Revisiting the Chemistry of Vinylpyrazoles: Properties, Synthesis, and Reactivity
Abstract
1. Introduction
2. Synthesis of Vinylpyrazoles
3. Reactivity of Vinylpyrazoles
3.1. Cycloaddition Reactions
3.2. Polymerization Reactions
3.3. Halogenation and Hydrohalogenation Reactions
3.4. Difluorocyclopropanation Reactions
3.5. Phosphorylation Reactions
3.6. Ring-Closing Metathesis Reactions
3.7. Organomettalic Reactions
3.8. Transition-Metal-Catalyzed Reactions
C-H Activation Reactions
3.9. Miscellaneous
3.9.1. Reaction with Ethyl N-Trichloroethylidenecarbamate
3.9.2. Reaction with Alkanethiols
3.9.3. Reaction with Dichlorocarbene
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pérez-Fernández, R.; Goya, P.; Elguero, J. A review of recent progress (2002–2012) on the biological activities of pyrazoles. Arkivoc 2014, 2014, 233. [Google Scholar] [CrossRef]
- Küçükgüzel, S.G.; Senkardes, S. Recent advances in bioactive pyrazoles. Eur. J. Med. Chem. 2015, 97, 786–815. [Google Scholar] [CrossRef]
- Abrigach, F.; Touzani, R. Pyrazole derivatives with NCN junction and their biological activity: A review. Med. Chem. 2016, 6, 292–298. [Google Scholar] [CrossRef]
- Faria, J.V.; Vegi, P.F.; Miguita, A.G.C.; dos Santos, M.S.; Boechat, N.; Bernardino, A.M.R. Recently reported biological activities of pyrazole compounds. Bioorg. Med. Chem. 2017, 25, 5891–5903. [Google Scholar] [CrossRef]
- Ansari, A.; Ali, A.; Asif, M. Biologically active pyrazole derivatives. New J. Chem. 2017, 41, 16–41. [Google Scholar] [CrossRef]
- Silva, V.L.M.; Elguero, J.; Silva, A.M.S. Current progress on antioxidants incorporating the pyrazole core. Eur. J. Med. Chem. 2018, 156, 394–429. [Google Scholar] [CrossRef]
- Gomes, P.M.O.; Silva, A.M.S.; Silva, V.L.M. Pyrazoles as key scaffolds for the development of fluorine-18-labeled radiotracers for positron emission tomography (PET). Molecules 2020, 25, 1722. [Google Scholar] [CrossRef]
- Secci, D.; Bolasco, A.; Chimenti, P.; Carradori, S. The state of the art of pyrazole derivatives as monoamine oxidase inhibitors and antidepressant/anticonvulsant agents. Curr. Med. Chem. 2011, 18, 5114–5144. [Google Scholar] [CrossRef]
- Silva, V.L.M.; Silva, A.M.S.; Pinto, D.C.G.A.; Jagerovic, N.; Callado, L.F.; Cavaleiro, J.A.S.; Elguero, J. Synthesis and pharmacological evaluation of chlorinated N-alkyl-3 and -5-(2-hydroxyphenyl)pyrazoles as CB1 cannabinoid ligands. Monatsh. Chem. 2007, 138, 797–811. [Google Scholar] [CrossRef]
- Silva, V.L.M.; Silva, A.M.S.; Pinto, D.C.G.A.; Rodríguez, P.; Gomez, M.; Jagerovic, N.; Callado, L.F.; Cavaleiro, J.A.S.; Elguero, J.; Fernandez-Ruiz, J. Synthesis and pharmacological evaluation of new (E)- and (Z)-3-aryl-4-styryl-1H-pyrazoles as potential cannabinoid ligands. Arkivoc 2010, 2010, 226–247. [Google Scholar] [CrossRef]
- Marques, J.; Silva, V.L.M.; Silva, A.M.S.; Marques, M.P.M.; Braga, S.S. Ru(II) trithiacyclononane 5-(2-hydroxyphenyl)-3-[(4-methoxystyryl)pyrazole], a complex with facile synthesis and high cytotoxicity against PC-3 and MDA-MB-231 cells. Complex Met. 2014, 1, 7–12. [Google Scholar] [CrossRef]
- Chowdary, B.N.; Umashankara, M.; Dinesh, B.; Girish, K.; Baba, A.R. Development of 5-(aryl)-3-phenyl-1H-pyrazole derivatives as potent antimicrobial compounds. Asian J. Chem. 2019, 31, 45–50. [Google Scholar] [CrossRef]
- Carreira, A.R.F.; Pereira, D.M.; Andrade, P.B.; Valentão, P.; Silva, A.M.S.; Braga, S.S.; Silva, V.L.M. Novel styrylpyrazole-glucosides and their dioxolo-bridged doppelgangers: Synthesis and cytotoxicity. New J. Chem. 2019, 43, 8299–8310. [Google Scholar] [CrossRef]
- Rocha, S.; Lucas, M.; Silva, V.L.M.; Gomes, P.M.O.; Silva, A.M.S.; Araújo, A.N.; Aniceto, N.; Guedes, R.C.; Corvo, M.L.; Fernandes, E.; et al. Pyrazoles as novel protein tyrosine phosphatase 1B (PTP1B) inhibitors: An in vitro and in silico study. Int. J. Biol. Macromol. 2021, 181, 1171–1182. [Google Scholar] [CrossRef]
- Rocha, S.; Aniceto, N.; Guedes, R.C.; Albuquerque, H.M.T.; Silva, V.L.M.; Silva, A.M.S.; Corvo, M.L.; Fernandes, E.; Freitas, M. An In Silico and an In Vitro Inhibition Analysis of Glycogen Phosphorylase by Flavonoids, Styrylchromones, and Pyrazoles. Nutrients 2022, 14, 306. [Google Scholar] [CrossRef]
- Giornal, F.; Pazenok, S.; Rodefeld, L.; Lui, N.; Vors, J.-P.; Leroux, F.R. Synthesis of diversely fluorinated pyrazoles as novel active agrochemical ingredients. J. Fluor. Chem. 2013, 152, 2–11. [Google Scholar] [CrossRef]
- Garcia, H.; Iborra, S.; Miranda, M.A.; Morera, I.M.; Primo, J. Pyrazoles and isoxazoles derived from 2-hydroxyaryl phenylethynyl ketones: Synthesis and spectrophotometric evaluation of their potential applicability as sunscreens. Heterocycles 1991, 32, 1745–1748. [Google Scholar] [CrossRef]
- Catalan, J.; Fabero, F.; Claramunt, R.M.; Santa Maria, M.D.; Foces-Foces, M.C.; Cano, F.H.; Martinez-Ripoll, M.; Elguero, J.; Sastre, R. New ultraviolet stabilizers: 3- and 5-(2′-hydroxyphenyl)pyrazoles. J. Am. Chem. Soc. 1992, 114, 5039–5048. [Google Scholar] [CrossRef]
- Willy, B.; Müller, T.J.J. Rapid one-pot, four-step synthesis of highly fluorescent 1,3,4,5-tetrasubstituted pyrazoles. Org. Lett. 2011, 13, 2082–2085. [Google Scholar] [CrossRef]
- Dorlars, A.; Schellhammer, C.-W.; Schroeder, J. Heterocycles as Structural Units in New Optical Brighteners. Angew. Chem. Int. Ed. 1975, 14, 665–679. [Google Scholar] [CrossRef]
- Trofimenko, S. Coordination chemistry of pyrazole-derived ligands. Chem. Rev. 1972, 72, 497–509. [Google Scholar] [CrossRef]
- Busev, A.I.; Akimov, V.K.; Gusev, S.I. Pyrazolone Derivatives as Analytical Reagents. Russ. Chem. Rev. 1965, 34, 237. [Google Scholar] [CrossRef]
- Tanitame, A.; Oyamada, Y.; Ofuji, K.; Suzuki, K.; Ito, H.; Kawasaki, M.; Wachi, M.; Yamagishi, J.-I. Potent DNA gyrase inhibitors; novel 5-vinylpyrazole analogues with Gram-positive antibacterial activity. Bioorg. Med. Chem. Lett. 2004, 14, 2863–2866. [Google Scholar] [CrossRef]
- Farberov, M.I. An investigation of pyrazoles LVII. Synthesis of 1- and 4-Vinylpyrazoles. Khim. Nauka Prom. 1959, 4, 90. [Google Scholar]
- Jacobi, H.R. An investigation of pyrazoles LVII. Synthesis of 1- and 4-Vinylpyrazoles. Ktmststoffe 1953, 43, 381. [Google Scholar]
- Grandberg, I.I.; Sharova, G.I. An investigation of pyrazoles LVII. Synthesis of 1- and 4-Vinylpyrazoles. Khimiya Geterotsiklicheskikh Soedin. 1968, 4, 325–326. [Google Scholar]
- Chipanina, N.N.; Kazakova, N.A.; Shestova, L.A.; Domnina, E.S.; Skvortsova, G.G.; Frolov, Y.L. Spectroscopic evidence of donor-acceptor interactions of 1-ethyl and 1-vinylpyrazoles. J. Appl. Spectrosc. 1975, 23, 946–949. [Google Scholar] [CrossRef]
- Es’kova, L.A.; Voronov, V.K.; Domnina, E.S.; Skvortsova, G.G. NMR spectra and structure of 1-vinylpyrazoles. Russ. Chem. Bull. 1985, 34, 922–926. [Google Scholar] [CrossRef]
- Es’kova, L.A.; Voronov, V.K.; Domnina, E.S.; Olivson, A.I.; Chipanina, N.N.; Petrova, E.V.; Shulunova, A.I.; Enikeeva, E.I.; Skvortsova, G.G. NMR and IR spectroscopic study of the structure of quaternary salts of 1-vinylpyrazoles. Russ. Chem. Bull. 1985, 34, 917–921. [Google Scholar] [CrossRef]
- Danovich, D.K.; Voronov, V.K.; Es’kova, L.A. Quantum-chemical investigation of the electronic structure and geometry of 1-vinylpyrazole derivatives. Russ. Chem. Bull. 1988, 37, 278–283. [Google Scholar] [CrossRef]
- Afonin, A.V.; Voronov, V.K.; Es’kova, L.A.; Domnina, E.S.; Petrova, E.V.; Zasyad’ko, O.V. Direct 13C-1H coupling constants in the vinyl group of 1-vinylpyrazoles. Russ. Chem. Bull. 1987, 36, 180–182. [Google Scholar] [CrossRef]
- Turchaninov, V.K.; Ermikov, A.F.; Es’kova, L.A.; Shagun, V.A. Conformational structure of 1-vinylpyrazoles from photoelectron and electron spectroscopic data. J. Struct. Chem. 1988, 29, 639–641. [Google Scholar] [CrossRef]
- Afonin, A.V.; Danovich, D.K.; Voronov, V.K.; Es’kova, L.A.; Baikalova, L.V.; Domina, E.S. Rotational isomerism in 1-vinylpyrazoles and 1-vinylimidazoles from 1H and 13C NMR data and quantum-chemical calculations. Chem. Heterocycl. Compd. 1990, 26, 1121–1125. [Google Scholar] [CrossRef]
- Afonin, A.V.; Voronov, V.K.; Domnina, E.S.; Es’kova, L.A.; Baikalova, L.V.; Trzhtsinskaya, B.V.; Enikeeva, E.I.; Vashchenko, A.V. 15N NMR spectra and specific intramolecular interactions in N-vinylazoles. Chem. Heterocycl. Compd. 1991, 27, 845–848. [Google Scholar] [CrossRef]
- Afonin, A.V.; Vashchenko, A.V. Analysis of influence of the 5-methyl group on internal rotation of the vinyl group in 1-vinylpyrazoles by the AM-I method. Russ. Chem. Bull. 1991, 40, 1838–1840. [Google Scholar] [CrossRef]
- Jones, N.O. Chem. Abstr., 6T, 1077h. British Patent 887, 365, 1962. [Google Scholar]
- Grandberg, I.I.; Sharova, G.I. Studies on pyrazoles LX. Synthesis of N-Vinylpyrazoles. Chem. Heterocycl. Compd. 1968, 4, 797–798. [Google Scholar] [CrossRef]
- Trofimenko, S. Vinylpyrazoles. J. Org. Chem. 1970, 35, 3459–3462. [Google Scholar] [CrossRef]
- Ochi, H.; Miyasaka, T.; Arakawa, K. Studies of Heterocyclic Compounds. XVI. Synthesis of 1-Vinylpyrazoles by Dehydrohalogenation of 1-(2-Haloethyl)pyrazoles. Yakugaku Zasshi J. Pharm. Soc. Jpn. 1978, 98, 165–171. [Google Scholar] [CrossRef][Green Version]
- Attarian, O.S.; Matsoyan, S.G.; Martirosyan, S.S. Synthesis of N-Vinylpyrazoles. Chem. Heterocycl. Compd. 2005, 41, 452–455. [Google Scholar] [CrossRef]
- Iddon, B.; Tønder, J.E.; Hosseini, M.; Begtrup, M. The N-vinyl group as a protection group of the preparation of 3(5)-substituted pyrazoles via bromine–lithium exchange. Tetrahedron 2007, 63, 56–61. [Google Scholar] [CrossRef]
- Anderson, C.D.; Sharp, J.T.; Stefaniuk, E.; Strathdee, R.S. The thermal and photochemical reactions of 3H-1,2-diazepines: A new variation on the diazepine-pyrazole rearrangement. Tetrahedron Lett. 1976, 17, 305–308. [Google Scholar] [CrossRef]
- Ponticello, I.S. Preparation of New Heterocyclic Monomers: Vinylisoxazoles, Vinylpyrazoles, and Vinylpyrazolones. J. Polym. Sci. A Polym. Chem. 1975, 13, 415–423. [Google Scholar] [CrossRef]
- Mboyi, C.D.; Duhayon, C.; Canac, Y.; Chauvin, R. From N-sulfonyl,C-homoallyl-hydrazones to pyrazole and pyridazine (N2)-heterocycles: The ultimate aromatization process. Tetrahedron 2014, 70, 4957–4968. [Google Scholar] [CrossRef]
- Ahamad, S.; Gupta, A.K.; Kant, R.; Mohanan, K. Domino reaction involving the Bestmann–Ohira reagent and α,β-unsaturated aldehydes: Efficient synthesis of functionalized pyrazoles. Org. Biomol. Chem. 2015, 13, 1492–1499. [Google Scholar] [CrossRef] [PubMed]
- Finar, I.L.; Saunders, K.J. An Investigation of pyrazoles LVII. Synthesis of 1- and 4-vinylpyrazoles. J. Chem. Soc. 1963, 4, 3967. [Google Scholar] [CrossRef]
- Grandberg, I.I.; Sharova, G.I. An investigation of pyrazoles. Chem. Heterocycl. Compd. 1970, 4, 241–242. [Google Scholar] [CrossRef]
- Timmermans, P.; Vijttewaal, A.P.; Habraken, C.I. Pyrazoles XI. The synthesis of 1,1′-dimethylbipyrazolyls. J. Heterocycl. Chem. 1972, 9, 1373. [Google Scholar] [CrossRef]
- Frost, J.R.; Streith, J. Polyaza-azulenes. Part 1. Synthesis and Reactions of Some 2,3,3a,6-Tetrahydropyrazolo[3,4-d][1,2]diazepines. J. Chem. Soc. Perkin Trans. 1 1978, 11, 1297–1303. [Google Scholar] [CrossRef]
- Simón, M.M.; Sepúlveda-Arques, J. New cycloaddition reactions of 1-phenyl-4-vinylpyrazole. Tetrahedron 1986, 42, 6683–6686. [Google Scholar] [CrossRef]
- Simón, M.M.; Laviada, M.J.A.; Sepúlveda Arques, J. Cycloadditions with 1-phenyl-5-vinylpyrazole. J. Chem. Soc. Perkin Trans. 1 1990, 2749–2750. [Google Scholar] [CrossRef]
- Diaz-Ortiz, A.; Carrillo, J.R.; Díez-Barra, E.; de la Hoz, A.; Gómez-Escalonilla, M.J.; Moreno, A.; Langa, F. Diels-Alder Cycloaddition of Vinyipyrazoles. Synergy between Microwave Irradiation and Solvent-Free Conditions. Tetrahedron 1996, 52, 9237–9248. [Google Scholar] [CrossRef]
- Díaz-Ortiz, A.; de la Hoz, A.; Langa, F. Microwave irradiation in solvent-free conditions: An eco-friendly methodology to prepare indazoles, pyrazolopyridines and bipyrazoles by cycloaddition reactions. Green Chem. 2000, 2, 165–172. [Google Scholar] [CrossRef]
- Sepúlveda-Arques, J.; Medio-Simon, M.; Piqueres-Vidal, L. Cycloaddition Reactions of 1-tert-Butyl-4-vinylpyrazole. Monatsh. Chem. 1989, 120, 1113–1118. [Google Scholar] [CrossRef]
- Attaryana, O.S.; Baltayan, A.O.; Asratyan, G.V. Diels–Alder Reactions of 3- and 5-Methyl-1-vinylpyrazoles with Cyclohexa-1,3-diene and Hydrogenation of the Reaction Products. Russ. J. Gen. Chem. 2008, 78, 626–628. [Google Scholar] [CrossRef]
- Es’kova, L.A.; Petrova, E.V.; Turchaninov, V.K.; Domina, E.S.; Afonin, A.V. Reaction of 1-vinylpyrazoles with tetracyanoethylene. Chem. Heterocycl. Compd. 1989, 25, 768–771. [Google Scholar] [CrossRef]
- Nikitenko, E.E.; Martynenko, A.L.; Ostrovsky, S.A.; Rusak, E.E.; Kryuchkov, E.E.; Topchiev, D.A. The reactivity of 3-methyl- and 5-methyl-l-vinylpyrazoles in free-radical polymerization. Russ. Chem. Bull. 1993, 42, 378–380. [Google Scholar] [CrossRef]
- Es’kova, L.A.; Domnina, E.S.; Skvortsova, G.G.; Voronov, V.K.; Chipanina, N.N.; Kazakova, N.A. Bromination of 1-vinylpyrazoles. Chem. Heterocycl. Compd. 1978, 14, 774–776. [Google Scholar] [CrossRef]
- Es’kova, L.A.; Voronov, V.K.; Domnina, E.S.; Skvortsova, G.G. Hydrohalogenation of 1-vinylpyrazoles. Russ. Chem. Bull. 1985, 34, 2359–2362. [Google Scholar] [CrossRef]
- Marcin, L.R.; Higgins, M.A.; Bronson, J.J.; Zusi, F.C.; Macor, J.E.; Ding, M. Triazolopyridine ether derivatives and their use in neurological and psychiatric disorders. WO 2015/042243, 26 March 2015. [Google Scholar]
- Giovannini, R.; Bertani, B.; Ferrara, M.; Lingard, I.; Mazzaferro, R.; Rosenbrock, H. Phenyl-3-aza-bicyclo[3.1.0]hex-3-yl-methanones and the use thereof as medicament. WO2013/17657, 7 February 2013. [Google Scholar]
- Lim, J.; Kelley, E.H.; Methot, J.L.; Zhou, H.; Petrocchi, A.; Mansoor, U.F.; Fischer, C.; O’Boyle, B.M.; Guerin, D.J.; Bienstock, E.; et al. Novel compounds that are ERK inhibitors. WO 2013/063214, 2 May 2013. [Google Scholar]
- Dilger, A.K.; Corte, J.R.; De Lucca, I.; Fang, T.; Yang, W.; Wang, Y.; Pabbisetty, K.B.; Ewing, W.R.; Zhu, Y.; Wexler, R.R.; et al. Macrocyclic factor xia inhibitors condensed with heterocycles. WO 2015/116882, 6 August 2015. [Google Scholar]
- Nosik, P.S.; Poturai, A.S.; Pashko, M.O.; Melnykov, K.P.; Ryabukhin, S.V.; Volochnyuk, D.M.; Grygorenko, O.O. N-Difluorocyclopropyl-Substituted Pyrazoles: Synthesis and Reactivity. Eur. J. Org. Chem. 2019, 2019, 4311–4319. [Google Scholar] [CrossRef]
- Chernyshev, K.A.; Larina, L.I.; Chirkina, E.A.; Krivdin, L.B. The effects of intramolecular and intermolecular coordination on 31P nuclear shielding: Phosphorylated azoles. Magn. Reson. Chem. 2012, 50, 120–127. [Google Scholar] [CrossRef]
- Lam, P.Y.S.; Vincent, G.; Bonne, D.; Clark, C.G. Copper-promoted/catalyzed C-N and C-O bond cross-coupling with vinylboronic acid and its utilities. Tetrahedron Lett. 2003, 44, 4927–4931. [Google Scholar] [CrossRef]
- Scholl, M.; Ding, S.; Lee, C.W.; Grubbs, R.H. Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene Ligands. Org. Lett. 1999, 1, 953–956. [Google Scholar] [CrossRef] [PubMed]
- Schwab, P.; France, M.B.; Ziller, J.W.; Grubbs, R.H. A Series of Well-Defined Metathesis Catalysts–Synthesis of [RuCl2(=CHR′)(PR3)2] and Its Reactions. Angew. Chem. Int. Ed. Engl. 1995, 34, 2039–2041. [Google Scholar] [CrossRef]
- Schwab, P.; Grubbs, R.H.; Ziller, J.W. Synthesis and Applications of RuCl2(=CHR‘)(PR3)2: The Influence of the Alkylidene Moiety on Metathesis Activity. J. Am. Chem. Soc. 1996, 118, 100–110. [Google Scholar] [CrossRef]
- Garber, S.B.; Kingsbury, J.S.; Gray, B.L.; Hoveyda, A.H. Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts. J. Am. Chem. Soc. 2000, 122, 8168–8179. [Google Scholar] [CrossRef]
- Seregin, I.V.; Gevorgyan, V. Direct transition metal-catalyzed functionalization of heteroaromatic compounds. Chem. Soc. Rev. 2007, 36, 1173–1193. [Google Scholar] [CrossRef] [PubMed]
- Colby, D.A.; Bergman, R.G.; Ellman, J.A. Rhodium-Catalyzed C−C Bond Formation via Heteroatom-Directed C−H Bond Activation. Chem. Rev. 2010, 110, 624–655. [Google Scholar] [CrossRef]
- Azpíroz, R.; Rubio-Pérez, L.; Di Giuseppe, A.; Passarelli, V.; Lahoz, F.J.; Castarlenas, R.; Pérez-Torrente, J.J.; Oro, L.A. Rhodium(I)-N-Heterocyclic Carbene Catalyst for Selective Coupling of N-Vinylpyrazoles with Alkynes via C-H Activation. ACS Catal. 2014, 4, 4244–4253. [Google Scholar] [CrossRef]
- Carrillo, J.; Díaz-Ortiz, A.; de la Hoz, A.; Gómez-Escalonilla, M.J.; Moreno, A.; Prieto, P. The Effect of Focused Microwaves on the Reaction of Ethyl N-Trichloroethylidenecarbamate with Pyrazole Derivatives. Tetrahedron 1999, 55, 9623–9630. [Google Scholar] [CrossRef]
- Akhmetova, V.R.; Akhmadiev, N.S.; Ibragimov, A.G. Sulfur-Containing Pyrazoles, Pyrazolines and Indazoles. In N-Heterocycles; Ameta, K.L., Kant, R., Penoni, A., Maspero, A., Scapinello, L., Eds.; Springer: Singapore, 2022; pp. 275–312. [Google Scholar] [CrossRef]
- Es’kova, L.A.; Erushnikova, L.P.; Afonin, A.V.; Domnina, E.S. Interaction of 1-vinylpyrazoles with alkanethiols. Russ. Chem. Bull. 1992, 41, 1462–1465. [Google Scholar] [CrossRef]
- Kobelevskaya, V.A.; Popov, A.V.; Nikitin, A.Y.; Levkovskaya, G.G. Directed Synthesis of 3-(2,2-Dichlorocyclopropyl)pyrazoles. Russ. J. Org. Chem. 2017, 53, 144–146. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, V.L.M.; Silva, A.M.S. Revisiting the Chemistry of Vinylpyrazoles: Properties, Synthesis, and Reactivity. Molecules 2022, 27, 3493. https://doi.org/10.3390/molecules27113493
Silva VLM, Silva AMS. Revisiting the Chemistry of Vinylpyrazoles: Properties, Synthesis, and Reactivity. Molecules. 2022; 27(11):3493. https://doi.org/10.3390/molecules27113493
Chicago/Turabian StyleSilva, Vera L. M., and Artur M. S. Silva. 2022. "Revisiting the Chemistry of Vinylpyrazoles: Properties, Synthesis, and Reactivity" Molecules 27, no. 11: 3493. https://doi.org/10.3390/molecules27113493
APA StyleSilva, V. L. M., & Silva, A. M. S. (2022). Revisiting the Chemistry of Vinylpyrazoles: Properties, Synthesis, and Reactivity. Molecules, 27(11), 3493. https://doi.org/10.3390/molecules27113493