lesion Reduction of a Polyphenolic Enriched Extract of Thymus marschallianus Willd. In Endothelial Vascular Cells Exposed to Hyperglycemia. Plants 2021, 10, 2810. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Antimicrobial Susceptibility Testing EUCAST Disk Diffusion Method; ESCMID: Basel, Switzerland, 2020; Volume 8, pp. 1–21. [Google Scholar]
- Niculae, M.; Hanganu, D.; Oniga, I.; Benedec, D.; Ielciu, I.; Giupana, R.; Sandru, C.D.; Cioc, N. Phytochemical Profile and Antimicrobial Potential of Extracts Obtained from Thymus marschallianus Willd. Molecules 2019, 24, 3101. [Google Scholar] [CrossRef] [Green Version]
- Evans, G.S.; Flint, N.; Somers, A.S.; Eyden, B.; Potten, C.S. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J. Cell Sci. 1992, 101, 219–231. [Google Scholar] [CrossRef]
- National Competent Authorities for the implementation of Directive 2010/63/EU on the Protection of Animals Used for Scientific Purposes. A Working Document on the Development of a Common Education and Training Framework to Fulfil the Requirements under the Directive; European commission: Brussels, Belgium, 2014; Available online: https://ec.europa.eu/ (accessed on 15 June 2021).
Sample | TPC (g GAE/100 g Dry Plant Material) | TFC (g RE/100 g Dry Plant Material) | TPA (g CAE/100 g Dry Plant Material) |
---|---|---|---|
G. asclepiadea | 2.144 * ± 0.088 | 0.280 * ± 0.014 | 0.224 * ± 0.030 |
I. helenium | 3.066 * ± 0.041 | 0.602 * ± 0.016 | 1.182 * ± 0.017 |
Compound | Retention Time, min | m/z and Main Transition | Concentration | ||
---|---|---|---|---|---|
Standard | Separated Compound | Standard | Separated Compound | Value | |
G. asclepiadea | |||||
Caffeic acid | 13.8 | 13.7 | 179.0 > 135.0 | 179.0 > 135.0 | 169 ± 1.2 |
trans-p-coumaric acid | 17.5 | 17.6 | 163.0 > 119.0 | 163.0 > 119.0 | 192.8 ± 1.0 |
Salicylic acid | 23.5 | 23.5 | 137.0 > 93.0 | 137.0 > 93.0 | <LOQ |
Chlorogenic acid | 12.0 | 12.0 | 353.0 > 191.0 | 353.0 > 191.0 | 33.4 ± 0.5 |
Amarogentin | 22.5 | 22.5 | 587.0 > 229.0 | 587.0 > 229.0 | 27.8 ± 0.3 |
Apigenin | 28.2 | 28.1 | 269.0 > 117.0 | 269.0 > 117.0 | 18.0 ± 0.7 |
Chrysin | 29.7 | 29.7 | 253.0 > 143.0 | 253.0 > 143.0 | <LOQ |
Luteolin | 26.9 | 26.8 | 287.0 > 153.0 | 287.0 > 153.0 | 9.6 ± 0.2 |
Luteolin-7-O-glucoside | 19.9 | 19.8 | 447.0 > 284.9 | 447.0 > 284.9 | 22.6 ± 0.5 |
Quercetin | 25.7 | 25.5 | 300.9 > 151.0 | 300.9 > 151.0 | <LOQ |
Rutoside | 20.3 | 20.2 | 609.0 > 300.0 | 609.0 > 300.0 | 30.8 ± 0.6 |
Naringenin | 26.3 | 26.3 | 271.0 > 119.0 | 271.0 > 119.0 | 8.0 ± 0.2 |
I. helenium | |||||
Caffeic acid | 13.8 | 14.0 | 179.0 > 135.0 | 179.0 > 135.0 | 234.0 ± 2.1 |
Chlorogenic acid | 12.0 | 12.2 | 353.0 > 191.0 | 353.0 > 191.0 | 2284.1 ± 11 |
Chrysin | 29.7 | 29.9 | 253.0 > 143.0 | 253.0 > 143.0 | <LOQ |
Luteolin | 26.9 | 27.5 | 287.0 > 153.0 | 287.0 > 153.0 | <LOQ |
Luteolin-7-O-glucoside | 19.9 | 20.5 | 447.0 > 284.9 | 447.0 > 284.9 | <LOQ |
Naringenin | 26.3 | 26.3 | 271.0 > 119.0 | 271.0 > 119.0 | 3.2 ± 0.03 |
Hesperetin | 27.1 | 27.5 | 301.0 > 164.0 | 301.0 > 164.0 | <LOQ |
Sample | FRAP (μmol TE/100 mL Extract) | DPPH IC50 (μg/mL) |
---|---|---|
G. asclepiadea | 145.23 * ± 3.60 | 363.7 * ± 0.89 |
I. helenium | 629.04 * ± 2.07 | 173.2 * ± 3.40 |
Zone of Inhibition (mm) | ||||||
---|---|---|---|---|---|---|
Sample | Staphylococcus aureus | Bacillus cereus | Enterococcus faecalis | Salmonella enteritidis | Salmonella typhimurium | Escherichia coli |
G. asclepiadea | 15.33 ± 0.47 | 17.33 ± 0.47 | 11.33 ± 0.47 | 11.33 ± 0.47 | 10.00 ± 0.00 | 10.33 ± 0.47 |
I. helenium | 16.33 ± 0.47 | 18.00 ± 0.00 | 8.67 ± 0.47 | 12.00 ± 0.82 | 12.00 ± 0.82 | 10.67 ± 0.47 |
G. asclepiadea + I. helenium | 18.33 ± 0.47 a,b | 21.00 ± 0.00 a,b | 10.33 ± 0.94 | 12.67 ± 0.47 | 12.67 ± 0.47 | 11.33 ± 0.47 |
Gentamicin | 18 ± 0.00 a,b | 21 ± 0.00 a,b | 17 ± 0.00 a,b,c | 18 ± 0.00 a,b,c | 17 ± 0.00 a,b,c | 17 ± 0.00 a,b,c |
MIC Index MBC (μmol GAE/mL)/MIC (μmol GAE/mL) | ||||||
---|---|---|---|---|---|---|
Sample | Staphylococcus aureus | Bacillus cereus | Enterococcus faecalis | Salmonella enteritidis | Salmonella typhimurium | Escherichia coli |
G. asclepiadea | 1 | 1 | 1 | 1 | 1 | 1 |
0.063 × 10−4/ | 0.0315 × 10−4/ | 0.063 × 10−4/ | 0.063 × 10−4/ | 0.063 × 10−4/ | 0.063 × 10−4/ | |
0.063 × 10−4 | 0.0315 × 10−4 | 0.063 × 10−4 | 0.063 × 10−4 | 0.063 × 10−4 | 0.063 × 10−4 | |
I. helenium | 1 | 0.5 | 1 | 0.5 | 0.5 | 1 |
0.045 × 10−4/ | 0.0225 × 10−4/ | 0.0901 × 10−4/ | 0.045 × 10−4/ | 0.045 × 10−4/ | 0.0901 × 10−4/ | |
0.045 × 10−4 | 0.045 × 10−4 | 0.0901 × 10−4 | 0.0901 × 10−4 | 0.0901 × 10−4 | 0.0901 × 10−4 |
Time, Min | Methanol | Water | 2% Formic Acid in Water |
---|---|---|---|
0.00 | 5 | 90 | 5 |
3.00 | 15 | 70 | 15 |
6.00 | 15 | 70 | 15 |
9.00 | 21 | 58 | 21 |
13.00 | 21 | 58 | 21 |
18.00 | 30 | 41 | 29 |
22.00 | 30 | 41 | 29 |
26.00 | 50 | 0 | 50 |
29.00 | 50 | 0 | 50 |
29.01 | 5 | 90 | 5 |
35.00 | 5 | 90 | 5 |
Name of Standard | Retention Time, min | m/z *, and Main Transition | MRM | Other Transitions |
---|---|---|---|---|
Caffeic acid | 13.8 | 179.0 > 135.0 | Negative | 179.0 > 134.0 179.0 > 89.0 |
trans-p-coumaric acid | 17.5 | 163.0 > 119.0 | Negative | 163.0 > 93.0 |
Salicylic acid | 23.5 | 137.0 > 93.0 | Negative | 137.0 > 75.0 137.0 > 65.0 |
Chlorogenic acid | 12.0 | 353.0 > 191.0 | Negative | |
Amarogentin | 22.5 | 587.0 > 229.0 | Positive | |
Apigenin | 28.2 | 269.0 > 117.0 | Negative | |
Chrysin | 29.7 | 253.0 > 143.0 | Negative | 253.0 > 119.0 253.0 > 107.0 |
Luteolin | 26.9 | 287.0 > 153.0 | Positive | |
Luteolin-7-O-glucosid | 19.9 | 447.0 > 284.9 | Negative | |
Quercetin | 25.7 | 300.9 > 151.0 | Negative | 300.9 > 121.0 |
Rutoside | 20.3 | 609.0 > 300.0 | Negative | 609.0 > 301.0 609.0 > 271.0 |
Naringenin | 26.3 | 271.0 > 119.0 | Negative | 271.0 > 107.0 |
Hesperetin | 27.1 | 301.0 > 164.0 | Negative | 301.0 > 136.0 301.0 > 108.0 |
Name of Standard | Concentration Range, mg/mL | Calibration Curve Equations | Correlation Factors | LOD, μg/mL | LOQ, μg/mL |
---|---|---|---|---|---|
Caffeic acid | 0.11–1.10 | A = 4 × 107 × c − 319,689 | 0.9998 | 3.20 | 4.80 |
trans-p-coumaric acid | 0.16–1.60 | A = 3 × 107 × c + 291,065 | 0.9993 | 1.90 | 3.90 |
Salicylic acid | 0.16–1.60 | A = 4 × 107 × c + 44,120 | 0.9997 | 1.50 | 2.00 |
Chlorogenic acid | 0.13–1.30 | A = 2 × 108 × c − 269,699 | 0.9997 | 5.00 | 8.00 |
Amarogentin | 0.10–1.00 | A = 3 × 108 × c − 36,887 | 0.9997 | 5.00 | 7.00 |
Apigenin | 0.10–0.98 | A = 2 × 108 × c + 15,916 | 0.9999 | 0.20 | 0.30 |
Chrysin | 0.10–1.00 | A = 1 × 108 × c − 82,818 | 0.9997 | 3.00 | 5.00 |
Luteolin | 0.01–0.10 | A = 2 × 108 × c − 2295.4 | 0.9977 | 0.05 | 0.07 |
Luteolin-7-O-glucosid | 0.07–0.70 | A = 1 × 109 × c − 700,317 | 0.9990 | 3.00 | 4.00 |
Quercetin | 0.09–0.91 | A = 5 × 107 × c − 9556 | 0.9964 | 0.80 | 1.10 |
Rutoside | 0.17–1.70 | A = 2 × 108 × c − 191,937 | 0.9996 | 4.00 | 6.00 |
Naringenin | 0.16–1.60 | A = 3 × 108 × c − 43,443 | 0.9999 | 0.60 | 0.90 |
Hesperetin | 0.10–1.00 | A = 6 × 107 × c − 49,247 | 0.9974 | 3.00 | 5.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buza, V.; Niculae, M.; Hanganu, D.; Pall, E.; Burtescu, R.F.; Olah, N.-K.; Matei-Lațiu, M.-C.; Vlasiuc, I.; Iozon, I.; Szakacs, A.R.; et al. Biological Activities and Chemical Profile of Gentiana asclepiadea and Inula helenium Ethanolic Extracts. Molecules 2022, 27, 3560. https://doi.org/10.3390/molecules27113560
Buza V, Niculae M, Hanganu D, Pall E, Burtescu RF, Olah N-K, Matei-Lațiu M-C, Vlasiuc I, Iozon I, Szakacs AR, et al. Biological Activities and Chemical Profile of Gentiana asclepiadea and Inula helenium Ethanolic Extracts. Molecules. 2022; 27(11):3560. https://doi.org/10.3390/molecules27113560
Chicago/Turabian StyleBuza, Victoria, Mihaela Niculae, Daniela Hanganu, Emoke Pall, Ramona Flavia Burtescu, Neli-Kinga Olah, Maria-Cătălina Matei-Lațiu, Ion Vlasiuc, Ilinca Iozon, Andrei Radu Szakacs, and et al. 2022. "Biological Activities and Chemical Profile of Gentiana asclepiadea and Inula helenium Ethanolic Extracts" Molecules 27, no. 11: 3560. https://doi.org/10.3390/molecules27113560
APA StyleBuza, V., Niculae, M., Hanganu, D., Pall, E., Burtescu, R. F., Olah, N.-K., Matei-Lațiu, M.-C., Vlasiuc, I., Iozon, I., Szakacs, A. R., Ielciu, I., & Ștefănuț, L. C. (2022). Biological Activities and Chemical Profile of Gentiana asclepiadea and Inula helenium Ethanolic Extracts. Molecules, 27(11), 3560. https://doi.org/10.3390/molecules27113560