Preparation of Antihypertensive Drugs in Biological Matrix with Solvent Front Position Extraction for LC–MS/MS Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preliminary Research—SFPE Procedure Optimization
2.2. Quantization Result Procedure
2.2.1. Methanolic Sample
2.2.2. Serum Albumin Samples
2.2.3. SFPE Procedure Analysis
2.2.4. Comparison of Procedures
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of Internal Standards and Analyte Solutions
3.3. Plate Preparation
3.4. Application of the Samples on the Chromatographic Plate
3.5. Optimization of Conditions of the Substances Separation with TLC/HPTLC
3.6. Stage of Sample Preparation
3.6.1. Spot Narrowing Procedure
3.6.2. Planar Chromatogram Development
3.7. Visualization of Substance Zones
3.8. Instrumentation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Snyder, L.R.; Kirkland, J.J.; Dolan, J.W. Introduction to Modern Liquid Chromatography, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Główka, F.; Karaźniewicz-Łada, M. Metody Izolacji Leków i ich Metabolitów z Matrycy Biologicznej Stosowane w Badaniach Farmakokinetycznych. Available online: https://www.ptfarm.pl/pub/File/FP/7_2009/11metody izolacji lekow.pdf (accessed on 21 December 2021).
- Guerrero-García, C.; Rubio-Guerra, A.F. Combination therapy in the treatment of hypertension. Drugs Context 2018, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tykarski, A.; Narkiewicz, K.; Gaciong, Z.; Januszewicz, A.; Litwin, M.; Kostka-Jeziorny, K.; Adamczak, M.; Szczepaniak-Chicheł, L.; Chrostowska, M.; Czarnecka, D.; et al. 2015 Guidelines for the Management of Hypertension. Arter. Hypertens. 2015, 19, 101–119. [Google Scholar] [CrossRef] [Green Version]
- Rabbia, F.; Fulcheri, C.; Di Monaco, S.; Covella, M.; Perlo, E.; Pappaccogli, M.; Veglio, F. Adherence to antihypertensive therapy and therapeutic dosage of antihypertensive drugs. High Blood Press. Cardiovasc. Prev. 2016, 23, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Son, J.; Lee, M.; Lee, K.T.; Kim, D.H. Simultaneous quantitation of enalapril and enalaprilat in human plasma by 96-well solid-phase extraction and liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 1157–1162. [Google Scholar] [CrossRef] [PubMed]
- Shah, H.J.; Kundlik, M.L.; Patel, N.K.; Subbaiah, G.; Patel, D.M.; Suhagia, B.N.; Patel, C.N. Rapid determination of losartan and losartan acid in human plasma by multiplexed LC-MS/MS. J. Sep. Sci. 2009, 32, 3388–3394. [Google Scholar] [CrossRef]
- Caudron, E.; Laurent, S.; Billaud, E.M.; Prognon, P. Simultaneous determination of the acid/base antihypertensive drugs celiprolol, bisoprolol and irbesartan in human plasma by liquid chromatography. J. Chromatogr. B 2004, 801, 339–345. [Google Scholar] [CrossRef]
- van der Nagel, B.C.H.; Versmissen, J.; Bahmany, S.; van Gelder, T.; Koch, B.C.P. High-throughput quantification of 8 antihypertensive drugs and active metabolites in human plasma using UPLC–MS/MS. J. Chromatogr. B 2017, 1060, 367–373. [Google Scholar] [CrossRef]
- Estimation of Nifedipine in Human Plasma by LCMS/MS. Available online: https://www.researchgate.net/publication/286957892_Estimation_of_nifedipine_in_human_plasma_by_LCMSMS (accessed on 21 December 2021).
- Kang, C.N.; Kim, H.J.; Park, Y.S.; Kim, S.H.; Park, H.K.; Hwang, H.S.; Kang, J.S. A simple and rapid LC-MS/MS method for the determination of Enalapril in human plasma for pharmacokinetic and bioequivalence studies in korean healthy volunteers under fasting conditions. J. Anal. Chem. 2014, 69, 467–473. [Google Scholar] [CrossRef]
- Liu, D.; Jiang, J.; Wang, P.; Feng, S.; Hu, P. Simultaneous quantitative determination of olmesartan and hydrochlorothiazide in human plasma and urine by liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. B 2010, 878, 743–748. [Google Scholar] [CrossRef]
- Nirogi, R.V.S.; Kandikere, V.N.; Shukla, M.; Mudigonda, K.; Maurya, S.; Komarneni, P. High-throughput quantification of perindopril in human plasma by liquid chromatography/tandem mass spectrometry: Application to a bioequivalence study. Rapid Commun. Mass Spectrom. 2006, 20, 1864–1870. [Google Scholar] [CrossRef]
- De Nicolò, A.; Avataneo, V.; Rabbia, F.; Bonifacio, G.; Cusato, J.; Tomasello, C.; Perlo, E.; Mulatero, P.; Veglio, F.; Di Perri, G.; et al. UHPLC–MS/MS method with protein precipitation extraction for the simultaneous quantification of ten antihypertensive drugs in human plasma from resistant hypertensive patients. J. Pharm. Biomed. Anal. 2016, 129, 535–541. [Google Scholar] [CrossRef]
- Wilson, I.D. Bernd Spangenberg, Colin F. Poole, Christel Weins: Quantitative Thin-Layer Chromatography: A Practical Survey. Chromatographia 2011, 73, 823. [Google Scholar] [CrossRef]
- Oellig, C.; Schwack, W. Planar solid phase extraction—A new clean-up concept in multi-residue analysis of pesticides by liquid chromatography–mass spectrometry. J. Chromatogr. A 2011, 1218, 6540–6547. [Google Scholar] [CrossRef] [PubMed]
- Klimek-Turek, A.; Jaglínska, K.; Imbierowicz, M.; Dzido, T.H. Solvent Front Position Extraction with Semi-Automatic Device as a Powerful Sample Preparation Procedure Prior to Quantitative Instrumental Analysis. Molecules 2019, 24, 1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaglińska, K.; Polak, B.; Klimek-Turek, A.; Pomastowski, P.; Buszewski, B.; Dzido, T.H. Retardation of some drugs in thin-layer chromatographic systems with impregnated silica gel plates with hen’s egg white and bovine serum albumin. J. Chromatogr. A 2020, 1625, 461277. [Google Scholar] [CrossRef]
- Antza, C.; Stabouli, S.; Kotsis, V. Combination therapy with lercanidipine and enalapril in the management of the hypertensive patient: An update of the evidence. Vasc. Health Risk Manag. 2016, 12, 443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tykarski, A.; Filipiak, K.J.; Januszewicz, A.; Litwin, M.; Narkiewicz, K.; Prejbisz, A.; Ostalska-Nowicka, D.; Widecka, K.; Kostka-Jeziorny, K.; Ekspertów:, Z.; et al. Zasady postępowania w nadciśnieniu tętniczym—2019 rok. Nadciśnienie Tętnicze Praktyce 2019, 5, 1–86. [Google Scholar]
- Klimek-Turek, A.; Sikora, E.; Dzido, T.H. Solvent front position extraction procedure with thin-layer chromatography as a mode of multicomponent sample preparation for quantitative analysis by instrumental technique. J. Chromatogr. A 2017, 1530, 204–210. [Google Scholar] [CrossRef]
- Afsharan, H.; Hasanzadeh, M.; Shadjou, N.; Jouyban, A. Interaction of some cardiovascular drugs with bovine serum albumin at physiological conditions using glassy carbon electrode: A new approach. Mater. Sci. Eng. C 2016, 65, 97–108. [Google Scholar] [CrossRef]
- Zhang, H.M.; Lou, K.; Cao, J.; Wang, Y.Q. Interaction of a hydrophobic-functionalized pamam dendrimer with bovine serum albumin: Thermodynamic and structural changes. Langmuir 2014, 30, 5536–5544. [Google Scholar] [CrossRef]
- Zhou, X.Q.; Wang, B.L.; Kou, S.B.; Lin, Z.Y.; Lou, Y.Y.; Zhou, K.L.; Shi, J.H. Multi-spectroscopic approaches combined with theoretical calculation to explore the intermolecular interaction of telmisartan with bovine serum albumin. Chem. Phys. 2019, 522, 285–293. [Google Scholar] [CrossRef]
- Klimek-Turek, A.; Chomicki, A.; Fornal, E.; Pradiuch, A.; Hys, M.; Dzido, T.H. Solvent front position extraction with semi-automatic device as a powerful sample preparation procedure to quantitatitation of tryptophan in human plasma. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gekko, K.; Ohmae, E.; Kameyama, K.; Takagi, T. Acetonitrile-protein interactions: Amino acid solubility and preferential solvation. BBA-Protein Struct. Mol. Enzymol. 1998, 1387, 195–205. [Google Scholar] [CrossRef]
- Kandori, K.; Uoya, Y.; Ishikawa, T. Effects of Acetonitrile on Adsorption Behavior of Bovine Serum Albumin onto Synthetic Calcium Hydroxyapatite Particles. J. Colloid Interface Sci. 2002, 252, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Korany, M.A.; Mahgoub, H.; Haggag, R.S.; Ragab, M.A.A.; Elmallah, O.A. Green chemistry: Analytical and chromatography. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 839–852. [Google Scholar] [CrossRef]
Analytical Parameter | SPE | Precipitation |
---|---|---|
Time per sample (min) | 1.5–3 | 2–5 |
Average consumption of solvent (mL) per sample | 2.5–8 | 0.6–1.5 |
Number of steps (operations) | 8–12 | 6–7 |
The cost of the procedure calculated regarding solvent consumption (EUR) | 0.45–1.25 | 0.15–0.35 |
Necessary equipment | SPE vacuum manifold; solid phase extraction columns | fridge; special centrifuge for biological samples |
Automation | Partial | No |
Ramipril | ||||||
---|---|---|---|---|---|---|
Acetone | Acetonitrile | Ethyl Acetate | Isopropanol | Toluene | Methanol | |
HPTLC Silica gel 60 F254 HPTLC RP-18 F254 HPTLC DIOL F254 HPTLC CN F254 TLC Cellulose F | 0.69 * | 0 | 0.34 | 0.51 * | 0 | 0.92 |
0.92 | 0.59 * | 0.88 * | 0.78 | 0 | 0.78 | |
0 | 0 | 0.35 | 0.66 | 0 | 0.92 | |
0.94 | 0.71 | 0.69 | 0.68 | 0 | 0.89 | |
0.98 | 0.96 | 0 | 0.91 | 0 | 0.96 | |
Lercanidipine | ||||||
HPTLC Silica gel 60 F254 HPTLC RP-18 F254 HPTLC DIOL F254 HPTLC CN F254 TLC Cellulose F | 0.93 | 0.51 | 0.92 | 0.92 | 0 | 0.96 |
0.94 * | 0 | 0 | 0.53 * | 0 | 0.15 | |
0 | 0 | 0 | 0.55 | 0 | 0.95 * | |
0 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0.89 * | 0 | 0.94 * | |
Indapamide | ||||||
HPTLC Silica gel 60 F254 HPTLC RP-18 F254 HPTLC DIOL F254 HPTLC CN F254 TLC Cellulose F | 0.93 | 0.94 | 0.92 | 0.95 | 0 | 0.98 |
0.98 | 0.96 | 0.95 | 0.98 | 0 | 0.92 | |
0.98 | 0.92 | 0.92 | 0.95 | 0 | 0.95 | |
0.98 | 0.98 | 0.94 | 0.75 | 0 | 0.88 | |
0 | 0 | 0 | 0.89 * | 0 | 0.94 * | |
Valsartan | ||||||
HPTLC Silica gel 60 F254 HPTLC RP-18 F254 HPTLC DIOL F254 HPTLC CN F254 TLC Cellulose F | 0 | 0 | 0 | 0.22 | 0 | 0.99 |
0.98 | 0.93 | 0.98 | 0.97 | 0 | 0.95 | |
0.96 | 0.88 | 0.91 | 0.98 | 0 | 0.98 | |
0.94 | 0.98 | 0.98 | 0.92 | 0 | 0.94 | |
0 | 0 | 0 | 0 | 0 | 0.95 | |
Hydrochlorothiazide | ||||||
HPTLC Silica gel 60 F254 HPTLC RP-18 F254 HPTLC DIOL F254 HPTLC CN F254 TLC Cellulose F | 0.94 | 0.94 | 0.64 | 0.92 | 0 | 0.97 |
0.98 | 0.97 | 0.87 | 0.96 | 0 | 0.96 | |
0.96 | 0.91 | 0.79 | 0.91 | 0 | 0.91 | |
0.94 | 0.98 | 0.91 | 0.59 | 0 | 0.83 | |
0 | 0 | 0 | 0 | 0 | 0.68 | |
Telmisatran | ||||||
HPTLC Silica gel 60 F254 HPTLC RP-18 F254 HPTLC DIOL F254 HPTLC CN F254 TLC Cellulose F | 0.35 * | 0 | 0.12 | 0.44 | 0 | 0.98 |
0.56 * | 0 | 0 | 0.45 | 0 | 0.75 | |
0.38 | 0 | 0.15 | 0.41 | 0 | 0.60 | |
0.32 | 0 | 0.15 | 0.25 | 0 | 0.73 | |
0.98 * | 0 | 0 | 0 | 0 | 0.95 | |
Perindopril | ||||||
HPTLC Silica gel 60 F254 HPTLC RP-18 F254 HPTLC DIOL F254 HPTLC CN F254 TLC Cellulose F | 0 | 0 | 0.26 | 0.41 | 0 | 0.78 |
0.93 | 0.56 | 0.84 | 0.77 | 0 | 0.73 | |
0 | 0 | 0 | 0.64 | 0 | 0.92 | |
0.91 | 0.69 | 0.64 | 0.67 | 0 | 0.88 | |
0.98 | 0 | 0 | 0.93 | 0 | 0.88 | |
Nebivolol | ||||||
HPTLC Silica gel 60 F254 HPTLC RP-18 F254 HPTLC DIOL F254 HPTLC CN F254 TLC Cellulose F | 0.11 | 0 | 0 | 0.33 * | 0 | 0.41 |
0.92 * | 0 | 0 | 0.73 | 0 | 0.84 | |
0 | 0 | 0 | 0.61 | 0 | 0.96 | |
0.38 | 0.22 | 0.16 | 0.44 | 0 | 0.15 | |
0 | 0 | 0 | 0 | 0 | 0.83 |
Substance | 0.1% Formic Acid in Methanol | 0.1% Ammonia in Methanol | ||
---|---|---|---|---|
Single Development | Two Developments | Single Development | Two Developments | |
Perindopril | 0.88 | 0.99 | 0.83 | 0.97 |
Ramipril | 0.91 | 0.99 | 0.90 | 0.99 |
Lercanidipine | 0.92 | 0.99 | 0.94 | 0.99 |
Indapamide | 0.96 | 0.99 | 0.96 | 0.99 |
I Group of Substances * | |||||
---|---|---|---|---|---|
%RSD | %RE | %Recovery | LOD (µg/L) | LOQ (µg/L) | |
Lercanidipine | 2.89 | 2.04 | 97.96 | 2.17 | 6.60 |
Ramipril | 4.32 | 1.52 | 98.47 | 3.95 | 11.89 |
Indapamide | 5.91 | 0.97 | 99.03 | 2.54 | 8.08 |
II Group of Substances * | |||||
%RSD | %RE | %Recovery | LOD (µg/L) | LOQ (µg/L) | |
Valsartan | 1.25 | 0.55 | 99.44 | 2.57 | 7.63 |
Hydrochlorothiazide | 3.52 | 3.33 | 96.67 | 0.85 | 2.58 |
III Group of Substances ** | |||||
%RSD | %RE | %Recovery | LOD (µg/L) | LOD (µg/L) | |
Perindopril | 1.20 | 5.24 | 94.76 | 2.90 | 8.79 |
Nebivolol | 2.59 | 0.95 | 100.95 | 2.28 | 6.93 |
Bovine Serum Albumin Sample | Bovine Serum Albumin Sample with ACN | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
I Group of Substances * | ||||||||||
%RSD | %RE | %Recovery | LOD (µg/L) | LOQ (µg/L) | %RSD | %RE | %Recovery | LOD (µg/L) | LOQ (µg/L) | |
Lercanidipine | 6.31 | 16.47 | 83.53 | 4.06 | 12.3 | 4.04 | 8.33 | 91.67 | 1.19 | 3.61 |
Ramipril | 6.48 | 18.31 | 81.69 | 2.31 | 7.02 | 5.31 | 6.71 | 93.29 | 1.3 | 3.93 |
Indapamide | 18.50 | 90.44 | 9.56 | 8.08 | 24.49 | 5.64 | 80.11 | 19.89 | 8.53 | 25.8 |
II Group of Substances * | ||||||||||
%RSD | %RE | %Recovery | LOD (µg/L) | LOQ (µg/L) | %RSD | %RE | %Recovery | LOD (µg/L) | LOQ (µg/L) | |
Valsartan | 5.97 | 3.48 | 103.48 | 3.18 | 9.65 | 5.40 | 2.39 | 102.39 | 2.78 | 8.42 |
Hydrochlorothiazide | 4.81 | 20.57 | 79.43 | 6.38 | 19.34 | 5.76 | 13.28 | 86.72 | 6.41 | 19.42 |
III Group of Substances ** | ||||||||||
%RSD | %RE | %Recovery | LOD (µg/L) | LOQ (µg/L) | %RSD | %RE | %Recovery | LOD (µg/L) | LOQ (µg/L) | |
Perindopril | 2.66 | 2.07 | 102.07 | 2.31 | 7.02 | 2.65 | 1.95 | 98.05 | 1.19 | 3.61 |
Nebivolol | 5.29 | 19.49 | 80.51 | 2.72 | 8.26 | 5.18 | 9.80 | 90.2 | 3.25 | 9.84 |
Chromatographic plate dimensions | 5 × 10 cm | 10 × 20 cm |
Time per sample (min) | 8.20 | 2.40 |
Average consumption of solvents (mL) per sample | 0.41 | 0.38 |
Analytical Parameter | SFPE |
---|---|
Time per sample (min) | 2.40 |
Average consumption of solvents (mL) per sample | 0.38 |
Number of steps (operations) | 6 |
The cost of the procedure calculated regarding solvent consumption (EUR) | 0.35 |
Necessary equipment | Horizontal chamber with pipette driven by 3D printer mechanism; TLC–MS Interface |
Automation | Partial |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaglińska, K.; Polak, B.; Klimek-Turek, A.; Błaszczyk, R.; Wysokiński, A.; Dzido, T.H. Preparation of Antihypertensive Drugs in Biological Matrix with Solvent Front Position Extraction for LC–MS/MS Analysis. Molecules 2022, 27, 205. https://doi.org/10.3390/molecules27010205
Jaglińska K, Polak B, Klimek-Turek A, Błaszczyk R, Wysokiński A, Dzido TH. Preparation of Antihypertensive Drugs in Biological Matrix with Solvent Front Position Extraction for LC–MS/MS Analysis. Molecules. 2022; 27(1):205. https://doi.org/10.3390/molecules27010205
Chicago/Turabian StyleJaglińska, Kamila, Beata Polak, Anna Klimek-Turek, Robert Błaszczyk, Andrzej Wysokiński, and Tadeusz Henryk Dzido. 2022. "Preparation of Antihypertensive Drugs in Biological Matrix with Solvent Front Position Extraction for LC–MS/MS Analysis" Molecules 27, no. 1: 205. https://doi.org/10.3390/molecules27010205
APA StyleJaglińska, K., Polak, B., Klimek-Turek, A., Błaszczyk, R., Wysokiński, A., & Dzido, T. H. (2022). Preparation of Antihypertensive Drugs in Biological Matrix with Solvent Front Position Extraction for LC–MS/MS Analysis. Molecules, 27(1), 205. https://doi.org/10.3390/molecules27010205