Sunlight Photocatalytic Performance of ZnO Nanoparticles Synthesized by Green Chemistry Using Different Botanical Extracts and Zinc Acetate as a Precursor
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Zinc Oxide Nanoparticles
2.1.1. UV-Visible Spectroscopy
2.1.2. Fourier Transform Infrared (FTIR) Spectroscopy Analysis
2.1.3. Transmission Electron Microscopy (TEM) and High-Resolution Transmission Electron Microscopy (HRTEM)
2.1.4. X-ray Diffraction (XRD)
2.1.5. Thermogravimetric Analysis (TGA)
2.1.6. Nitrogen Adsorption–Desorption (BET) Isotherms
2.2. Photocatalytic Activity
2.2.1. Photocatalytic Degradation of Methylene Blue (MB)
2.2.2. Kinetic Study of Photocatalytic Degradation of Methylene Blue
2.2.3. Recyclability of ZnO Nanoparticles
3. Materials and Methods
3.1. Reagents and Collection of Botanical Material
3.2. Preparation of Botanical Extracts
3.3. Synthesis of Zinc Oxide Nanoparticles
3.4. Characterization of Zinc Oxide Nanoparticles
3.5. Measurement of Photocatalytic Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leone, F.; Gignone, A.; Ronchetti, S.; Cavalli, R.; Manna, L.; Banchero, M.; Onida, B. A green organic-solvent-free route to prepare nanostructured zinc oxide carriers of clotrimazole for pharmaceutical applications. J. Clean. Prod. 2018, 172, 1433–1439. [Google Scholar] [CrossRef]
- Bubel, S.; Mechau, N.; Schmechel, R. Electronic properties of polyvinylpyrrolidone at the zinc oxide nanoparticle surface. J. Mat. Sci. 2011, 46, 7776–7783. [Google Scholar] [CrossRef]
- Dutta, G.; Sugumaran, A.A. Bioengineered zinc oxide nanoparticles: Chemical, green, biological fabrication methods and its potential biomedical applications. J. Drug Deliv. Sci. Technol. 2021, 66, 102853. [Google Scholar] [CrossRef]
- Abood, M.K.; Fayad, M.A.; Al Salihi, H.A.; Salbi, H.A.A. Effect of ZnO nanoparticles deposition on porous silicon solar cell. Mater. Today Proc. 2021, 42, 2935–2940. [Google Scholar] [CrossRef]
- Shaba, E.Y.; Jacob, J.O.; Tijani, J.O.; Suleiman, M.A.T. A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Appl. Water Sci. 2021, 11, 48. [Google Scholar] [CrossRef]
- Fan, Z.; Lu, J.G. Zinc oxide nanostructures: Synthesis and properties. J. Nanosci. Nanotechnol. 2005, 5, 1561–1573. [Google Scholar] [CrossRef] [Green Version]
- Adeel, M.; Saeed, M.; Khan, I.; Muneer, M.; Akram, N. Synthesis and characterization of Co-ZnO and evaluation of its photocatalytic activity for photodegradation of methyl orange. ACS Omega 2021, 6, 1426–1435. [Google Scholar] [CrossRef]
- Raoufi, D. Synthesis and photoluminescence characterization of ZnO nanoparticles. J. Lumin. 2013, 134, 213–219. [Google Scholar] [CrossRef]
- Lam, S.-M.; Sin, J.-C.; Zeng, H.; Lin, H.; Li, H.; Chai, Y.-Y.; Choong, M.-K.; Mohamed, A.R. Green synthesis of Fe-ZnO nanoparticles with improved sunlight photocatalytic performance for polyethylene film deterioration and bacterial inactivation. Mat. Sci. Semicon. Proc. 2021, 123, 105574. [Google Scholar] [CrossRef]
- Bekele, B.; Degefa, A.; Tesgera, F.; Jule, L.T.; Shanmugam, R.; Priyanka Dwarampudi, L.; Nagaprasad, N.; Ramasamy, K. Green versus Chemical Precipitation Methods of Preparing Zinc Oxide Nanoparticles and Investigation of Antimicrobial Properties. J. Nanomater. 2021, 2021, 9210817. [Google Scholar] [CrossRef]
- Pachiyappan, J.; Gnanasundaram, N.; Rao, G.L. Preparation and characterization of ZnO, MgO and ZnO-MgO hybrid nanomaterials using green chemistry approach. Results Mater. 2020, 7, 100104. [Google Scholar] [CrossRef]
- Prasad, A.R.; Anagha, M.; Shamsheera, K.O.; Joseph, A. Bio-fabricated ZnO nanoparticles: Direct sunlight-driven selective photodegradation, antibacterial activity, and thermoluminescence-emission characteristics. New J. Chem. 2020, 44, 8273–8279. [Google Scholar] [CrossRef]
- Bhuyan, T.; Mishra, K.; Khanuja, M.; Prasad, R.; Varma, A. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Process. 2015, 32, 55–61. [Google Scholar] [CrossRef]
- Elumalai, K.; Velmurugan, S. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl. Surf. Sci. 2015, 345, 329–336. [Google Scholar] [CrossRef]
- Katta, V.K.M.; Dubey, R.S. Green synthesis of silver nanoparticles using Tagetes erecta plant and investigation of their structural, optical, chemical and morphological properties. Mater. Today Proc. 2021, 45, 794–798. [Google Scholar] [CrossRef]
- Maji, A.; Beg, M.; Das, S.; Aktara, M.N.; Nayim, S.; Patra, A.; Hossain, M. Study on the antibacterial activity and interaction with human serum albumin of Tagetes erecta inspired biogenic silver nanoparticles. Process Biochem. 2020, 97, 191–200. [Google Scholar] [CrossRef]
- He, Y.; Du, Z.; Lv, H.; Jia, Q.; Tang, Z.; Zheng, X.; Zhao, F. Green synthesis of silver nanoparticles by Chrysanthemum morifolium Ramat. extract and their application in clinical ultrasound gel. Int. J. Nanomed. 2013, 8, 1809. [Google Scholar] [CrossRef] [Green Version]
- Arokiyaraj, S.; Arasu, M.V.; Vincent, S.; Prakash, N.U.; Choi, S.H.; Oh, Y.K.; Kim, K.H. Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L. and its antibacterial and cytotoxic effects: An in vitro study. Int. J. Nanomed. 2014, 9, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lateef, A.; Adeeyo, A.O. Green synthesis and antibacterial activities of silver nanoparticles using extracellular laccase of Lentinus edodes. Not. Sci. Biol. 2015, 7, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Garg, R.; Kumari, A. A review on biogenics synthesis, applications and toxicity aspects of zinc oxide nanoparticles. EXCLI J. 2020, 19, 1325–1340. [Google Scholar]
- Nadeem, M.S.; Munawar, T.; Mukhtar, F.; Naveed ur Rahman, M.; Riaz, M.; Iqbal, F. Enhancement in the photocatalytic and antimicrobial properties of ZnO nanoparticles by structural variations and energy bandgap tuning through Fe and Co co-doping. Ceram. Int. 2021, 47, 11109–11121. [Google Scholar] [CrossRef]
- Rajendran, N.K.; George, B.P.; Houreld, N.N.; Abrahamse, H. Synthesis of Zinc Oxide Nanoparticles Using Rubus fairholmianus Root Extract and Their Activity against Pathogenic Bacteria. Molecules 2021, 26, 3029. [Google Scholar] [CrossRef] [PubMed]
- Awan, S.; Shahzadi, K.; Javad, S.; Tariq, A.; Ahmad, A.; Ilyas, S. A preliminary study of influence of zinc oxide nanoparticles on growth parameters of Brassica oleracea var italic. J. Saudi Soc. Agric. Sci. 2021, 20, 18–24. [Google Scholar] [CrossRef]
- Kahsay, M.H.; Tadesse, A.; RamaDevi, D.; Belachew, N.; Basavaiah, K. Green synthesis of zinc oxide nanostructures and investigation of their photocatalytic and bactericidal applications. RSC Adv. 2019, 9, 36967–36981. [Google Scholar] [CrossRef]
- Chand, K.; Abro, M.I.; Aftab, U.; Shah, A.H.; Lakhan, M.N.; Cao, D.; Mehdi, G.; Ali Mohamed, A.M. Green synthesis characterization and antimicrobial activity against Staphylococcus aureus of silver nanoparticles using extracts of neem, onion and tomato. RSC Adv. 2019, 9, 17002–17015. [Google Scholar] [CrossRef] [Green Version]
- Al-Kordy, H.M.H.; Sabry, S.A.; Mabrouk, M.E.M. Statistical optimization of experimental parameters for extracellular synthesis of zinc oxide nanoparticles by a novel haloalaliphilic Alkalibacillus sp. W7. Sci. Rep. 2021, 11, 10924. [Google Scholar] [CrossRef]
- Aiswarya Devi, S.; Harshiny, M.; Udaykumar, S.; Gopinath, P.; Matheswaran, M. Strategy of metal iron doping and green-mediated ZnO nanoparticles: Dissolubility, antibacterial and cytotoxic traits. Toxicol. Res. 2017, 6, 854–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daumann, S.; Andrzejewski, D.; Di Marcantonio, M.; Hagemann, U.; Wepfer, S.; Vollkommer, F.; Bacher, G.; Epple, M.; Nannen, E. Water-free synthesis of ZnO quantum dots for application as an electron injection layer in light-emitting electrochemical cells. J. Mater. Chem. C 2017, 5, 2344–2351. [Google Scholar] [CrossRef]
- Talodthaisong, C.; Plaeyao, K.; Mongseetong, C.; Boonta, W.; Srichaiyapol, O.; Patramanon, R.; Kayunkid, N.; Kulchat, S. The Decoration of ZnO Nanoparticles by Gamma Aminobutyric Acid, Curcumin Derivative and Silver Nanoparticles: Synthesis, Characterization and Antibacterial Evaluation. Nanomaterials 2021, 11, 442. [Google Scholar] [CrossRef] [PubMed]
- Handago, D.T.; Zereffa, E.A.; Gonfa, B.A. Effects of Azadirachta indica Leaf Extract, Capping Agents, on the Synthesis of Pure And Cu Doped ZnO-Nanoparticles: A Green Approach and Microbial Activity. Open Chem. 2019, 17, 246–253. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Colombo, E.; Li, W.; Bhangu, S.K.; Ashokkumar, M. Chitosan microspheres as a template for TiO2 and ZnO microparticles: Studies on mechanism, functionalization and applications in photocatalysis and H2S removal. RSC Adv. 2017, 7, 19373–19383. [Google Scholar] [CrossRef] [Green Version]
- Irani, M.; Mohammadi, T.; Mohebbi, S. Photocatalytic Degradation of Methylene Blue with ZnO Nanoparticles; A Joint Experimental and Theoretical Study. J. Mex. Chem. Soc. 2016, 60, 218–225. [Google Scholar] [CrossRef]
- Liu, W.; He, T.; Wang, Y.; Ning, G.; Xu, Z.; Chen, X.; Hu, X.; Wu, Y.; Zhao, Y. Synergistic adsorption-photocatalytic degradation effect and norfloxacin mechanism of ZnO/ZnS@BC under UV-light irradiation. Sci. Rep. 2020, 10, 11903. [Google Scholar] [CrossRef]
- Ferreira, S.H.; Morais, M.; Nunes, D.; Oliveira, M.J.; Rovisco, A.; Pimentel, A.; Águas, H.; Fortunato, E.; Martins, R. High UV and Sunlight Photocatalytic Performance of Porous ZnO Nanostructures Synthesized by a Facile and Fast Microwave Hydrothermal Method. Materials 2021, 14, 2385. [Google Scholar] [CrossRef]
- Camacho-Campos, C.; Pérez-Hernández, Y.; Valdivia-Ávila, A.; Ramírez-Pérez, H.L.; Gómez-Brisuela, L. Phytochemical and antibacterial properties of extracts of Tagetes erecta L. (Asteraceae). Rev. Cuba. Quím. 2019, 31, 53–64. [Google Scholar]
- Pingali, U.; Ali, M.A.; Gundagani, S.; Nutalapati, C. Evaluation of the Effect of an Aqueous Extract of Azadirachta indica (Neem) Leaves and Twigs on Glycemic Control, Endothelial Dysfunction and Systemic Inflammation in Subjects with Type 2 Diabetes Mellitus—A Randomized, Double-Blind, Placebo-Controlled Clinical Study. Diabetes Metab. Syndr. Obes. 2020, 13, 4401–4412. [Google Scholar]
- Morgan, E.D. Azadirachtin, a scientific gold mine. Bioorg. Med. Chem. 2009, 17, 4096–4105. [Google Scholar] [CrossRef]
- Wu, L.-Y.; Gao, H.-Z.; Wang, X.-L.; Ye, J.-H.; Lu, J.-L.; Liang, Y.-R. Analysis of chemical composition of Chrysanthemum indicum flowers by GC/MS and HPLC. J. Med. Plants Res. 2010, 4, 421–426. [Google Scholar]
- Ryu, J.; Nam, B.; Kim, B.-R.; Kim, S.H.; Jo, Y.D.; Ahn, J.-W.; Kim, J.-B.; Jin, C.H.; Han, A.-R. Comparative Analysis of Phytochemical Composition of Gamma-Irradiated Mutant Cultivars of Chrysanthemum morifolium. Molecules 2019, 24, 3003. [Google Scholar] [CrossRef] [Green Version]
- Huamán-Leandro, L.R.; González-Muñoz, M.J.; Fernández-de-Ana, C.; Rodríguez-Blanco, A.; Torres, M.D.; Domínguez, H. Autohydrolysis of Lentinus edodes for Obtaining Extracts with Antiradical Properties. Foods 2020, 9, 74. [Google Scholar] [CrossRef] [Green Version]
- Gopi, G.; Elumalai, A.; Jayasri, P. A concise review on Tagetes erecta. Int. J. Phytopharm. 2012, 3, 16–19. [Google Scholar]
- Shetty, L.J.; Sakr, F.M.; Al-Obaidy, K.; Patel, M.J.; Shareef, H. A brief review on medicinal plant Tagetes erecta Linn. J. Appl. Pharm. Sci. 2015, 5, 91–95. [Google Scholar]
- Behara, A.; Chatterjee Mitra, J. Use of Leaves and Barks of Some Plants as Bio-Adsorbents in the Control of Methylene Blue Dye from Waste Water Discharge of some Industries. J. Chem. Sci. 2016, 6, 1121–1136. [Google Scholar]
- Samal, K.; Das, C.; Mohanty, K. Eco-friendly biosurfactant saponin for the solubilization of cationic and anionic dyes in aqueous system. Dye. Pigm. 2017, 140, 100–108. [Google Scholar] [CrossRef]
- Wang, G.; Chen, Y.; Xu, G.; Pei, Y. Effective removing of methylene blue from aqueous solution by tannins immobilized on cellulose microfibers. Int. J. Biol. Macromol. 2019, 129, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Ahmad Zaini, M.A.; Sudi, R.M. Valorization of human hair as methylene blue dye adsorbents. Green Process Synth. 2017, 7, 344–352. [Google Scholar] [CrossRef]
- Sudrajat, H.; Susanti, A.; Putri, D.K.Y.; Hartuti, S. Mechanistic insights into the adsorption of methylene blue by particulate durian peel waste in water. Water Sci. Technol. 2021, 84, 1774–1792. [Google Scholar] [CrossRef]
- Klinger, M.; Jäger, A. Crystallographic toolbox (CrystBox): Automated tools for transmission electron microscopists and crystallographers. J. Appl. Crystallogr. 2015, 48, 2012–2018. [Google Scholar] [CrossRef] [Green Version]
- Klug, H.P.; Alexander, L.E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials; Wiley: London, UK, 1954; p. 491. [Google Scholar]
- Suresh, D.; Shobharani, R.M.; Nethravathi, P.C.; Pavan Kumar, M.A.; Nagabhushana, H.; Sharma, S.C. Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: Luminescence, Photocatalytic and Antioxidant Properties. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 141, 128–134. [Google Scholar] [CrossRef]
- Abu-Dalo, M.A.; Al-Rosan, S.A.; Albiss, B.A. Photocatalytic Degradation of Methylene Blue Using Polymeric Membranes Based on Cellulose Acetate Impregnated with ZnO Nanostructures. Polymers 2021, 13, 3451. [Google Scholar] [CrossRef] [PubMed]
Extract | Particle Size Variation (nm) | Average (nm) | SD 1 (nm) |
---|---|---|---|
No extract | 12.34–63.29 | 42.99 | 16.43 |
Azadirachta indica | 9.01–18.97 | 14.42 | 3.30 |
Tagetes erecta | 24.45–32.15 | 27.18 | 2.62 |
Chrysanthemum morifolium | 22.92–37.92 | 31.72 | 4.42 |
Lentinula edodes | 15.52–26.56 | 20.54 | 3.70 |
Extract | Crystallite Size (nm) | SD 1 (nm) |
---|---|---|
No extract | 26.53 | 1.83 |
Azadirachta indica | 9.06 | 1.11 |
Tagetes erecta | 16.35 | 1.30 |
Chrysanthemum morifolium | 18.14 | 1.83 |
Lentinula edodes | 14.09 | 1.26 |
Extract | SBET (m2/g) | Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|
No extract | 11.77 | 0.0190 | 6.44 |
Tagetes erecta | 19.68 | 0.0335 | 6.82 |
Lentinula edodes | 12.87 | 0.0253 | 7.86 |
System | kapp (min−1) | R2 |
---|---|---|
No extract (photolysis) | 0.00211 ± 4.3524 × 10−5 | 0.99661 |
ZnO | 0.03682 ± 1.1800 × 10−3 | 0.99386 |
ZnO-Azadirachta indica | 0.02259 ± 1.1600 × 10−3 | 0.97420 |
ZnO-Tagetes erecta | 0.13179 ± 2.0900 × 10−3 | 0.99800 |
ZnO-Chrysanthemum morifolium | 0.03802 ± 5.9949 × 10−4 | 0.99851 |
ZnO-Lentinula edodes | 0.05369 ± 2.1200 × 10−3 | 0.99224 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-López, J.; Tejeda-Ochoa, A.; López-Beltrán, A.; Herrera-Ramírez, J.; Méndez-Herrera, P. Sunlight Photocatalytic Performance of ZnO Nanoparticles Synthesized by Green Chemistry Using Different Botanical Extracts and Zinc Acetate as a Precursor. Molecules 2022, 27, 6. https://doi.org/10.3390/molecules27010006
López-López J, Tejeda-Ochoa A, López-Beltrán A, Herrera-Ramírez J, Méndez-Herrera P. Sunlight Photocatalytic Performance of ZnO Nanoparticles Synthesized by Green Chemistry Using Different Botanical Extracts and Zinc Acetate as a Precursor. Molecules. 2022; 27(1):6. https://doi.org/10.3390/molecules27010006
Chicago/Turabian StyleLópez-López, Juan, Armando Tejeda-Ochoa, Ana López-Beltrán, José Herrera-Ramírez, and Perla Méndez-Herrera. 2022. "Sunlight Photocatalytic Performance of ZnO Nanoparticles Synthesized by Green Chemistry Using Different Botanical Extracts and Zinc Acetate as a Precursor" Molecules 27, no. 1: 6. https://doi.org/10.3390/molecules27010006
APA StyleLópez-López, J., Tejeda-Ochoa, A., López-Beltrán, A., Herrera-Ramírez, J., & Méndez-Herrera, P. (2022). Sunlight Photocatalytic Performance of ZnO Nanoparticles Synthesized by Green Chemistry Using Different Botanical Extracts and Zinc Acetate as a Precursor. Molecules, 27(1), 6. https://doi.org/10.3390/molecules27010006